
International Journal of Technology (2017) 4: 611‐621
ISSN 2086‐9614 © IJTech 2017

A PRELIMINARY STUDY ON SHIFTING FROM VIRTUAL MACHINE TO
DOCKER CONTAINER FOR INSILICO DRUG DISCOVERY IN THE CLOUD

Agung Putra Pasaribu1, Muhammad Fajar Siddiq1, Muhammad Irfan Fadhila1, Muhammad H.

Hilman1, Arry Yanuar2, Heru Suhartanto1*

1Faculty of Computer Science, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
2Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia

(Received: January 2017 / Revised: April 2017 / Accepted: June 2017)

ABSTRACT
The rapid growth of information technology and internet access has moved many offline
activities online. Cloud computing is an easy and inexpensive solution, as supported by
virtualization servers that allow easier access to personal computing resources. Unfortunately,
current virtualization technology has some major disadvantages that can lead to suboptimal
server performance. As a result, some companies have begun to move from virtual machines to
containers. While containers are not new technology, their use has increased recently due to the
Docker container platform product. Docker’s features can provide easier solutions. In this work,
insilico drug discovery applications from molecular modelling to virtual screening were tested
to run in Docker. The results are very promising, as Docker beat the virtual machine in most
tests and reduced the performance gap that exists when using a virtual machine (VirtualBox).
The virtual machine placed third in test performance, after the host itself and Docker.

Keywords: Cloud computing; Docker container; Molecular modeling; Virtual screening

1. INTRODUCTION
In recent years, cloud computing has entered the realm of information technology (IT) and has
been widely used by the enterprise in support of business activities (Foundation, 2016). With its
flexibility, cloud computing is the right choice for service expansion. Prime examples include e-
commerce and sharing-based collaboration services such as online document editing and file
sharing. The development of cloud computing itself cannot be separated from supporting
technologies such as virtualization. Costly investments are required to provide dedicated servers
for cloud computing, culminating in the development of virtualization. In short, virtualization
allows a single host computer system (host) to be divided into several virtual computers called a
virtual machine (VM).

VM success depends heavily on the hypervisor, which plays a vital role in the distribution of
computing resources such as processors, RAM, and hard disk to each VM. Another feature of
the hypervisor is its ability to isolate each VM so that it looks like the computer itself and does
not intersect with another VM, even when it runs on the same host computer system. However,
when problems arise, isolation presented by the hypervisor creates havoc in the overall system.
Because of this isolation, each VM has one set of operating system (OS) complete with relevant
kernel. This becomes a problem when the OS used by the entire VM is based on Linux, given
that the Linux kernel can be used in all Linux distributions. A new technology called container

*Corresponding author’s email: heru@cs.ui.ac.id, Tel. +62‐21‐786‐3419, Fax. +62‐21‐786‐3415
Permalink/DOI: https://doi.org/10.14716/ijtech.v8i4.7481

612 A Preliminary Study on Shifting from Virtual Machine to Docker Container
 for Insilico Drug Discovery in the Cloud

has emerged in response to these issues. Similar to the VM, the container can provide insulation
to the users. This container technology is not entirely new, having been around since then. Over
time, however, more mature and stable container technology has been developed, placing
container on par with hypervisor-based VM. The latest data show that about 67% of the world's
servers use a hypervisor, while 16% use container. About 49% of the enterprise is considering
migrating to container (Foundation, 2016).

In the meantime, many well-developed and maintained applications such as molecular
dynamics and virtual screening have been available to users. These applications are widely used
in insilico drug discovery processes. However, preparing and maintaining these applications is
inconvenient for most users without IT backgrounds. Several approaches were proposed to
combat these challenges, including setting up the application in the cloud (Suhartanto et al.,
2015; Wibisono & Suhartanto, 2012). We have also identified a need for an application to
migrate between computing environments (Suhartanto et al., 2015). Other areas related to this
Cloud problems are explained (Aparna & Nair, 2016; Bhushan & Reddy, 2016; Thiyagarajan
& Ganesan, 2015).

