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ABSTRACT 
The rapid growth of information technology and internet access has moved many offline 
activities online. Cloud computing is an easy and inexpensive solution, as supported by 
virtualization servers that allow easier access to personal computing resources. Unfortunately, 
current virtualization technology has some major disadvantages that can lead to suboptimal 
server performance. As a result, some companies have begun to move from virtual machines to 
containers. While containers are not new technology, their use has increased recently due to the 
Docker container platform product. Docker’s features can provide easier solutions. In this work, 
insilico drug discovery applications from molecular modelling to virtual screening were tested 
to run in Docker. The results are very promising, as Docker beat the virtual machine in most 
tests and reduced the performance gap that exists when using a virtual machine (VirtualBox). 
The virtual machine placed third in test performance, after the host itself and Docker. 
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1. INTRODUCTION 
In recent years, cloud computing has entered the realm of information technology (IT) and has 
been widely used by the enterprise in support of business activities (Foundation, 2016). With its 
flexibility, cloud computing is the right choice for service expansion. Prime examples include e-
commerce and sharing-based collaboration services such as online document editing and file 
sharing. The development of cloud computing itself cannot be separated from supporting 
technologies such as virtualization. Costly investments are required to provide dedicated servers 
for cloud computing, culminating in the development of virtualization. In short, virtualization 
allows a single host computer system (host) to be divided into several virtual computers called a 
virtual machine (VM). 

VM success depends heavily on the hypervisor, which plays a vital role in the distribution of 
computing resources such as processors, RAM, and hard disk to each VM. Another feature of 
the hypervisor is its ability to isolate each VM so that it looks like the computer itself and does 
not intersect with another VM, even when it runs on the same host computer system. However, 
when problems arise, isolation presented by the hypervisor creates havoc in the overall system. 
Because of this isolation, each VM has one set of operating system (OS) complete with relevant 
kernel. This becomes a problem when the OS used by the entire VM is based on Linux, given 
that the Linux kernel can be used in all Linux distributions.  A new technology called container   
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has emerged in response to these issues. Similar to the VM, the container can provide insulation 
to the users. This container technology is not entirely new, having been around since then. Over 
time, however, more mature and stable container technology has been developed, placing 
container on par with hypervisor-based VM. The latest data show that about 67% of the world's 
servers use a hypervisor, while 16% use container. About 49% of the enterprise is considering 
migrating to container (Foundation, 2016). 

In the meantime, many well-developed and maintained applications such as molecular 
dynamics and virtual screening have been available to users. These applications are widely used 
in insilico drug discovery processes. However, preparing and maintaining these applications is 
inconvenient for most users without IT backgrounds. Several approaches were proposed to 
combat these challenges, including setting up the application in the cloud (Suhartanto et al., 
2015; Wibisono & Suhartanto, 2012).  We have also identified a need for an application to 
migrate between computing environments (Suhartanto et al., 2015). Other areas related to this 
Cloud problems are explained (Aparna & Nair,  2016; Bhushan & Reddy, 2016; Thiyagarajan 
& Ganesan, 2015). 

Research reproducibility is one major issue for most scientific experiments. We will investigate 
how emerging Docker container technology can respond to our problems and how it performs. 
This paper presents our system performance benchmark and experiments on molecular 
modeling and virtual screening that run on Docker container technology. We integrate 
molecular modeling and docking software (Gromacs, Autodock, and Autodock Vina) into 
Docker to isolate the environment and thus make it is easier to migrate and reproduce the 
experiment. Further use of Docker for scientific reproducibility and migration in the cloud 
computing environment is expected as an alternative technology to the VM. 
 
