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Abstract. Estimating production costs is a challenging process for the Make-To-Order (MTO) 
industry because of the product varieties, which leads to inaccurate cost estimation. The product 
engineering process requires accurate assembly cost estimation to take strategic decisions, 
specifically during the early design phase. Therefore, an intelligent machine learning-based 
approach, namely Multi-linear Regression, Random Forest, and Gradient Boosting, is proposed to 
estimate the assembly design cost. This estimation is done by identifying the assembly features of 
the 3D CAD model. The validation results showed that mate and assembly features, as well as the 
number of parts, are effective cost drives, while Random Forest outperformed other models. The 
proposed methodology is then implemented in a cost estimation program and applied in the MTO 
industry. The proposed estimation method deviated an average of 17.4% from the actual assembly 
design cost, considered acceptable during the early design phase. In conclusion, the proposed model 
and cost estimation program efficiently help the MTO industry predict assembly design costs. 
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1. Introduction 

Product customization is increasingly implemented in the manufacturing industry to 
improve competitiveness. Keil (2024) found that industries are motivated to meet new 
standards due to competitive pressures, complex customer requirements, and stakeholder 
expectations. This phenomenon has an impact, particularly on the production of the Make-
to-Order (MTO) industry (Yazdi, Fini, and Forsythe, 2021). According to Yi et al. (2023), cost 
estimation is the quantitative prediction of a product’s cost before completing all product 
development stages. This implies that the MTO industry needs to estimate product costs 
quickly and accurately. Unlike cost calculation, cost estimation is based on the assumption 
that the industry lacks access to manufacturing process data and with no conventional 
standard cost model (Latief, Wibowo, and Isvara, 2013). Koonce et al. (2003) and 
Bacharoudis et al. (2021) stated that a systematic method is used for estimating material 
and machining costs by classifying each material and production operation into individual 
cost drivers.  

Estimating assembly design cost is a more complex process, that includes intangible 
aspects, such as assembly parts and complexity  (Castellani, Otri, and Pham, 2019;
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Demir et al., 2023). In the final design phase, the method used to estimate assembly design 
cost for mass production is significantly more developed. H’mida, Martin, and Vernadat 
(2006) and Niazi et al. (2006) have stated that this approach involves outlining the design 
activities cost, followed by identifying resources and operations during the design phase. 
Quintana and Ciurana (2011) have suggested that assembly design cost estimation is often 
performed by using a knowledge-based system, which is typically used in repetitive 
production.  

With these points, this study proposes systematic assembly design cost estimation as 
an alternative to the conventional MTO approach. Conventional cost estimation is by 
constructing a regression model based on complex relationships (Verlinden et al., 2008). 
Also, the choice of method is based on the limited access to manufacturing process data. 
Hence, the estimation accuracy significantly affects industry profits. This implies that a very 
low price reduces profits, while an extremely high price tends to affect customer 
satisfaction negatively (Kalscheuer et al., 2023). 

This study examines cost issues related to initial assembly design in the MTO industry. 
It has been observed that the industry produces a small volume of various assembly 
products, including precision molding, stamping dies, precision spare parts, and 
mechanical devices. The assembly design initiates the product’s engineering process based 
on customer orders using specific 3D Computer-Aided Design (CAD) software. At this 
phase, accurate cost estimation is essential for making strategic decisions in the 
engineering process (Post et al., 2020). However, these detailed product features are 
typically not available when using a conventional cost accounting approach. This caused 
Alfadhlani et al. (2019) to conclude that CAD data is needed when identifying feature 
information based on assembly design, saved as historical data of industry orders. To 
estimate accurate assembly design costs, it is necessary to establish a relationship between 
the product features and the historical assembly design cost. However, using the 
conventional approach, it is challenging for cost engineers to determine the product's 
sufficient cost function and behavior based on experience (Bodendorf, Merkl, and Franke, 
2021). Machine Learning (ML) method can be applied to solve classification and prediction 
problems (Dawangi and Budiyanto, 2021; Alas and Ali, 2019; Fagbola, Thakur, and 
Olugbara, 2019). ML method, as proposed by Durodola (2022), Hammann (2024), and Ning 
et al. (2020), is an efficient and accurate technique for identifying the relationship between 
features and historical product cost. The model is typically employed to overcome this 
problem as it detects hidden functional relationships between assembly features and costs 
(Bodendorf, Merkl, and Franke, 2021). Other approaches to assembly cost estimation are 
analytical, knowledge-base, or hybrid approaches (Mencaroni et al., 2023; Hagemann and 
Stark, 2020; Burggräf et al., 2019). 