Research reproducibility is one major issue for most scientific experiments. We will investigate
how emerging Docker container technology can respond to our problems and how it performs.
This paper presents our system performance benchmark and experiments on molecular
modeling and virtual screening that run on Docker container technology. We integrate
molecular modeling and docking software (Gromacs, Autodock, and Autodock Vina) into
Docker to isolate the environment and thus make it is easier to migrate and reproduce the
experiment. Further use of Docker for scientific reproducibility and migration in the cloud
computing environment is expected as an alternative technology to the VM.

2. RELATED WORK
In the field of IT operations, container is known as an alternative to the VM. It is a lightweight
operating system that runs on the host and executes the instruction directly to the processor core
natively, providing insulation and resource management in Linux (Dua et al., 2014). At first
glance, the container is no different from the VM. This is because both provide isolation and
resource management. The difference is in the host environment. Container only runs on Linux,
interacting in a host-guest relationship. Since container only exists in Linux, it is also referred
to as Linux Container (LXC).
2.1. Container as a New Virtualization Hype
Container is considered an alternative virtualization technology for the cloud computing
environment. Its promising performance will likely make it the backbone of cloud technology.
Kozhirbayev and Sinnott (2017) explained that the performance comparison of several
container technologies for the cloud environment, including Docker and Flockport, have
overthrown native in some respects.

As a virtualization technology, container not only is useful for the cloud computing
environment, but also shows promise in the high performance computing (HPC) arena. HPC-
based performance benchmarking was done to determine the ability of container to execute
Autodock3, a scientific application for virtual screening (Adufu et al., 2015). Container is
superior to the VM due to significant differences in start-up times. In Chung et al. (2016),
OpenMPI is used to evaluate container performance in the HPC environment. Container can
reduce several challenges inherent to using VM.

Reproducibility is one promising benefit of container technology. Scientific experiments often
must be repeated to prove their validity. Container stores the entire system in a repository, thus
simplifying its reproducibility. Cito and Gall (2016), discussed container’s usefulness in

Suhartanto et al. 613

providing a reproducible environment for research artifacts in software engineering. This type
of advantage will prove valuable in scientific research experiments.

This paper extends the aforementioned research and implements container for insilico drug
discovery activities. To the best of our knowledge, insilico drug discovery has not been done by
anyone in the Docker container platform.
2.2. Docker Container
Docker is an open-source engine that easily facilitates the deployment of applications into the
container (Turnbull, 2014). It uses LXC to implement container solutions and is capable of
managing images and files in a system called Union File System (Dua et al., 2014). Developers
and sysadmins can build, ship, and run distributed applications (Docker Inc., 2016). Docker can
also reduce the complexities encountered in an application’s lifecycle by providing a platform
equivalent to a part of development, quality assurance, and production in an organization.

Docker requires four major components to achieve its objectives. Turnbull (2014) describes
these as client-server, image, registry, and container. In the Docker client and server
component, the client program is represented by the “docker” command that can be executed
via terminal. Later, the client will contact the server (in this case, the Docker daemon), which
functions as both a regulator and a linker to the Docker container. All commands submitted by
users via the client will be handled by the server. The second component is the image, which
can be described as a template for the Docker container. Users can use the existing image or
create their own image. The image-making process in Docker is called build. Later, the image is
used as the basis for the container.

The next component is the registry, which functions as a repository where users can store and
download Docker images. Docker supports private and public repositories called Docker Hub.
Through the “docker pull” command, users can log in and directly download and store the
image in the Hub.. The last component is a container, which appears if a user runs a command
in an image. One or several processes can run at once insider the container. For example, users
can run the command “bash” in the downloaded Ubuntu image. Once the container is
automatically established, the user will be in the container and can do anything, including
application installation, running a daemon, and system edits.
2.3. Molecular Dynamics
Molecular dynamics (MD) is the study of the dissolution of protein, ligand binding, and the
complex interactions of proteins and DNA-protein folding (Mukesh & Rakesh, 2011). It was
first used to study interaction on the ball hard (Alder and Wainwright, 1957). Development of
the MD field began in 1964 with an MD simulation of fluid ambrgon by Rahman. Ten years
later, Rahman and his colleagues performed MD simulations on the state of realistic systems
(Stillinger & Rahman, 1974). The basic process of a M is determined by calculating the total
force issued for several N atoms. The simulation then works to determine the acceleration
owned by each atom and calculate the speed of each atom. Then, after the interaction between
atoms, displacement occurs that moves every atom to a new position resulting from molecular
simulations. The basic process consists of initialization (interaction and initialization of
position), force calculation of atoms (atom position updates), and atom velocity calculation.
Among other implementations, MD simulation helps researchers develop drugs for treating
certain diseases (Mukesh & Rakesh, 2011).