2. RELATED WORK 
In the field of IT operations, container is known as an alternative to the VM. It is a lightweight 
operating system that runs on the host and executes the instruction directly to the processor core 
natively, providing insulation and resource management in Linux (Dua et al., 2014). At first 
glance, the container is no different from the VM. This is because both provide isolation and 
resource management. The difference is in the host environment. Container only runs on Linux, 
interacting in a host-guest relationship. Since container only exists in Linux, it is also referred 
to as Linux Container (LXC). 
2.1. Container as a New Virtualization Hype 
Container is considered an alternative virtualization technology for the cloud computing 
environment. Its promising performance will likely make it the backbone of cloud technology. 
Kozhirbayev and Sinnott (2017) explained that the performance comparison of several 
container technologies for the cloud environment, including Docker and Flockport, have 
overthrown native in some respects. 

As a virtualization technology, container not only is useful for the cloud computing 
environment, but also shows promise in the high performance computing (HPC) arena. HPC-
based performance benchmarking was done to determine the ability of container to execute 
Autodock3, a scientific application for virtual screening (Adufu et al., 2015). Container is 
superior to the VM due to significant differences in start-up times. In Chung et al. (2016), 
OpenMPI is used to evaluate container performance in the HPC environment. Container can 
reduce several challenges inherent to using VM. 

Reproducibility is one promising benefit of container technology. Scientific experiments often 
must be repeated to prove their validity. Container stores the entire system in a repository, thus 
simplifying its reproducibility. Cito and Gall (2016), discussed container’s usefulness in 
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providing a reproducible environment for research artifacts in software engineering. This type 
of advantage will prove valuable in scientific research experiments. 

This paper extends the aforementioned research and implements container for insilico drug 
discovery activities. To the best of our knowledge, insilico drug discovery has not been done by 
anyone in the Docker container platform. 
2.2. Docker Container 
Docker is an open-source engine that easily facilitates the deployment of applications into the 
container (Turnbull, 2014). It uses LXC to implement container solutions and is capable of 
managing images and files in a system called Union File System (Dua et al., 2014). Developers 
and sysadmins can build, ship, and run distributed applications (Docker Inc., 2016). Docker can 
also reduce the complexities encountered in an application’s lifecycle by providing a platform 
equivalent to a part of development, quality assurance, and production in an organization. 

Docker requires four major components to achieve its objectives. Turnbull (2014) describes 
these as client-server, image, registry, and container. In the Docker client and server 
component, the client program is represented by the “docker” command that can be executed 
via terminal. Later, the client will contact the server (in this case, the Docker daemon), which 
functions as both a regulator and a linker to the Docker container. All commands submitted by 
users via the client will be handled by the server. The second component is the image, which 
can be described as a template for the Docker container. Users can use the existing image or 
create their own image. The image-making process in Docker is called build. Later, the image is 
used as the basis for the container.  

The next component is the registry, which functions as a repository where users can store and 
download Docker images. Docker supports private and public repositories called Docker Hub. 
Through the “docker pull” command, users can log in and directly download and store the 
image in the Hub.. The last component is a container, which appears if a user runs a command 
in an image. One or several processes can run at once insider the container. For example, users 
can run the command “bash” in the downloaded Ubuntu image. Once the container is 
automatically established, the user will be in the container and can do anything, including 
application installation, running a daemon, and system edits. 
2.3. Molecular Dynamics 
Molecular dynamics (MD) is the study of the dissolution of protein, ligand binding, and the 
complex interactions of proteins and DNA-protein folding (Mukesh & Rakesh, 2011). It was 
first used to study interaction on the ball hard (Alder and Wainwright, 1957). Development of 
the MD field began in 1964 with an MD simulation of fluid ambrgon by Rahman. Ten years 
later, Rahman and his colleagues performed MD simulations on the state of realistic systems 
(Stillinger & Rahman, 1974). The basic process of a M is determined by calculating the total 
force issued for several N atoms. The simulation then works to determine the acceleration 
owned by each atom and calculate the speed of each atom. Then, after the interaction between 
atoms, displacement occurs that moves every atom to a new position resulting from molecular 
simulations. The basic process consists of initialization (interaction and initialization of 
position), force calculation of atoms (atom position updates), and atom velocity calculation.  
Among other implementations, MD simulation helps researchers develop drugs for treating 
certain diseases (Mukesh & Rakesh, 2011). 