The main objectives of this study are (1) to propose the ML method as a model for 
estimating assembly design costs based on 3D CAD data and (2) to create a program-based 
Graphical User Interface (GUI) that engineers can use to quickly predict assembly design 
costs. In the MTO industry, it is observed that customers always want to know the product 
price ahead of time, and as a result, the preliminary price is expected to be close to the final 
price.  
 
2. Methods 

 Figure 1 shows the detailed procedure for estimating the cost of designing product 
assemblies. The three major steps for solving cost estimation problems are discussed in the 
following subsection. 
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Figure 1 Implementation procedures of assembly design cost estimation 

2.1. Data Collection of Assembly Features, Costs, and Pre-Data Processing 
 The case study in this research focuses on the MTO industry, which produces small 
volumes and various parts assembled into a product. Furthermore, historical demand 
orders received from the industry for 3D CAD files were gathered and stored as assembly 
design information. Figure 2 shows that the process of identifying the assembly cost driver 
from CAD drawing, which includes 20 mate and 14 assembly features, as well as parts 
numbers. These assembly features are common CAD operations used to construct an 
assembly design. For example, the concentric assembly feature is used to define two 
assembly parts sharing the same axis. 

 
Figure 2 The assembly features used to early estimate the assembly design costs  
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Furthermore, to estimate target costs, actual product cost data collected based on each 
3D CAD file were used. The MTO company specifically evaluated these models to ensure the 
cost values were consistent with their estimates. Data preprocessing was employed after 
data collection since it is impossible to directly use the 3D CAD information as input for the 
ML method. This step is crucial when analyzing the mate and assembly features, as well as 
the number of parts that affect assembly design costs. Therefore, the transformation of raw 
data into datasets began with developing a program to extract the features in the 3D CAD 
file. After this extraction, data cleansing, feature selection, and data transformation were 
performed. 

Subsequently, an Application Programming Interface (API) was utilized to read the 3D 
CAD file (Malpass, 2011). A command program was then created using Python 
programming language, which generated a loop in data reading, sequentially stored into 
data frames, known as the ML model’s input dataset. 
 Data cleaning is performed to remove several inconsistent features in the data, 
considering imbalanced data and outliers to improve the quality of cost estimation (Dogan 
and Birant, 2021). This rationale is because not all 35 assembly features present a value 
related to the case study. After analyzing data containing empty values and outliers, the 
assembly features were reduced to 23 variables, which were tested using the ML methods 
and re-analyzed to determine their performance. The feature selection technique applied 
Recursive Feature Elimination (RFE) method to select the critical variables that support the 
model and its performance. As shown in Figure 2, 18 features were identified as critical cost 
drivers.  
 The final step in the pre-processing was data transformation, in which variable 
characteristics based on 3D CAD had to suit the ML method. It was observed that only the 
multi-linear regression method exhibited distinct characteristics. Hence the variable data 
needed to be transformed using min-max normalization-based feature scaling. This 
selection was because multi-linear regression is a distance-based algorithm. Consequently, 
the dataset for ML methods was categorized into two sets, namely data training, and testing, 
in which the former was used to train the model, while the latter evaluated its performance. 
Wang et al. (2020) stated that the dataset was typically divided into 80% training and 20% 
testing. 

2.2. Develop Early Assembly Design Cost Estimation Model-based ML methods 
 The ML method was chosen to map the complex relationship between assembly design 
features and costs, based on the input data, namely assembly features used to estimate the 
initial assembly design costs. Therefore, this study proposes three ML methods, including 
Multi-linear Regression, Random Forest, and Gradient Boosting, which each was developed 
and programmed with Python code. 

2.2.1. Multi-linear regression model 
 In this study, several input variables were defined, and the Multi-linear Regression 
(MLR) model was applied to model the relationship between these inputs and a target 
variable, which is the assembly design costs. The technique was conducted by fitting a 
linear equation to the observed data as expressed in Equation (1). 

𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑘𝑋𝑖𝑘 + 𝜖     for 𝑖 = 1,2, … , 𝑛. (1) 
where 𝑦𝑖 is the predicted value, 𝛽0 denotes the 𝑦-intercept with all parameters set to zero,  
𝑋𝑖𝑘 represents the 𝑘-th independent variable for 𝑖th observation, 𝑖 = 1,2, … , 𝑛. Meanwhile, 
𝛽1, 𝛽2, and 𝛽𝑘 denote the regression coefficients that indicate changes in 𝑦 relative to a one-
unit change in 𝑋𝑖1 , 𝑋𝑖2 , and 𝑋𝑖𝑘 , respectively. For the 𝑘 -th independent variable, 𝑘 =
1,2, … , 𝑛, while 𝜖 is the model’s random error or residual term. 
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2.2.2. Random forest model 
 Random Forest (RF) is a supervised ML algorithm that uses a tree-based ensemble 
learning to predict the output by combining various Decision Trees (DT) (Montesinos López 
et al., 2022; Rakhra et al., 2021). It is important to note that DTs exhibited distinct 
observations from the construction of a single DT. The RF algorithm representation using 
bootstrapping is shown in Figure 3. Bootstrapping uses distinct subsets of the available 
features to train multiple decision trees concurrently on different subsets of the training 
data set.  

 

Figure 3 Implementation of RF prediction on a dataset that has 18 features (𝑋𝑘, 𝑘=1, 2, 
3,...,18) and 1 output (𝑦𝑖), for 𝑖th observation, 𝑖 = 1, 2, 3, … , 𝑛 

 Furthermore, a random feature selection was chosen based on the aggregation to train 
several decision trees in parallel (Misra and Li, 2020). Each tree was trained with a unique 
set of training data and features. This is carried out to ensure that every decision tree is 
different from the others, which can lower the variance of the RF model as a whole. The RF 
model integrates the judgments made by each tree in order to achieve superior 
generalization outcomes. 
 To obtain a good estimation result, the RF model has hyperparameters that need to be 
tuned, as shown in Table 1. These include 1) 𝑁 estimator, which is the number of trees in 
the forest, 2) Max features representing the maximum number of RF features allowed in a 
single tree. Three max feature parameter settings are applied respectively: a number of 
features (auto), square root (sqrt), and logarithm (log), 3) Max depth, which denotes the 
tree’s maximum depth, 4) Min sample split is the minimum number of data points required 
in a node before splitting, and 5) Min sample leaf, which refers to the minimum number of 
data points allowed in a leaf node. In ML, Grid Search Cross Validation (GSCV) was further 
employed to tune these parameters by selecting those with optimal combinations. Table 1 
summarizes the search space values for these parameters.  
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Table 1 Hyperparameters search space in GSCV 

Parameter Range 

𝑁 estimator {10,50,100} 
Max features {‘auto’, ‘sqrt’, ‘log’} 

Max depth {5, 10, 18, None} 
Min sample split {2, 5, 10, 18, None} 
Min sample leaf {1, 5, 10, 18, None} 

2.2.3. Gradient boosting model 
 The Gradient Boosting (GB) model is a set of DT that uses an ensemble method similar 
to the RF (Ozcan et al., 2024). The difference between the GB and the RF models was that 
the latter constructs each tree independently, while the former builds one tree at a time. 
Furthermore, RF combine results at the end of the process via the majority or average rule, 
but the GB model combines results immediately after they are produced by correcting 
errors in the pre-trained tree. Figure 4 illustrates how the GB algorithm employs the 
sequential ensemble method based on the case being studied. 

 

Figure 4 The representation of the GB algorithm for the case being studied. 

 To expand the model's capability, the GB algorithm creates a number of regression 
trees over time. In a forward stepwise manner, the iteration of training process of the GB 
model to determine the proximate predicted value (𝑦𝑖) and the output (�̂�𝑖) is expressed in 
Equation (2) (Wang et al., 2020).  