Gromacs (short for Chemical Groningen Machine Simulation) is an MD application developed
by the University of Groningen (Netherlands). The Gromacs application simulates the
movement of molecules by using a Newton equation for a system containing hundreds of
millions of molecules (Gromacs Manual 4.5.4, 2011). The simulation steps in Gromacs include
pdb2gmx, editconf, genbox, genion, energy minimization, and production simulation. The first

614 A Preliminary Study on Shifting from Virtual Machine to Docker Container
 for Insilico Drug Discovery in the Cloud

step, pdb2gm, is the process of building topology that contains information about the types,
charges, bonds, and other characteristics obtained from the atomic coordinates. The next step,
editconf, determines the model of the solution to be incorporated into the protein to be
simulated, adjusts the relative distance between the edges of the box, and identifies the space
between the molecules. The third step, genbox, is the process of adding the solution. Genion is
the process of adding ions that form a neutral protein solution. The next step, energy
minimization, is the process of eliminating local strains that can cause the Van der Walls effect
of molecular structures resulting from the previous step. The final step is the production
simulation, which is the process of running a reasonably balanced solution obtained within a
certain period.
2.4. Molecular Docking
Molecular docking is a computational process used to search for the most suitable ligand in
both geometry and energy when it is bound to a known receptor (protein). Molecular docking
performed on a ligand and receptor will justify whether the ligand is a drug candidate that is
being sought (Mukesh & Rakesh, 2011). The main aspects of molecular docking are
computation interaction energy and conformation using a method from quantum mechanics to
an empirical energy function. At a glance, problems in molecular docking can be lock-and-key
issues, where a protein reception can be considered the lock and the ligand considered the key.
In practice, however, molecular docking will seek the ligand that can adjust to the receptor.
(Drug Design, 2014).

A scoring function is needed to restrict the best-fit of molecular docking. The function is
usually based on a force field used in protein simulation. Some scoring functions add other
computation aspects, such as entropy. The complexity of ligand and receptor affect the function
evaluation (Mukesh & Rakesh, 2011). Virtual screening, a computational technique performed
in drug discovery, automatically evaluates data bank collection receptors with a ligand to
determine a drug candidate (Rester, 2008). Computing power is needed to run these executable
commands quickly. Thus, virtual screening based on molecular docking is a method often used
in practice. We also use the method contained in Autodock and Autodock Vina. Modeling of
chemical structure uses molecular modeling to study the structure’s phenomena.

Autodock is an application developed by The Scripps Research Institute (Drug Design, 2014).
There are two types of applications: Autodock and Autodock Vina. Each differs from the other
in terms of the scoring function used and optimization of parallel computing by Autodock Vina.
Autodock uses empirical free of force field energy with a Lamarckian Genetic Algorithm in
predicting the bonding coordinate between the ligand and the receptor (Morris et al., 2009). In
Autodock Vina, optimization is carried out using global particle swarm optimization and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) locally (Trott & Olson, 2010).

3. METHODOLOGY
In this work, we conduct a system performance benchmark, molecular dynamic simulation
using Gromacs, and virtual screening using Autodock. We then analyze the performance of the
simulation.
3.1. System Performance Benchmark
We conduct a system benchmark to evaluate performance of the container, VM, and native
computer. We examine the three main components of a computer system: the processor,
memory (RAM), and storage (hard disk). All are tested by the application pure specific test with
emphasis on the performance of each component. The overall system test is also conducted to
determine the collaboration of all three components.