Gromacs (short for Chemical Groningen Machine Simulation) is an MD application developed 
by the University of Groningen (Netherlands). The Gromacs application simulates the 
movement of molecules by using a Newton equation for a system containing hundreds of 
millions of molecules (Gromacs Manual 4.5.4, 2011). The simulation steps in Gromacs include 
pdb2gmx, editconf, genbox, genion, energy minimization, and production simulation. The first 
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step, pdb2gm, is the process of building topology that contains information about the types, 
charges, bonds, and other characteristics obtained from the atomic coordinates. The next step, 
editconf, determines the model of the solution to be incorporated into the protein to be 
simulated, adjusts the relative distance between the edges of the box, and identifies the space 
between the molecules. The third step, genbox, is the process of adding the solution. Genion is 
the process of adding ions that form a neutral protein solution. The next step, energy 
minimization, is the process of eliminating local strains that can cause the Van der Walls effect 
of molecular structures resulting from the previous step. The final step is the production 
simulation, which is the process of running a reasonably balanced solution obtained within a 
certain period. 
2.4. Molecular Docking 
Molecular docking is a computational process used to search for the most suitable ligand in 
both geometry and energy when it is bound to a known receptor (protein). Molecular docking 
performed on a ligand and receptor will justify whether the ligand is a drug candidate that is 
being sought (Mukesh & Rakesh, 2011). The main aspects of molecular docking are 
computation interaction energy and conformation using a method from quantum mechanics to 
an empirical energy function. At a glance, problems in molecular docking can be lock-and-key 
issues, where a protein reception can be considered the lock and the ligand considered the key. 
In practice, however, molecular docking will seek the ligand that can adjust to the receptor. 
(Drug Design, 2014).  

A scoring function is needed to restrict the best-fit of molecular docking. The function is 
usually based on a force field used in protein simulation. Some scoring functions add other 
computation aspects, such as entropy. The complexity of ligand and receptor affect the function 
evaluation (Mukesh & Rakesh, 2011). Virtual screening, a computational technique performed 
in drug discovery, automatically evaluates data bank collection receptors with a ligand to 
determine a drug candidate (Rester, 2008). Computing power is needed to run these executable 
commands quickly. Thus, virtual screening based on molecular docking is a method often used 
in practice. We also use the method contained in Autodock and Autodock Vina. Modeling of 
chemical structure uses molecular modeling to study the structure’s phenomena. 

Autodock is an application developed by The Scripps Research Institute (Drug Design, 2014). 
There are two types of applications: Autodock and Autodock Vina. Each differs from the other 
in terms of the scoring function used and optimization of parallel computing by Autodock Vina. 
Autodock uses empirical free of force field energy with a Lamarckian Genetic Algorithm in 
predicting the bonding coordinate between the ligand and the receptor (Morris et al., 2009). In 
Autodock Vina, optimization is carried out using global particle swarm optimization and 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) locally (Trott & Olson, 2010). 
 
