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Abstract. This study presents the performance of the Weather Research and Forecasting (WRF) 
with the 5-km horizontal grid as a tool for wind energy forecasting within and along the Indonesian 
coast for the next 72 hours. The modeled data is then validated using wind measurements from the 
meteorological mast in East Sumba at several heights. Global Forecast System (GFS) operational 
forecasting data with a resolution of 0.25 degrees are used as the initial and boundary conditions 
(IC/BC) model. The findings demonstrate that wind speed and wind power density are much higher 
above ground level (50 m) than at ground level (10 m) and are significantly higher towards the 
shore than inland. The model slightly overpredicts low-level wind speeds. The results suggest that 
the WRF model is feasible for forecasting Indonesia's wind flow and wind energy. 
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1. Introduction 

Indonesia has a 23% renewable energy target in its total energy mix by 2025 (as stated 
in the National Electricity General Plan or RUKN), reducing greenhouse gas emissions by 
29-41% by 2030 and achieving Net-Zero emissions by 2060. In line with those, several 
studies on renewable energy development in reducing the greenhouse gas effect have been 
conducted, especially from the potential view. They are estimating not only national 
coverage, such as hydro (Pranoto et al., 2021), wind (Hesty et al., 2021), and solar 
(Wahyuono and Julian, 2018) but also provincial level and specific sites (Syahputra and 
Soesanti, 2021). Moreover, a web-based application has been developed to calculate the 
energy potential of a rooftop solar PV system installed in a home (Nurliyanti et al., 2021). 
  Wind power is a promising renewable energy to achieve the target because of its high
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efficiency and low pollution. The Ministry of Mineral and Energy Resources (MMER) of 
Indonesia states that Indonesia has a wind energy potential of 154.88 GW, consisting of an 
onshore potential of 60.65 GW and an offshore potential of 94.2 GW. According to 
Indonesia's wind resource assessment by Hesty et al. (2022), onshore locations on the 
south coasts of Java, South Sulawesi, Maluku, and NTT have high wind energy potential 
wind speeds of 6 to 8 m/s, power densities of 400 to 500 watt/m2, and Annual Energy 
Production (AEP) of 4-5 GWh/year. In addition, wind energy has a large potential to be 
explored in the urban area, whether using Horizontal and Vertical Axis wind turbines 
(Krasniqi, Dimitrieska, and Lajqi 2022), and improves performance and efficiency, 
simplicity, and reliability of construction of wind turbines using a permanent magnet 
(PMGs) (Nur and Siregar, 2020). 

However, the high reliance on seasonal variations, which causes a huge primary power 
generation fluctuation on a daily and annual timescale, is a significant obstacle for a 100% 
renewable energy source (Guenther, 2018). Atmospheric conditions and wind speed 
strongly influence the power generated by wind energy conversion systems (Chang, 2013a, 
Chang, 2013b). So unexpected fluctuations can increase system operating costs for primary 
backup requirements and pose a potential risk to the reliability of the power supply 
(Sideratos and Hatziargyriou, 2007). Network operators must overcome the challenges of 
intermittent wind conditions to schedule spare capacity, stability, planning, and the power 
system's reliability (Soman et al., 2010). Precise short-term wind speed forecasts are 
essential to reduce the risk of intermittent wind and allow for more penetration (Peng et 
al., 2016). 

Some wind power forecasting methods for approaching wind energy forecasting 
include statistical models, Artificial Intelligence (AI) models, and physical models. The 
autoregressive (AR), autoregressive moving average (ARMA), autoregressive integrated 
moving average (ARIMA), Bayesian approach, and gray forecasts are all statistical methods. 
Lopez et al. (2019) show that the seasonal ARIMA model is a fast, precise, straightforward, 
and adaptable load forecasting method. Artificial neural networks (ANN), fuzzy logic 
approaches, adaptive neuro-fuzzy inference systems (ANFIS), neuro-fuzzy networks, 
support vector machines (SVM), and evolutionary optimization algorithms are some of the 
AI methods for wind forecasting. Temperature, pressure, solar radiation, and altitude were 
used as inputs to the ANN by Ramasamy, Chandel, and Yadav (2015) to estimate wind speed 
in 11 sites in India's mountainous region. Neuro-fuzzy network method for short-term wind 
power forecasting was applied to the wind power forecasting of a real wind farm located in 
China by Xia, Zhao, and Dai (2010). The physical method is based on numerical weather 
prediction (NWP) using weather forecast data for large-scale area weather prediction. Tan 
et al. (2021) evaluated the efficacy of the weather research forecasting (WRF) model in 
predicting wind speed and direction up to 72 hours in advance in the western portion of 
Turkey. Except for low wind speeds, the model can accurately reproduce wind directions.  