Suhartanto et al. 615

Processor performance is evaluated using p7zip and POV-Ray. p7zip is compression software
that is considered a CPU-bound application, while POV-Ray is rendering software that
calculates heavy processes in the processor. Memory performance is evaluated using
RAMSpeed SMP, a standard, widely used memory benchmark. Storage performance is
evaluated using fio (Flexible IO Tester), a standard IO-bound software that evaluates the read
and write processes in the system.
3.2. Molecular Dynamics on Docker using Gromacs
In performing Gromacs experiment, we first prepare all the necessary libraries. It is important
to ensure that every prerequisite was installed accordingly. The proposed steps are preparing the
system environment with a supporting library, installing the Gromacs latest stable release,
running and producing a virtual sites file, and then repeating the last two steps to produce
lysozyme in the water. Two experiments from Gromacs need to be analyzed: the process of
creating a virtual site and producing lysozyme in water. This material comes from a molecular
modeling tutorial (GROMACS tutorials, 2015). In this work, we consider the Gromacs
timestamp of each environment.
3.3. Virtual Screening on Docker using Autodock and Autodock Vina
Our work is divided into three steps: pre-docking, docking, and analysis docking log results.
Pre-docking consists of preparing receptor and ligand molecules used for molecular docking
experiments. This step includes data pre-processing and data formatting. All the molecules are
recorded in the form of a text file that is pre-processed to include the docking parameters and
the potential location of docking activities. The outputs of this step are *.pdbqt and *.dpf files
that contain the parameters needed for molecular docking. The second step is the main phase of
molecular docking. Both Autodock and Autodock Vina are used in the experiments to provide a
comprehensive analysis of system performance, as both applications are widely used in virtual
screening. The last phase is docking log result analysis, which produces molecules that will be
used as drug candidates in the next phase of drug discovery processes.

We create ten scenarios in this work, five involving Autodock and five involving Autodock
Vina. Each scenario uses the same data and parameters. The difference in each scenario is the
number of containers used and the number of receptors distributed into each container. The total
number of receptors—the set of molecules that will be processed as a drug candidate—used in
this experiment is 1,406 from herbaldb (Yanuar et al., 2011), a set of potential drug substances
from Indonesian medicinal plants with one ligand as a targeted protein. The receptor
distribution can be calculated by dividing the total number of receptors used by the number of
containers in each scenario.

Table 1 Number of receptors in each container
Experiment Container Receptor

1 50 28
2 100 14
3 150 9
4 200 7
5 250 5

In measuring the performance of this work, we use running time as the parameter. This is the
time needed to execute the entire set of molecules (screening), from the first molecule to the
last. The running time parameter is measured using the embedded ‘date’ program available in
the operating system (in this case, Debian Operating System). Furthermore, we record every
running time for each container carried in each experiment and then study the longest, fastest,

616 A Preliminary Study on Shifting from Virtual Machine to Docker Container
 for Insilico Drug Discovery in the Cloud

and average processing times. At the end of the experiment, we observe the running time for
one molecule simulation in each scenario.

4. RESULTS AND DISCUSSION
4.1. System Performance Benchmark
The results are obtained from p7zip in the form of an average of MIPS rating for compression
and decompression. This result can be seen in Figure 1a. On the left is the result of a single
thread, while the result on the right is for multi-thread. For both parameters, the native host gets
the highest yields, followed by Docker and VirtualBox. Even so, the difference between Docker
and the native host is not as great as the difference between Docker and VirtualBox. The results
show that from the perspective of p7zip, Docker can address the challenges commonly seen in
the virtual machine, primarily related to the processor. The p7zip program that runs in Docker is
seen as an ordinary process running on the host. This is clearly different from the VirtualBox.
This explains why the results are almost equal to Docker’s interaction with the native host.

POV-ray results can be seen in Figure 1b. This benchmark clearly shows that the native host is
ahead of the other two: 13.48% faster than VirtualBox and 9.43% faster than Docker. This
difference is quite significant considering that it is a long duration—about 20 minutes—which
creates a difference in duration of more than 100 seconds. For scenes with a larger resolution
(above 512×512 pixels), the duration will be greater, even with the difference in duration
between the three instances.

(a) (b)
Figure 1 Processor performance result

RAMSpeed SMP benchmark uses two benchmark aspects, integer and floating point overall.
Though not as the same as the processor, memory is not degraded significantly in Docker and
VirtualBox. The advantage of the host over Docker is less than 1% for the COPY operation and
SCALE, and less than 2% for the ADD operation and TRIAD. Exceptions occur for surgery
ADD in integer, where the hosts surpass Docker by a margin of 2.34%. For VirtualBox itself,
the difference with the hosts is always below 5%. The result of memory performance
benchmark can be seen in Figure 2.