3. METHODOLOGY 
In this work, we conduct a system performance benchmark, molecular dynamic simulation 
using Gromacs, and virtual screening using Autodock. We then analyze the performance of the 
simulation. 
3.1.  System Performance Benchmark 
We conduct a system benchmark to evaluate performance of the container, VM, and native 
computer. We examine the three main components of a computer system: the processor, 
memory (RAM), and storage (hard disk). All are tested by the application pure specific test with 
emphasis on the performance of each component. The overall system test is also conducted to 
determine the collaboration of all three components. 
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Processor performance is evaluated using p7zip and POV-Ray. p7zip is compression software 
that is considered a CPU-bound application, while POV-Ray is rendering software that 
calculates heavy processes in the processor. Memory performance is evaluated using 
RAMSpeed SMP, a standard, widely used memory benchmark. Storage performance is 
evaluated using fio (Flexible IO Tester), a standard IO-bound software that evaluates the read 
and write processes in the system. 
3.2. Molecular Dynamics on Docker using Gromacs 
In performing Gromacs experiment, we first prepare all the necessary libraries. It is important 
to ensure that every prerequisite was installed accordingly. The proposed steps are preparing the 
system environment with a supporting library, installing the Gromacs  latest stable release, 
running and producing a virtual sites file, and then repeating the last two steps to produce 
lysozyme in the water. Two experiments from Gromacs need to be analyzed: the process of 
creating a virtual site and producing lysozyme in water. This material comes from a molecular 
modeling tutorial (GROMACS tutorials, 2015). In this work, we consider the Gromacs 
timestamp of each environment. 
3.3. Virtual Screening on Docker using Autodock and Autodock Vina 
Our work is divided into three steps: pre-docking, docking, and analysis docking log results. 
Pre-docking consists of preparing receptor and ligand molecules used for molecular docking 
experiments. This step includes data pre-processing and data formatting. All the molecules are 
recorded in the form of a text file that is pre-processed to include the docking parameters and 
the potential location of docking activities. The outputs of this step are *.pdbqt and *.dpf files 
that contain the parameters needed for molecular docking. The second step is the main phase of 
molecular docking. Both Autodock and Autodock Vina are used in the experiments to provide a 
comprehensive analysis of system performance, as both applications are widely used in virtual 
screening. The last phase is docking log result analysis, which produces molecules that will be 
used as drug candidates in the next phase of drug discovery processes. 

We create ten scenarios in this work, five involving Autodock and five involving Autodock 
Vina. Each scenario uses the same data and parameters. The difference in each scenario is the 
number of containers used and the number of receptors distributed into each container. The total 
number of receptors—the set of molecules that will be processed as a drug candidate—used in 
this experiment is 1,406 from herbaldb (Yanuar et al., 2011), a set of potential drug substances 
from Indonesian medicinal plants with one ligand as a targeted protein. The receptor 
distribution can be calculated by dividing the total number of receptors used by the number of 
containers in each scenario. 
 

Table 1 Number of receptors in each container 
Experiment  Container  Receptor  

1 50 28 
2 100 14 
3 150 9 
4 200 7 
5 250 5 

 

In measuring the performance of this work, we use running time as the parameter. This is the 
time needed to execute the entire set of molecules (screening), from the first molecule to the 
last. The running time parameter is measured using the embedded ‘date’ program available in 
the operating system (in this case, Debian Operating System). Furthermore, we record every 
running time for each container carried in each experiment and then study the longest, fastest, 
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and average processing times. At the end of the experiment, we observe the running time for 
one molecule simulation in each scenario. 

4. RESULTS AND DISCUSSION 
4.1.  System Performance Benchmark 
The results are obtained from p7zip in the form of an average of MIPS rating for compression 
and decompression. This result can be seen in Figure 1a. On the left is the result of a single 
thread, while the result on the right is for multi-thread. For both parameters, the native host gets 
the highest yields, followed by Docker and VirtualBox. Even so, the difference between Docker 
and the native host is not as great as the difference between Docker and VirtualBox. The results 
show that from the perspective of p7zip, Docker can address the challenges commonly seen in 
the virtual machine, primarily related to the processor. The p7zip program that runs in Docker is 
seen as an ordinary process running on the host. This is clearly different from the VirtualBox. 
This explains why the results are almost equal to Docker’s interaction with the native host. 

POV-ray results can be seen in Figure 1b. This benchmark clearly shows that the native host is 
ahead of the other two: 13.48% faster than VirtualBox and 9.43% faster than Docker. This 
difference is quite significant considering that it is a long duration—about 20 minutes—which 
creates a difference in duration of more than 100 seconds. For scenes with a larger resolution 
(above 512×512 pixels), the duration will be greater, even with the difference in duration 
between the three instances. 

