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Abstract. This study deals with issues of changes in requirements management by dealing with 
requirements ambiguity and prioritization. A hypothesis about the possibility of integrating 
machine learning techniques and requirements management processes has been proven. It 
highlights the efforts in automating requirements ambiguity identification, requirements 
classification, and prioritization considering multi-criteria in decision-making through the 
utilization of Natural Language Processing (NLP) techniques and Universal Sentence Encoder. Naïve 
Bayes (NB) classifier has been applied with its remarkable performance on binarily classifying 
requirements. Although existing methods proved to improve one or two of the process significantly, 
it rarely integrates the whole requirements management activity. The proposed tool helps the 
development team to manage the requirements systematically. The prioritization algorithm is 
proved to work as expected by considering multiple constraints before calculating the priority 
value. Meanwhile, it identifies the ambiguity that exists in the requirement automatically. The 
ambiguity classifier successfully identifies 87.5% of requirements accurately. Possible future work 
could be done in improving the prioritization module by allowing automated estimation of priority 
value upon requirements change. Future work may extend the automation coverage by providing 
test case generation. 
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1. Introduction 

 Requirements Management has been the backbone of most software development to 
achieve the goal of every project. It handles rapidly changing requirements with proper 
planning, analysis, documenting, prioritizing, and integration of requirements to provide 
up-to-date requirements for a project.  
 It is crucial to get the "right" requirements from the clients and put the requirements 
in the "right" place (Hafeez, Rasheed, and Khan, 2017).  Nevertheless, constantly changing 
requirements may end up in a large-scale system and require much effort in managing the 
details to ensure the information is always up to date. A key part of requirements 
management is managing the changes. The manual process of labeling requirements could 
be time-consuming and error-prone (Iqbal, Elahidoost, and Lucio, 2018). A failure to 
identify any issues in requirements in the early stage could result in project delay, which 
brings out the issues of loss of revenue, tarnished reputations, and loss of trust (Riazi and 
Nawi, 2018), other than adversely affect the expectation of the clients and the final product 
and finally, lead to project failure.  
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 This paper aims to propose a semi-automated requirements management tool, ReqGo 
and analyses how it benefits the existing requirements management process. More 
precisely, we pursue the following research questions: 1) How to identify ambiguity in 
requirements automatically? 2) How to improve requirements prioritization tasks through 
semi-automation? 3) How to integrate automated tasks into the requirements management 
process? The proposed tool makes use of Natural Language Processing (NLP) to classify 
requirements, detect requirement ambiguity, and automatically prioritize them using 
multi-criteria decision-making to facilitate effective resource utilization, besides providing 
the ability for users to manage their requirements and relevant artifacts. Among various 
NLP algorithms available to analyze and process the data, Naïve Bayes (NB) has been 
chosen due to its feature that supports binary classification, which is ideal for classifying 
the requirement into two categories, i.e., Functional and Non-Function Requirements. 
 According to previous studies, the correct requirements classification of requirements 
and clear definition of requirements have been the main focuses of researchers to allow 
filtering and prioritizing of requirements. There are numerous algorithms, including Term 
Frequency - Inverse Document Frequency (TF-IDF) (Wein and Briggs, 2021; Dias-Canedo 
and Cordeiro-Mendes, 2020) and machine learning techniques like Support Vector Machine 
(SVM) (Shariff, 2021; Kurtanović and Maalej, 2017), Naïve Bayes (NB) (Shariff, 2021), 
Logistic Regression (LR) (Dias-Canedo and Cordeiro-Mendes, 2020) and Natural Language 
Processing (NLP) (Wein and Briggs, 2021; Asadabadi et al., 2020; Aysolmaz et al., 2018; 
Kurtanović & Maalej, 2017; Emebo, Olawande, and Charles, 2016), have been implemented 
in various requirements management tasks to analyze and classify requirements by going 
through requirements normalization, feature extraction, feature selection, and finally 
classification.  
 Existing requirements management software such as IBM DOORS Next (IBM, n.d.) and 
MaramaAIC (Kamalrudin, Hosking, and Grun, 2017) provide the ability to manage 
requirements for complex software and systems requirements environment with NLP 
techniques supported to improve the abilities in detecting requirements quality issues and 
traceability through a certain degree of automation. However, it is notable that they are still 
lacking the integration of automatic requirements prioritization in the tool. Inspired by the 
existing tools, ReqGo emphasized capturing requirements issues in the early stage while 
proposing a semi-automated requirements prioritization module to reduce the human 
effort in ranking the requirements.  
 The remaining part of the paper is structured as the followings: Section 2 describes the 
fundamental theory and the working procedure of ReqGo, including its overall architecture, 
the workflow of requirements ambiguity identification and requirements prioritization 
with their corresponding algorithms, as well as print screens of the tool, followed by Section 
3 which presents the results and summarize the major findings of our study. Finally, Section 
4 concludes the paper. 
 