(a) (b)
Figure 2 Memory performance result

Suhartanto et al. 617

From the two charts in Figure 3, we can see the correlation between the IOPS and the transfer
rate. The greater the IOPS or IO operations per second, the greater the speed of data transfer. In
addition, it is seen here for the first time that the hosts receive the worst result among the three.
The hosts got the lowest result because the condition of storage is not as good as in the other
instances. At the time of testing, internal storage was used in each instance. At that time, the
storage host had pretty much filled, leaving only about 30% of its total capacity empty. As for
VirtualBox, there was about 50% empty storage. Implementation of storage by default for
containers in Docker itself seems to resemble VirtualBox, where there is one file that is
allocated as a virtual storage.

(a) (b)
Figure 3 Storage performance result

4.2. Molecular Dynamics Results
The results of the timestamp in processing virtual sites are presented in Table 2, while the
results of lysozyme in the water are presented in Table 3. The results of virtual sites show that
Docker has the best performance, slightly better than native and followed by VirtualBox. The
results of lysozyme in the water show the same behavior as the results of virtual sites. The time
spent by Docker and native to run virtual sites is around 4.475 and 4.534 seconds, respectively,
while VirtualBox needs about 10.559 seconds. As for the time spent for running lysozyme in
the water, Docker needs 1 hour, 38 minutes, and 52 seconds, while native needs 1 hour, 39
minutes, and 1 second, respectively. On the other hand, VirtualBox needs 8 hours, 16 minutes,
and 29 seconds to complete the task. These results of the time spent is represented by wall time
in the above tables. While core time is more about CPU time taken to complete the task, the
performance parameter of ns/day and hour/ns provides broad information about how many
molecular dynamics steps each system can perform in certain processes.

Table 2 Gromacs virtual sites timestep and performace results

 Time Performance
 Core t (s) Wall t (s) (%) (ns/day) (hour/ns)

VirtualBox 9.591 10.559 90.8 8182.753 0.003
Docker 4.426 4.475 98.9 9654.654 0.002
Native 4.477 4.534 98.7 9528.400 0.003

Table 3 Gromacs lysozyme timestep and performance results

 Time Performance
 Core t (s) Wall t (s) (%) (ns/day) (hour/ns)

VirtualBox 29473.294 29789.647 98.9 2.900 8.275
Docker 4247.023 5932.965 96.3 14.563 1.648
Native 4414.133 5941.477 98.0 14.542 1.650

618 A Preliminary Study on Shifting from Virtual Machine to Docker Container
 for Insilico Drug Discovery in the Cloud

From these results, it can be concluded that for processing or producing a bigger system, the
performance gap will get wider between Docker, native, and VirtualBox.

As for graphical visualization, the result of virtual sites cannot be displayed due to the number
of very small molecules. However, the result of lysozyme in the water is presented in Figure 4
below to verify that three environments produce the same result.

(a) (b) (c)

Figure 4 Lysozyme graphical visualization results: (a) VirtualBox; (b) Docker; and (c) Native

4.3. Virtual Screening Results
There are ten scenarios, five using Autodock and five using Autodock Vina. A different number
of container is used for each scenario. The total number of receptors used is divided equally into
containers. In each scenario, a different number of receptor processed in each container is based
on the division between the number of receptors and the total number of containers used. Once
the preparation is complete, the container application is run (Autodock or Autodock Vina) and
the time is recorded from the beginning of the first data execution to the end of the time when
the application finishes executing the last data. Table 4 presents the shortest, longest, and
average execution times per container in every scenario. The following are data resulting from
five scenarios using Autodock and Autodock Vina.

Table 4 Experiment results on virtual screening

Number of Containers
Execution Time (minutes)

Autodock Vina
Execution Time (minutes)

Autodock
Shortest Longest Average Shortest Longest Average

50 625 1359 968 1044 1344 1255
100 407 1434 891 835 1386 1259
150 247 2615 745 710 1405 1216
200 129 1496 705 482 1276 1007
250 193 1431 720 358 1071 811

Execution in Autodock Vina is much faster than in Autodock. This is because Autodock Vina
uses multithreading to optimize the performance of many CPUs (Trott & Olson, 2010). The
“Average” column in Table 4 shows a decreasing trend as the value of the container increases.
This indicates that the number of containers and the data affect the processing time. As the
number of containers increases, the number of data in the container decrease, resulting in a
shorter processing time.