𝑦𝑖
(0)

=0  

𝑦𝑖
(1)

= 𝑙𝑓1(𝑋𝑖𝑘; 𝜙1) = 𝑦𝑖
(0)

+ 𝑙 𝑓1(𝑋𝑖𝑘; 𝜙1)  

𝑦𝑖
(2)

= 𝑙 ∑ 𝑓𝑗(𝑋𝑖𝑘;  𝜙𝑗)2
𝑗=1 = 𝑦𝑖

(1)
+ 𝑙 𝑓2(𝑋𝑖𝑘; 𝜙2) (2) 

…  

𝑦𝑖
(𝑇)

= 𝑙 ∑ 𝑓𝑗(𝑋𝑖𝑘;  𝜙𝑗)𝑇
𝑗=1 = 𝑦𝑖

(𝑇−1)
+ 𝑙 𝑓𝑇(𝑋𝑖𝑘; 𝜙𝑇)  

where 𝑦𝑖  is the predicted value, �̂�  represents the real target output prediction, and 𝑇 
denotes the decision tree’s number for boosting. Meanwhile, 𝑙  is the learning rate that 
meets (0<𝑙<1) for shrinking the contribution of individual decision trees. The structure of 
the 𝑗-th DT, which is all units of a tree, including leaf and branch nodes, is denoted by 𝜙𝑗 , 
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while 𝑓𝑗  represents a function of 𝑗-th without shrinkage, utilizing a predictor variable 𝑥𝑖𝑘 to 

approximate (𝑦𝑖 − �̂�𝑖) with tree structure 𝜙𝑗 . 

 Since GB is similar to RF, nearly identical hyperparameters were used to optimize 
model performance, such as N estimator, learning rate, and max depth. Table 2 shows the 
values of these parameters, which were then adjusted with GSCV to improve model 
performance.  

Table 2 Hyperparameter of the GB model 

Parameter Range 

𝑁 estimator {10,50,100} 
Learning rate {0.1, 0.3, 0.5, 1} 

Max depth {3, 5, 10, 20, None} 

2.2.4. Validating the estimation accuracy of ML models 
 The ML method produces prediction output (𝑦𝑖) for the 𝑖-th observation, where 𝑖 = 1, 
2,…,𝑛. Each evaluation of the prediction output requires a model performance measure. The 
performance metric was used to validate the accuracy of the model when estimating actual 
assembly design cost, as described by Li et al. (2021). To accurately reflect the magnitude 
of the actual prediction error, the Mean Absolute Percentage Error (MAPE) and 𝑅2 
techniques were employed, as expressed mathematically in Equations (3) and (4). 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

|𝑦𝑖 − �̂�𝑖|

𝑦𝑖
100)

𝑛

𝑖=1

 (3) 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

1=𝑖

∑ (𝑦𝑖 − �̅�𝑖)2𝑛
1=𝑖

 (4) 

where 𝑦𝑖  is the predicted value, �̂�  represents the real target output, and 𝑛  denotes the 
observed numbers. After evaluating the ML model’s accuracy, the final step entails the 
selection of the best model to estimate assembly design cost. It was observed that the model 
with the lowest MAPE and 𝑅2,  which was closest to one, exhibited the most accurate 
estimate for early product assembly design costs.  

2.3. Develop a Program of Estimated Costs of Product Assembly Design 
 The assembly features, and the best model selected in the previous step served as a 
reference when developing the application program of the proposed methodology. 
Furthermore, the program aims to assist the industry in efficiently predicting the assembly 
design cost based on the 3D CAD file. 
 
3. Results and Discussion 

A total of 104 historical datasets were collected on the CAD assembly file, which 
includes the real assembly design of a MTO company. Upon the completion of the dataset, 
the cost estimation model was developed, trained, fine-tuned, and tested using the 
proposed methodology, as shown in Figure 1. The three proposed models, namely MLR, RF, 
and GB, were employed to estimate the product assembly design cost using training 
datasets. Table 3 shows the final experimental results of the proposed model when tested 
with 20% datasets, while the results of training with 80% of the datasets are omitted due 
to its brevity.  
 As observed in Table 3, the MLR algorithm has no hyperparameters, and hence no 
tuning was performed, and the 𝑅2 and MAPE results obtained were 0.21 and 53%, 
respectively. Furthermore, only the five best combinations measured by 𝑅2 and MAPE is 
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shown in Table 3. The results showed that the RF-91 and the GB-43 models, with respective 
scores of 26.70% and 32.27% had the least significant MAPE values, while the RF-421 and 
GB-43 achieved the most significant 𝑅2  score. Consequently, the GB-43 and RF-91 were 
selected as the best among their corresponding models, despite the RF scoring the highest 
𝑅2  and lowest MAPE. The optimum model was then determined by comparing the 
performance of MLR, RF-91, and GB-43 when predicting the best hyperparameter 
architecture. 