2.  Methods  

2.1.  ReqGo Architecture and Workflow 
 In general, ReqGo contains five modules which are User Account Management, 
Requirement Record Management, Requirement Prioritization, Requirement Verification & 
Validation, and Requirement Traceability. Figure 1 represents a high-level flow of how the 
user could utilize the tool. By using ReqGo, users need to insert the requirements collected 
in natural language. The extracted requirements will then be ready for documentation and 
analysis. The requirements are processed and tagged for different categories and possible 
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ambiguity. The requirements will then be prioritized accordingly, and finally, verification 
and validation. 

 

Figure 1 High-Level Flow of ReqGo 

2.2.  Data Collection 
Before proceeding with any classification process, we need to collect the dataset for 

training and evaluation purposes. The dataset collected with being divided into two 
portions. The first part will be used to train the classifier, while the second part will serve 
as the validation set. To perform this requirements classification phase, the datasets are 
gathered from three sources (Lima et al., 2019; Ferrari et al., 2017; Cleland-Huang et al., 
2007). Figure 2 presents a summary of requirements and their composition in the dataset. 
The dataset is divided into twelve categories, including Functional (F) and Non-Function 
requirements like Security (SE), Usability (US), Operational (O), Performance (PE), Look 
and Feel (LF), Availability (A), Maintainability (MN), Scalability (SC), Fault Tolerance (FT), 
Legal (L), and Portability (PO). 

 

Figure 2 Distribution of Requirement Compositions on Datasets 

2.3.  Requirements Classification and Ambiguity 
ReqGo is deploying Machine Learning techniques for classifying Functional 

Requirements and Non-Functional Requirements and identifying ambiguous terms in 
requirements to discuss the machine learning methods utilized for classifying the 
requirements. The implementation of Machine Learning can be divided into three 
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processes, namely Text Normalization, Text Vectorization, and Text Classification. Before a 
requirement can be further processed according to the need, text normalization is essential 
to convert the requirement into a standard form. In our case, we make use of Tokenization, 
Part-Of-Speech (POS) tagging, and Lemmatization to break down the words in terms of 
sentence structure and vocabulary. Then, we utilize Google's Universal Sentence Encoder 
method to embed the text into meaningful vector representations to evaluate words in 
requirements (Figure 3). In ReqGo, we utilize its ability to measure the degree of two pieces 
of text that carry similar meanings. It is useful in sentence classification tasks by analyzing 
the semantics similarity through the vectors generated through cosine similarity 
calculation based on the given equation: 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) =  
𝐴∙𝐵

‖𝐴‖‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1  

(1) 

 

Figure 3 Illustration of the process of Universal Sentence Encoder 

In ReqGo, we employ the NB classifier, a supervised classification algorithm, to group 
the requirements automatically. NB supports binary classification to divide the 
requirements into functional and non-functional requirement categories; the requirements 
are further identified as ambiguous or non-ambiguous to discover any possible issues that 
exist in the requirements. The classifier is trained using datasets collected before it can be 
used to provide a more accurate result. Figure 4 presents an algorithm for initializing 
requirements classification, including model training and model testing. The function 
requires labeled dataset input to produce the outcome of a well-trained requirement 
classifier. There are several values to be set at the beginning of the process, such as the total 
amount of data in the dataset used for this training, the amount of data for testing the 
classifier, and the amount of data for training the classifier. After the classifier has been 
trained and tested, it is stored in a JSON file for reuse purposes. 