Suhartanto et al. 619

Table 5 Amazon EC2 specifications and virtual screening results (Hilman, 2012)

Amazon EC2 Specification
Parameter SCluster LCluster XLCluster
Memory 1.7 GB 7.5 GB 1.5 GB

Compute Unit 1×1.2 GHz 4×1.2 GHz 8×1.2 GHz
Platform 32-bit 64-bit 64-bit

Cost/Hour USD 0.085 USD 0.34 USD 0.68
Virtual Screening Result

Total Exec Time (s) 375,624 108,179 48,421
Execution Time per Molecule

Avg Exec Time per molecule (s) 189.9 54.76 24.18

In this work, we also compare the performance of Docker with the work of Hilman (2012). He
used Autodock Vina applications for virtual screening in the Amazon EC2 environment, as
shown in Table 5. Comparisons were made to determine the average time to process one
molecule (cost per molecule). Table 5 also shows the time in thousands of seconds needed to
process one molecule.

Table 6 Execution time per molecule on Docker (S)

Container Autodock Vina Autodock
50 41.30 53.55

100 38.02 54.01
150 32.19 52.29
200 30.08 43.37
250 31.02 35.00

The results of our experiment using both Autodock Vina and Autodock in Docker are provided
in Table 6. It is clear that the results given by Docker on a desktop PC are not much different
from those provided by Amazon EC2 as reported in Hilman (2012). Table 6 makes obvious that
the execution of Docker with the smallest container is faster than the execution of LCluster. The
fastest time is still held by XLCluster, but the results in Docker are still acceptable compared to
those of virtual cluster in Amazon EC2.

5. CONCLUSION
In general, Docker performs better than VirtualBox and is competitive to native approaches.
The greater the number of containers are used, the less time needed in the experiment. This
occurs because a smaller amount of data is distributed to each container. The number of
containers that can be made without having to run will be limited to the amount of memory
storage capacity (hard disk), while the number of containers that can perform specific tasks will
be limited by the existing RAM size. We also observe that the larger the number of containers,
the smaller the relative weight value of each container sharing the CPU resources. The relative
weight value will increase for each container if there is an idle container. When the idle
container is given a task, then the relative weight value will be divided evenly to the other
container.

In virtual screening experiments, Docker also has better performance than the VM represented
by SCluster and LCluster of Amazon Elastic Compute Cloud. Docker is only slightly behind
XLCluster, the most expensive VM instance used in the experiments. Among two widely used

620 A Preliminary Study on Shifting from Virtual Machine to Docker Container
 for Insilico Drug Discovery in the Cloud

virtual screening applications, Autodock Vina is superior to Autodock in every scenario.
Autodock Vina is recommended as a molecular docking application to be used bundled with the
Docker container environment. Our results show that Docker container is suitable for bundling
with MD and virtual screening applications. Docker performs much better than VirtualBox in
terms of handling overhead delays, as the difference with native environment is not significant.
Bundling applications in Docker makes it easier to reproduce and migrate them to different
computational infrastructures.

6. ACKNOWLEDGEMENT
This research is supported by the 2015 PUPT (Penelitan Unggulan Perguruan Tinggi) Grants
from The Indonesian Ministry of Research and Higher Education.

7. REFERENCES
Adufu, T., Choi, J., Kim, Y., 2015. Is Container-based Technology a Winner for High

Performance Scientific Applications? In: IEEE-Network Operations and Management
Symposium (APNOMS), 2015 17th Asia-Pacific, pp. 507–510

Alder, B.J., Wainwright, T.E., 1957. Phase Transition for a Hard Sphere System. The Journal of
Chemical Physics, Volume 27(5), p. 1208–1209

Aparna , K., Nair, M.K., 2016. Incorporating Stability and Error-based Constraints for A novel
Partitional Clustering Algorithm. International Journal of Technology, Volume 4, pp. 691–
700

Bhushan, S.B., Reddy, C.H., Pradeep. 2016. A Four-level Linear Discriminant Analysis Based
Service Selection in the Cloud Environment. International Journal of Technology, Volume
5, pp. 859–870