Several institutions in Indonesia have issued a weather prediction system for an early 
warning system and education. The Meteorology, Climatology and Geophysics Agency 
(BMKG), the agency appointed by the Government of Indonesia to provide information and 
forecasts related to weather, climate, and natural disasters, that the public can access to 
find out about weather predictions for the next seven days. The Center for Atmospheric 
Science and Technology (PSTA) developed a weather prediction system for the next three 
days with a resolution of 5 km (Suaydhi, 2016). Meteorological Analysis Laboratory, 
Bandung Institute of Technology (ITB), developed a weather prediction for the next three 
days with a resolution of 27 km (Junnaedhi, 2017). However, there is no weather prediction 
system for energy purposes, especially wind energy. Therefore, the proposed short-term 
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wind energy forecasting represents a significant scientific contribution to Indonesia's 
reliable large-scale wind power integration. 

The purpose of the study presented here is to develop a short-term wind forecasting 
model for Indonesia's energy management needs and investigate the accuracy and 
performance of the model. Answering this question, we will conduct the WRF regional 
mesoscale model for short-term (up to 72 h) prediction of wind at hub level height. WRF 
simulation results were then compared to in-situ wind observations retrieved from 
weather stations in terms of root mean squared error (RMSE) and correlation. The 
performance of the WRF model's ability to forecast wind speed and direction will be 
analyzed. This work contributes to a better understanding of the wind conditions and the 
predictability of the hub-height winds.  

The rest of this paper is organized as follows. Section 2 describes the data and 
methodology used, including the WRF Model setup and brief descriptions of the model 
configuration and parameterization schemes. Section 3 provides results followed by a 
discussion about model performance. Section 4 concludes with a summary of the findings 
and suggestions for future work. 
 
2.  Data and Methods  

2.1.  Data 
The model relies on data from the Global Forecast System (GFS). The Global Forecast 

System (GFS) provides data for NOAA's (National Oceanic and Atmospheric 
Administration) prediction models. Global GFS data is often used as a reference for regional 
models or even used directly for regional predictions because of its accuracy. This input 
data has a resolution of 0.25 ° for the world region and has four cycles: 00, 06, 12, and 18. 
In this study, cycle 00 is used.  

2.2. Model Setup 
The NWP model used in this study is the WRF model, a fully compressible, non-

hydrostatic algorithm. To more accurately replicate airflow across difficult terrain, it uses 
sigma pressure in the vertical direction. The model solves the governing equations in 
flux-form, which enables the conservation of mass and scalar quantities. 

The model has a single primary domain that spans the entire Indonesian territory 
between latitudes 7° N and 11° S and longitudes 94° E and 144° E. Using initial data from 
GFS, the model simulation was run for 72 hours forecast lead time, increasing its input 
model resolution to 5 km spatial resolution over 35 vertical pressure levels with a temporal 
resolution of 1 hour. The spatial resolution of 5 km is expected to be good enough for 
reviewing detailed weather patterns according to local conditions such as topography and 
coastline.  

 The parameterization method configuration significantly impacts the near-surface 
wind field in the WRF model, particularly for complex terrain. Consideration should be 
given to parameterization schemes like the Surface, Land Surface (LS), and Planetary 
Boundary Layer (PBL) schemes that can capture the interaction between the land surface 
and the wind field. We used the Noah land surface model in WRF because it integrates 
prescribed data and dynamic modeling to simulate the surface. It also provides the user 
with multiple options to simulate land surface interactions (Niu et al., 2011). Land surface 
models and initialization datasets impacted the WRF's ability to predict accurately. The 
surface layer approach used in this study to compute turbulent surface fluxes is based on 
the Monin Obukhov similarity theory (Van et al., 2017). More details regarding the 
configuration of the WRF parameter scheme are shown in Table 1. 

https://journals.ametsoc.org/view/journals/wefo/32/2/waf-d-16-0120_1.xml#s2
https://journals.ametsoc.org/view/journals/wefo/32/2/waf-d-16-0120_1.xml#s3
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Table 1 WRF Model Configuration and Parameterization 