In order to analyze the ambiguity that exists in requirements, an ambiguity checker is 
implemented. The process is started with a step in line 1 of Algorithm 2 (as shown in Figure 
5), where the threshold value is set. Threshold value places an important role as it 
determines whether a requirement is identified as ambiguous once it exceeds the value. 
Using TensorFlow.js, we embedded the requirements and ambiguous terms through 
Universal Sentence Encoded to support our process of examining the similarity of the words 
with high dimension vectors generated. Finally, the outcome is stored in the database. With 
ambiguous requirements detected, the users will be notified to take action to prevent any 
issues. 
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Figure 4 Algorithm of Requirement Classifier Training and Testing 

 

Figure 5 Algorithm of Requirement Ambiguity Checker 

2.4. Requirements Prioritization Logic 
ReqGo provides semi-automated requirements prioritizing methods based on a 

requirement priority value (RPV) formulation function (Hujainah et al., 2021), including the 
decision-making method, priority clustering, and insertion sort. To simplify the process, 
ReqGo involves the sorting algorithm after the calculation of RPV for each requirement 
without clustering algorithms. Figure 6 presents the flow of how the two categories of 
prioritization tasks interact to produce the desired outcome, i.e., reduce the manual effort 
in finalizing the priority value and the order of requirements collected when it comes to 
implementation.  

Figure 7 illustrates the flow of the requirements prioritization method algorithm by 
gathering all the necessary data. This includes stakeholder weights, priority values assigned 
by each stakeholder, requirement dependencies and their occurrence as parent 
requirements, and the efforts required to turn the requirement into reality. 
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Figure 6 Illustration of Requirements 
Prioritization Flow in ReqGo 

 

Figure 7 Algorithm of Requirement 
Prioritization 

2.5.  Printscreens of ReqGo 
We have demonstrated several screens of ReqGo to achieve or complete tasks, 

specifically in triggering the ambiguity checker and automatic requirements prioritization. 
In such a case, the ambiguous requirement(s) is identified, and a warning message will be 
displayed on the requirements listing page (as shown in Figure 8).  

 

Figure 8 Ambiguous warning message on requirements listing page 

In the view of prioritizing requirements, there are a few information needed before one 
can automate the priority ranking. With the values of stakeholders' weight and inputs 
collected, the tool will normalize the values, the dependencies among the requirements, and 
the efforts required to complete the requirement. The results present a ranking of the 
requirements to indicate the priority value of the requirements. Figure 9 demonstrates the 
information that has to be collected to allow requirements prioritization. 
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Figure 9 Print Screen of Requirement Priority Form of ReqGo 
 
3. Results and Discussion 

 In this study, we have proposed a semi-automated requirements management tool, 
ReqGo, to help in managing the requirements and their relevant artifacts while improving 
the process through the utilization of machine learning techniques. Testing has been 
performed to identify and remove defects while comparing the expected and actual 
outcomes to ensure the tool performs well and complies with the objectives. The accuracy 
of the requirements classifier is evaluated to verify the accuracy of the classifier in 
identifying the requirement categories. Then, a user evaluation was conducted by gathering 
feedback from the testers to verify the usability of the proposed tool to allow future 
improvements. 

3.1. Classifier Accuracy Analysis 
 In this accuracy test, the requirement classifier is measured based on its ability to 
accurately classify the functional and non-functional requirements. One collection has been 
used for training the classifier, while the other is applied to test the classifier's accuracy. 
From the 1006 rows of requirements we have gathered, 200 data are used to test the 
correctness of the classifier in performing the classification task. As the requirements in the 
dataset will be shuffled and the data used for training and testing might vary for each 
training and testing phase, the process is repeated ten times. The mean value of the ten 
experiments is calculated to obtain a more reliable record. The result is then recorded and 
discussed. Equation 2 displays the formula for calculating the accuracy of the classifier, 
which computes the number of data classified correctly over the total number of datasets. 
The summary table of the accuracy obtained from ten times classifier execution is described 
in Table 1.  It showed that the accuracy of the classifier is around 87.5% on average. The 
classifier remains stable at an accuracy of 86% to 87.5% most of the time. The classifier's 
result is satisfactory in classifying the functional and non-functional requirements. 
However, it can be further improved by expanding the datasets for training and testing, as 
Siswanto et al. (2022) noted that a more extensive and comprehensive dataset is required 
to achieve better accuracy. This will be useful to ensure the classifier is well-trained before 
utilizing it. 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡𝑠
             (2) 
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Table 1 Classifier Accuracy Result 

Execution No. Accuracy (%) 

1 89 
2 90.5 
3 84.5 
4 90 
5 86 
6 87.5 
7 87 
8 87.5 
9 87 

10 86 

Average 87.5 

3.2. Comparative Analysis 
 Many researchers work with automating the requirements management process to 
reduce human effort, cost, and possible errors and mistakes. To observe the significance of 
ReqGo in enhancing the process, the comparison of ReqGo with current requirements 
management tools is discussed. As very little research has been conducted for a fully 
integrated requirements management tool, we have reviewed the current requirements 
management tool on the marketplace, with different degrees of automation, to discuss the 
features and functionalities provided. 