Chung, M.T., Quang-Hung, N., Nguyen, M.T., Thoai, N., 2016. Using Docker in High
Performance Computing Applications. In: IEEE Sixth International Conference on
Communications and Electronics (ICCE), pp. 52–57

Cito, J., Ferme, V., Gall, H.C. 2016. Using Docker Containers to Improve Reproducibility in
Software and Web Engineering Research. In: International Conference on Web
Engineering, Springer International Publishing, pp. 609–612

Docker, Inc. 2016. What is Docker? Available online at:
https://www.docker.com/whatisdocker/, Accessed on 22 December 2016

Drug Design. 2014. Available online at:
http://strbio.biochem.nchu.edu.tw/classes/special%20topics%20biochem/course%20ppts/rat
ional%20drug%20design-2014.pdf, Accessed on 22 December 2016

Dua, R., Raja, A.R., Kakadia, D., 2014. Virtualization vs Containerization to support PaaS. In:
2014 IEEE International Conference on Cloud Engineering, pp. 610–614

Foundation, T.L., 2016. 2014 Enterprise End User Report. Available online at:
https://www.linux.com/publications/2014-enterprise-end-user-report, Accessed on 22
December 2016

Gromacs Manual 4.5.4., 2011. Available online at: ftp://ftp.gromacs.org/pub/manual/manual-
4.5.4.pdf, Accessed on 22 December 2016

GROMACS Tutorials., 2015. Available online at:
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/, Accessed on 22
December 2016

Hilman, M.H., 2012. Analisis Teknik Data Mining dan Kinerja Infrastruktur Komputasi Cloud
Sebagai Bagian dari Sistem Perancangan Obat Terintegrasi. Graduate Thesis. Faculty of
Computer Science, Universitas Indonesia

Suhartanto et al. 621

Kozhirbayev, Z., Sinnott, R.O., 2017. A Performance Comparison of Container-based
Technologies for the Cloud. Future Generation Computer Systems, Volume 68, pp. 175–
182

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson,
A.J., 2009. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor
Flexibility. Journal of Computational Chemistry, Volume 30(16), pp. 2785–2791

Mukesh, B., Rakesh, K., 2011. Molecular Docking: A Review. International Journal of
Research in Ayurveda & Pharmacy, Volume 2(6), pp. 1746–1751

Rester, U., 2008. From Virtuality to Reality—Virtual Screening in Lead Discovery and Lead
Optimization: A Medicinal Chemistry Perspective. Current Opinion in Drug Discovery &
Development, Volume 11(4), pp. 559–568

Stillinger, F.H., Rahman, A., 1974. Improved Simulation of Liquid Water by Molecular
Dynamics. The Journal of Chemical Physics, Volume 60(4), pp. 1545–1557

Suhartanto, H., Wibisono, A., Yanuar, A., 2015. Current Progress on the Development of Cloud
Computing Platform to Support Drug Design based on Medical Plants: Is it Possible to have
Cloud Service Migration? In: PRAGMA28 Workshop, Nara Institute of Science and
Technology, Nara, Japan. Available online at: http://pragma28.pragma-grid.net/dct/page/1

Thiyagarajan, D., Ganesan, R., 2015. Data Security Model Employing Hyperelliptic Curve
Cryptography (HECC) and Secure Hash Algorithm-3 (SHA-3) in Cloud Computing.
International Journal of Technology, Volume 3, pp. 327−335

Trott, O., Olson, A.J., 2010. AutoDock Vina: Improving the Speed and Accuracy of Docking
with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of
Computational Chemistry, Volume 31(2), pp. 455–461

Turnbull, J., 2014. The Docker Book. Available online at: https://www.dockerbook.com/,
Accessed on 22 December 2016

Wibisono, A., Suhartanto, H., 2012. Cloud Computing Model and Implementation of Molecular
Dynamics Simulation using Amber and Gromacs. In: 2012 International Conference on
Advanced Computer Science and Information Systems (ICACSIS). Depok, Indonesia

Yanuar, A., Mun’im, A., Lagho, A.B.A., Syahdi, R.R., Rahmat, M., Suhartanto, H., 2011.
Medicinal Plant Database and Three-Dimensional Structure of the Chemical Compounds
from Medicinal Plants in Indonesia. International Journal of Computer Science Issues,
Volume 8(5), pp. 180–183