Table 3 Best result of the MLR, RF, and GB models 

Model A B C D E F G 𝑅2 Test MAPE Test (%) 

MLR - - - - - - - 0.21 53.00 
RF RF-91 10 Auto 1 5 - 10 0.75 26.70 

RF-95 10 Auto 1 10 - 10 0.74 28.36 
RF-143 10 Sqrt 1 2 - 50 0.73 33.39 
RF-421 None Auto 5 2 - 10 0.76 28.86 
RF-514 None log2 1 2 - 10 0.76 35.17 

GB GB-37 10 - - - 0.5 10 0.64 34.21 
GB-40 20 - - - 0.5 10 0.63 34.05 
GB-43 None - - - 0.5 10 0.64 32.27 
GB-44 None - - - 0.5 50 0.64 34.71 
GB-45 None - - - 0.5 100 0.64 34.72 

Note: A: No. of combinations; B: Max depth; C: Max features; D: Min samples leaf; E: Min samples split; 
F: learning rate; G: 𝑁 Estimator. 

 Also, a re-experiment was conducted to fit each model using all the training data. Every 
model’s cost was estimated with the testing data to ensure that the best has the least 
significant MAPE value and the most negligible difference in 𝑅2  between training and 
testing data. It was observed that the model was stable and exhibited excellent 
generalization abilities. The respective models predicted performance value based on 
training and testing data are presented in Table 4. The result showed that the RF 
outperformed the other models, and therefore it was selected as the best. Moreover, Figure 
5 shows the developed application program for estimating the assembly design cost. 

Table 4 Comparison of the model’s performance 

Model 𝑅2 Test 𝑅2 Training MAPE Test MAPE Training 

MLR  0.39 0.81 50% 26% 

RF 0.76 0.96 23% 12% 

GB  0.65 0.99 30% 4% 

 Figure 5(a) depicts the program-based GUI where the user input a CAD assembly file. 
The program then uses the CAD's API to automatically identify the number of assembly 
features and the number of parts, as shown in Figure 5(b). Based on the proposed method, 
the user is subsequently presented with the estimated assembly design cost. 
 After selecting the RF model, the best hyperparameters setting was employed to train 
the data in the application program. The program became the reference for the user to 
evaluate the assembly design cost. It is important to note that the assembly design cost 
program was estimated using the proposed method. This method showed deviations 
ranging from 6.8% to 35.5%, with an average deviation of 17.4% from the actual assembly 
design cost. In a similar study, Molcho et al. (2014) reported an average deviation of 35% 
for early design cost estimation. Another advantage of the proposed method is its 
simplicity; it requires input data solely from CAD data, whereas Kurasova et al. (2021) 
require subjective input from the user, such as the level of product complexity. 
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(a) (b) 

Figure 5 A program for assembly design estimation cost, (a) the user interface and (b) 
identified cost drivers consisting of mate features, assembly features and the number of 
parts 

 The results of the cost estimation model and program development were discussed 
with the company engineers, who discovered that two assembly design cases presented a 
substantial predictive error value. Further analysis revealed that the product assembly size 
was larger than in normal cases. In essence, when the product’s size increases, the material 
volume required tends to be more, thereby causing extra assembly design costs. This simply 
implies that the prediction model was limited in estimating the design cost of 
homogeneous-sized product assembly. Based on these findings, the proposed prediction 
model was accepted for use during the early stage of assembly design. 
 
4. Conclusions 

 This study examined the challenges encountered when estimating the assembly design 
cost of the MTO industry. Cost estimation entails early evaluation of various assembly parts, 
particularly when information is limited. The proposed ML method for addressing the 
challenge was found to be systematic, consistent, fast, and free of subjectivity. The MLR, GB, 
and RF models are the ML method utilized to estimate the assembly design cost. The 
experimental result showed that the RF model exhibits the significant potential to 
efficiently estimate the assembly design cost with an average deviation of 17.4% from the 
actual assembly design cost. Therefore, the proposed model was developed into a practical 
application program for MTO industries and considered viable for early assembly design 
cost estimation where manufacturing information is incomplete. The model has been 
integrated with CAD software to expedite and maintain consistency in assembly design cost 
estimation. Nonetheless, the limitation of the proposed model relies on the consistency of 
the historical dataset used for training the model. Future research is directed to explore the 
impact of dynamic motions such as assembly motion and kinematic behavior in assembly 
design cost estimation. 
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