(a) (b) 
Figure 1 Processor performance result 

RAMSpeed SMP benchmark uses two benchmark aspects, integer and floating point overall. 
Though not as the same as the processor, memory is not degraded significantly in Docker and 
VirtualBox. The advantage of the host over Docker is less than 1% for the COPY operation and 
SCALE, and less than 2% for the ADD operation and TRIAD. Exceptions occur for surgery 
ADD in integer, where the hosts surpass Docker by a margin of 2.34%. For VirtualBox itself, 
the difference with the hosts is always below 5%. The result of memory performance 
benchmark can be seen in Figure 2. 

(a) (b) 
Figure 2 Memory performance result 
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From the two charts in Figure 3, we can see the correlation between the IOPS and the transfer 
rate. The greater the IOPS or IO operations per second, the greater the speed of data transfer. In 
addition, it is seen here for the first time that the hosts receive the worst result among the three. 
The hosts got the lowest result because the condition of storage is not as good as in the other 
instances. At the time of testing, internal storage was used in each instance. At that time, the 
storage host had pretty much filled, leaving only about 30% of its total capacity empty. As for 
VirtualBox, there was about 50% empty storage. Implementation of storage by default for 
containers in Docker itself seems to resemble VirtualBox, where there is one file that is 
allocated as a virtual storage. 

(a) (b) 
Figure 3 Storage performance result 

4.2.  Molecular Dynamics Results 
The results of the timestamp in processing virtual sites are presented in Table 2, while the 
results of lysozyme in the water are presented in Table 3. The results of virtual sites show that 
Docker has the best performance, slightly better than native and followed by VirtualBox. The 
results of lysozyme in the water show the same behavior as the results of virtual sites. The time 
spent by Docker and native to run virtual sites is around 4.475 and 4.534 seconds, respectively, 
while VirtualBox needs about 10.559 seconds. As for the time spent for running lysozyme in 
the water, Docker needs 1 hour, 38 minutes, and 52 seconds, while native needs 1 hour, 39 
minutes, and 1 second, respectively. On the other hand, VirtualBox needs 8 hours, 16 minutes, 
and 29 seconds to complete the task. These results of the time spent is represented by wall time 
in the above tables. While core time is more about CPU time taken to complete the task, the 
performance parameter of ns/day and hour/ns provides broad information about how many 
molecular dynamics steps each system can perform in certain processes.  
 

Table 2 Gromacs virtual sites timestep and performace results 

 Time Performance 
 Core t (s) Wall t (s) (%) (ns/day) (hour/ns) 

VirtualBox 9.591 10.559 90.8 8182.753 0.003 
Docker 4.426 4.475 98.9 9654.654 0.002 
Native 4.477 4.534 98.7 9528.400 0.003 

 

Table 3 Gromacs lysozyme timestep and performance results 

 Time Performance 
 Core t (s) Wall t (s) (%) (ns/day) (hour/ns) 

VirtualBox 29473.294 29789.647 98.9 2.900 8.275 
Docker 4247.023 5932.965 96.3 14.563 1.648 
Native 4414.133 5941.477 98.0 14.542 1.650 
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From these results, it can be concluded that for processing or producing a bigger system, the 
performance gap will get wider between Docker, native, and VirtualBox. 

As for graphical visualization, the result of virtual sites cannot be displayed due to the number 
of very small molecules. However, the result of lysozyme in the water is presented in Figure 4 
below to verify that three environments produce the same result. 
 

(a) (b) (c) 

Figure 4 Lysozyme graphical visualization results: (a) VirtualBox; (b) Docker; and (c) Native 

4.3.  Virtual Screening Results 
There are ten scenarios, five using Autodock and five using Autodock Vina. A different number 
of container is used for each scenario. The total number of receptors used is divided equally into 
containers. In each scenario, a different number of receptor processed in each container is based 
on the division between the number of receptors and the total number of containers used. Once 
the preparation is complete, the container application is run (Autodock or Autodock Vina) and 
the time is recorded from the beginning of the first data execution to the end of the time when 
the application finishes executing the last data. Table 4 presents the shortest, longest, and 
average execution times per container in every scenario. The following are data resulting from 
five scenarios using Autodock and Autodock Vina. 
 