Parameter Configuration  Parameter  Configuration  

Spatial 
resolution  

5 km Schematic of 
microphysics 

WRF Single Moment 3 class 
(WSM3) 

Temporal 
resolution 

Hourly Cumulus scheme Kain-Fritsch 

Spatial size 
(west-east x 
north-south) 

1046 x 441 Schematic of shortwave 
radiation 

Dudhia 

Spatial size (top-
bottom) 

35 Schematic of longwave 
radiation 

Rapid Radiative Transfer 
Model (RRTM) 

Prediction Three days forward Surface scheme MM5 Medium-Range 
Forecast (MRF) Monin-
Obukhov Similarity Theory 

  Land cover scheme NCEP, OSU, Air Force and 
Office of Hydrology (NOAH) 
Land Surface Model 

  Planetary Boundary 
Layer (PBL) scheme 

Yonsei University (YSU) PBL 
Scheme 

2.3.  Model Verification 
 The quantitative analysis of wind data was carried out by finding the correlation 
coefficient (r) and Mean Square Error (RMSE) using Equation 1 and Equation 2. 

𝒓 =
∑ (𝒙𝒎𝒐𝒅𝒆𝒍,𝒊−𝒙𝒎𝒐𝒅𝒆𝒍,𝒃𝒂𝒓)(𝒙𝒐𝒃𝒔−𝒙𝒐𝒃𝒔,𝒃𝒂𝒓)𝑵

𝒊=𝟏

√∑ (𝒙𝒎𝒐𝒅𝒆𝒍,𝒊−𝒙𝒎𝒐𝒅𝒆𝒍,𝒃𝒂𝒓)𝟐 ∑ (𝒙𝒐𝒃𝒔,𝒊−𝒙𝒐𝒃𝒔,𝒃𝒂𝒓)𝟐𝑵
𝒊=𝟏

𝑵
𝒊=𝟏

                                            (1) 

𝑹𝑴𝑺𝑬 =  [
𝟏

𝑵
∑ (𝒙𝒐𝒃𝒔,𝒊 − 𝒙𝒎𝒐𝒅𝒆𝒍,𝒊)

𝟐𝑵
𝒊=𝟏 ]

𝟏/𝟐

                                             (2) 

The RMSE value measures the error generated between the model data and the 
observations. Therefore, this RMSE value can describe accuracy; the smaller the RMSE, the 
better the level of accuracy. The observation data used to verify the WRF model comes from 
a wind measuring tower owned by Pondera/PT Hywind Energy Solution in Kadumbul 
Village, Pandawai District, East Sumba, with latitude coordinates 09°41'42.7" South 
Latitude and Longitude 120°31'55.5" East Longitude. The measuring tower is equipped 
with two arrangements of anemometers at various heights. Two A-B anemometers are 
placed at 40 and 80 m in height. At the same time, a single anemometer is placed at 60,  97, 
and 102 m of height. In addition, there is a wind vane installed at an altitude of 60 m and 97 
m.  

Figure 1(a) shows the wind measurement tower and (b) the orthomosaic map location. 
Pandawai District is a hilly area with the highest altitude of 255 m above sea level. In the 
southern part of the district is a coastal area directly adjacent to the sea. For the slope class, 
the Pandawai District area is dominated by the 0–8% (flat) slope class. The location where 
observation tower is located in a natural grassland, which is included in the less productive 
dry land with an elevation of 30 – 39 m above sea level. 

The observation data used to verify the prediction model is 29-31 August 2021 for 10 
minutes. Verification using data from August is necessary since the monsoonal type over 
Indonesia was identified by the flow of wind circulation that blows continuously for one 
particular period and in the other direction with transitional intervals in between. 
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Figure 1 (a) Wind measurement tower; (b) orthomosaic map; and (c) Topography of the 
measurement tower location 

The dry season, which reaches its maximum in August, is caused by the south-easterly 
wind that blows from the Australian Continent to the equator from around June to August. 
Indonesia often has higher wind speeds during this June-July-August (JJA) month (Abdillah 
et al., 2022). 

 

(a) 
 

 

 

 

 

 
 

(b)                                                                   (c) 
Figure 2 Wind measurement tower observation data on 29–31 August 2021; (a) time 
series; (b) mean diurnal profile; and (c) Frequency histogram 

Figure 2a shows the observation data of the wind gauge tower on 29 – 31 August 2021. 
The average wind speed at an altitude of 40 m, 60 m, 80 m, and 97 m - 102 m are 5.9 m/s, 
6.4 m/s, 6.8 m/s, and 7.1 m/s, respectively. Figure 2 b shows a diurnal profile showing the 
daily variation of wind speed at five altitudes; 40 m, 60 m, 80 m, 97 m, and 102 m. At an 
altitude of 102 m, the daily wind speed is evenly distributed throughout the day, with wind 
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speeds between 6.29 - 8.08 m/s. Meanwhile, at an altitude of 40 m, the daily wind speed is 
between 4.20 - 7.98 m/s. Maximum wind speed occurs during the day at 11 AM – 2 PM. The 
frequency histogram of wind speed at the height of 102 m can be seen in Figure 2 c. Wind 
speed distribution is concentrated at low speeds, and the duration of days with high wind 
speeds is 7 m/s, as much as 21%. 

 
3. Results and Discussion 

Figures 3 - 4 show the output of the WRF model in the form of predictions of Indonesia's 
wind speed and direction on 29 - 31 August 2021 at 08 and 09 UTC at four altitude levels. 
Very few locations on land experience wind speed above 6.0 m/s.  

 

Figure 3 Model Result of Predicted Wind Direction and Speed (m/s) on 29-31 August 2021 
@08 UTC at altitude (a) 10 m (b) 30 m (c) 50 m (d) 100 m 

 

Figure 4 Model Result of Wind Direction and Speed (m/s) on 29-31 August 2021 @09 UTC 
at altitude (a) 10 m (b) 30 m (c) 50 m (d) 100 m 
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The model predicts high wind speeds (6 - 8 m/s) onshore only occur in coastal areas 
(southern Java, South Sulawesi, Maluku, and NTT). This wind speed can generate electricity 
using small-scale wind turbines because the cut-in wind requirements of commercial wind 
turbines are generally 5 m/s (Akour et al., 2018; Li and Chen, 2008). Wind speeds in 
offshore areas of more than 8 m/s occur in southern Indonesia, i.e., Banten, Sukabumi, 
Kupang, Wetar Island, Jeneponto Regency, and Tanimbar Islands. Therefore, the potential 
for electrical power output will be much more significant.  

The dominant wind direction comes from the southeast due to the different seasons. In 
Asia, the summer months fall in June, July, and August, so the Australian monsoon is getting 
stronger. In almost all parts of Indonesia, the easterly wind blows, except in Sumatra, 
starting from West Sumatra to the northern end of the island of Sumatra. The easterly wind 
from Australia blows across Nusa Tenggara, Bali, Java, to the southern tip of Sumatra. 
Others turn north after passing the equator in Kalimantan. The easterly wind that blows 
over Papua and northern Sulawesi is dominant from the Pacific Ocean east of Papua New 
Guinea. This wind direction is influenced by the east monsoon wind phenomenon, active in 
JJA (June-July-August). Monsoon winds are wind circulations that reverse direction 
seasonally caused by differences in heating between the northern and southern 
hemispheres. Indonesia has two monsoon winds: the west monsoon and the east monsoon. 
The west monsoon winds occur in the month of DJF (December-January-February). The 
dominant wind direction comes from the Asian Continent, which carries a lot of water 
vapor, while the east monsoon winds carry little water vapor because it comes from the dry 
mainland of Australia. The model predicts that offshore and onshore wind speed 
fluctuations in Indonesia are small; there is no significant change between wind speed at 
08 UTC and 09 UTC.  

 

 

 

 

 

 

 

 

 

 

(a)                                                                                     (b) 
Figure 5  (a) Wind direction and wind speed from WRF model at measurement tower 
location, and (b) Comparison of wind rose between model result and observation 

 Figure 5 (a) shows Sumba Island's wind map at hub height (80 magl) as 
stimulated through WRF. The measurement tower is represented by a red dot 
image. The topography of Sumba Island is an area of steep hills, especially in the southern 
area, where the hillsides are a quite fertile land, while the northern area is a rocky plain and 
less fertile. The measurement tower is located on a flat, sloping area, location on the coast. 
These maps show that the wind speed at the island's center was quite low (less than 3 m/s). 
In contrast to the center, the coastal region experienced much stronger wind. The existence 
of the Savu Sea in the east and the Indian Ocean to the south and west of the island may 
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have contributed to the variance by demonstrating disparities in temperature and pressure 
between land and seas, resulting in powerful winds. It is discovered that the island's 
predominant wind direction is from the southeast because of the east monsoon. 