Table 4 Experiment results on virtual screening 

Number of Containers 
Execution Time (minutes) 

Autodock Vina 
Execution Time (minutes) 

Autodock 
Shortest Longest Average Shortest Longest Average 

50 625 1359 968 1044 1344 1255 
100 407 1434 891 835 1386 1259 
150 247 2615 745 710 1405 1216 
200 129 1496 705 482 1276 1007 
250 193 1431 720 358 1071 811 

 

Execution in Autodock Vina is much faster than in Autodock. This is because Autodock Vina 
uses multithreading to optimize the performance of many CPUs (Trott & Olson, 2010). The 
“Average” column in Table 4 shows a decreasing trend as the value of the container increases. 
This indicates that the number of containers and the data affect the processing time. As the 
number of containers increases, the number of data in the container decrease, resulting in a 
shorter processing time. 
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Table 5 Amazon EC2 specifications and virtual screening results (Hilman, 2012) 

Amazon EC2 Specification 
Parameter SCluster LCluster XLCluster 
Memory 1.7 GB 7.5 GB 1.5 GB 

Compute Unit 1×1.2 GHz 4×1.2 GHz 8×1.2 GHz 
Platform 32-bit 64-bit 64-bit 

Cost/Hour USD 0.085 USD 0.34 USD 0.68 
Virtual Screening Result 

Total Exec Time (s) 375,624 108,179 48,421 
Execution Time per Molecule 

Avg Exec Time per molecule (s) 189.9 54.76 24.18 
 

In this work, we also compare the performance of Docker with the work of Hilman (2012). He 
used Autodock Vina applications for virtual screening in the Amazon EC2 environment, as 
shown in Table 5. Comparisons were made to determine the average time to process one 
molecule (cost per molecule). Table 5 also shows the time in thousands of seconds needed to 
process one molecule.  
 

Table 6 Execution time per molecule on Docker (S) 

Container  Autodock Vina Autodock 
50 41.30 53.55 

100 38.02 54.01 
150 32.19 52.29 
200 30.08 43.37 
250 31.02 35.00 

 

The results of our experiment using both Autodock Vina and Autodock in Docker are provided 
in Table 6. It is clear that the results given by Docker on a desktop PC are not much different 
from those provided by Amazon EC2 as reported in Hilman (2012). Table 6 makes obvious that 
the execution of Docker with the smallest container is faster than the execution of LCluster. The 
fastest time is still held by XLCluster, but the results in Docker are still acceptable compared to 
those of virtual cluster in Amazon EC2. 
 
5. CONCLUSION 
In general, Docker performs better than VirtualBox and is competitive to native approaches. 
The greater the number of containers are used, the less time needed in the experiment. This 
occurs because a smaller amount of data is distributed to each container. The number of 
containers that can be made without having to run will be limited to the amount of memory 
storage capacity (hard disk), while the number of containers that can perform specific tasks will 
be limited by the existing RAM size. We also observe that the larger the number of containers, 
the smaller the relative weight value of each container sharing the CPU resources. The relative 
weight value will increase for each container if there is an idle container. When the idle 
container is given a task, then the relative weight value will be divided evenly to the other 
container. 

In virtual screening experiments, Docker also has better performance than the VM represented 
by SCluster and LCluster of Amazon Elastic Compute Cloud. Docker is only slightly behind 
XLCluster, the most expensive VM instance used in the experiments. Among two widely used 
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virtual screening applications, Autodock Vina is superior to Autodock in every scenario. 
Autodock Vina is recommended as a molecular docking application to be used bundled with the 
Docker container environment. Our results show that Docker container is suitable for bundling 
with MD and virtual screening applications. Docker performs much better than VirtualBox in 
terms of handling overhead delays, as the difference with native environment is not significant. 
Bundling applications in Docker makes it easier to reproduce and migrate them to different 
computational infrastructures. 
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