The observation and model wind roses at altitudes 60 m and 97 m are compared in 
Figure 5 (b). The circles show, in percentage, how frequently the wind blows in various 
directions. The wind speed is indicated by the color bar, with blue representing the lowest 
wind speed and orange representing the highest wind speed. The model can accurately 
represent the distribution of wind directions when comparing the wind roses for the 
observed data with the model findings. The model is able to capture the distribution but 
has some higher wind speeds than the observations. The observational data demonstrate a 
distinct southeast main wind direction. 

Table 2 shows the correlation and RMSE values between the WRF model and 
observation data. Based on these data, the lowest correlation value is at an altitude of 40 m 
(A), with a correlation value of 0.26, while the highest is at an altitude of 80 meters. 
Meanwhile, the highest RMSE value is 2.07 m/s at an altitude of 40 m (A), and the lowest is 
1.44 m/s at 102 meters. Like the correlation value, the WRF model is quite good at modeling 
the upper-level wind compared to the lower-level wind. Furthermore, it shows that the 
WRF model is quite good at estimating the wind at the top level, especially at an altitude of 
80 meters. In comparison, the lower-level wind (height of 40 meters) tends to be less good, 
owing to the strong influence of various factors such as turbulence, surface roughness, and 
atmospheric stability. 

Table 2 Correlation and RMSE value of WRF model with observation data 

CORRELATION 
 

40m (A) 40m (B) 60m 80m (A) 80m (B) 97m 102m  

0.26128 0.265574 0.469246 0.637211 0.637238 0.60667 0.601631  

RMSE (m/s) 
 
 

40m (A) 40m (B) 60m 80m (A) 80m (B) 97m 102m  

2.076566 2.059937 1.829749 1.529857 1.513156 1.461564 1.44696  

Figure 6 shows that the wind at the lower level of the WRF model tends to overestimate 
the observed value. The WRF model tends to overestimate lower wind speeds and 
underestimate higher wind speeds (Al-Yahyai, Charabi, and Gastli, 2010). The 
overestimated wind speed prediction can be observed in the wind measured at 40 meters, 
where the wind speed is low. Predictions that underestimate are in the wind measured at 
102 meters, where the wind speed is moderate to high. Similar model results were also 
reported in studies conducted in Greece (Giannaros, Melas, and Ziomas, 2017) and Hawaii 
(Argüeso and Businger, 2018). 

Local topographical features can also induce RMSE. Numerical weather prediction 
models simplify the topography and physical processes to approximate the problem result 
(Carvalho et al., 2013). The wind speed from Automatic Weather Station (AWS) single-point 
measurements at 10-meter elevation differ significantly from the model, whereas the wind 
speeds derived using the model are the grid cell average, which equates to a 5 km × 5 km 
area. The assumed topography and roughness of the grid cells model can differ significantly 
from the actual conditions (Larsén et al., 2013).  
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Figure 6 Comparison of wind speed time series between model result and observation  

The WRF model could not accurately simulate the wind speed at low-level wind speed. 
The error can be caused by the initial and boundary conditions dataset; the selection of 
physical parameterization techniques, which relies on the study area and time period; and 
the model's capacity to replicate topographical features realistically. Because of the sub-
grid scale processes, the model tends to smooth the actual topography; as a result, when 
flat terrain is present, the friction between the surface and the atmosphere is minimized, 
causing the model to overestimate wind speed. 

 
4. Conclusions 

This study uses WRF to forecast 72 h wind energy prediction in Indonesia. The modeled 
data is then validated using wind measurements from a meteorological mast in East Sumba 
Timur at several heights. As a result, the WRF model predicted wind-resource parameters 
show a good agreement with the observations. The WRF model is quite good at modeling 
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the upper-level wind (> 50 m) compared to the lower-level wind (< 50 m). Furthermore, it 
shows that the WRF model is quite good at estimating the wind at the top level, especially 
at an altitude of 80 meters. In general, the model slightly overestimates the wind speed, and 
the deviations are related to local topographical features and low wind speed. Therefore, 
the model can be a valuable tool for forecasting the wind flow around Indonesia to get 
reliable information on wind resources. Further research should evaluate the WRF model 
in couple with a microscale model such as the computational fluid dynamics (CFD) model. 
By considering high-resolution micro-scale topography and vegetation characteristics, such 
a method could improve the accuracy of wind speed forecasts. 
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