Table 2 Comparison Among Requirements Management Tools with ReqGo 

Feature & Functionality 
Automation 

DOORS Next HP ALM MaramaAIC ReqGo 

Elicitation ✘ ✘ ✘ ✘ 
Documentation ✔ ✘ ✔ ✘ 
Tasks & Technique Requirements 

quality analysis 
with IBM 
Watson 

- Inconsistencies 
checking with a 
pattern library 

Requirements 
Ambiguity 
Identification & 
Classification 
with NLP 

Prioritization ✘ ✘ ✘ ✔ 
Tasks & Technique - - - Priority Value 

Formulation 
Function 
(Hujainah et al., 
2021) 

Verification & Validation ✘ ✔ ✔ ✘ 
Tasks & Technique - Test case 

automation 
with UFT  

Prototype 
generation from 
pattern library 

matching 

Manual test case 
management 

Traceability ✘ ✘ ✔ ✘ 
Tasks & Technique - - Traceability 

automation with 
NLP 

Manual 
traceability links. 

Table 2 presents a few requirements management tools that exist in the marketplace, 
namely IBM Doors Next (IBM, n.d.), HP ALM (Micro Focus, n.d.), and MaramaAIC 
(Kamalrudin, Hosking, and Grun, 2017). The tools are mainly focusing on the requirements 
documentation with quality analysis and inconsistencies checking. Concerning vague 
requirements that might result in unexpected and unnecessary problems when acquiring 
software, ReqGo focuses on the identification of ambiguous terms in the requirements 



Koh and Chua   721 

through semantical analysis. Besides, ReqGo has made a move in integrating the semi-
automated requirements prioritization considering multi-criteria make calculate the 
priority value.  

3.3. User Evaluation 
 User evaluation has been conducted to study how well users can learn and utilize 
ReqGo to assist them in managing their requirements during the development process. In 
this study, a few qualitative post-task interviews have taken place to collect the opinions 
from the participants in measuring the tool usability pertaining to system performance, 
usability issues, or design suggestions. Several users have been invited to test out the tool, 
and users' satisfaction has been collected to analyze the usability of ReqGo. The evaluation 
was divided into two phases. The first phase was carried out with no documentation or 
guide provided before the testing; the second phase was performed after the users had been 
given clear guidance. Questions were asked in both the first and second phases of the 
evaluation to get insights into user experiences, existing design issues, and possible 
improvements throughout the utilization of the tool. On average, the testers might consider 
getting some assistance to fully utilize the tool even though the system gives an error 
message sufficiently clear to identify any problem to be fixed. Besides, a user claimed that 
more functionality and capabilities are expected to manage requirements. Then, testers 
declare that the ambiguity identification module is more likely to assist users in discovering 
any requirements defects in the early stage while enhancing productivity. However, it is 
also suggested to provide an ambiguous reason whenever vague requirements are found to 
allow requirements engineers to resolve the ambiguity. 
 Meanwhile, the requirements prioritization module provides a positive experience in 
effectively prioritizing the requirements. In the second evaluation, the users suggest a 
better dependency display within an entity detail page. Testers also reported that the 
response time of ReqGo is found to be slow, and it takes a few seconds to obtain the data 
from the server. Overall, most users are satisfied with the user interface, functionality, and 
workflow of ReqGo. 

3.4. Discussion 
 Overall, the study has covered three research questions. The first research question, 
"How to identify ambiguity in requirements automatically?" has been addressed through 
the utilization of the Universal Sentence Encoder to match the semantic similarity of the 
requirements with our requirements ambiguity terms. The user evaluation shows that it 
has been helpful in identifying the issues in requirements in the early stage.  On the other 
hand, the requirements prioritization task is automated with the initial value obtained from 
the user to calculate the priority value considering multiple criteria, namely stakeholders' 
influence, stakeholders' input, dependencies among requirements, and effort for executing 
the requirement. The testers show a positive response toward the implementation of 
requirements prioritization automation.  Then, we integrated the automated tasks 
proposed in our requirement management tool, ReqGo, to allow easy requirements 
management while reducing the manual efforts in performing the tasks. Through the 
utilization of ReqGo, the requirements and their relevant artifacts could be traced along 
with the development phase. The user evaluation shows an encouraging user acceptance of 
ReqGo through usability verification with real-world testers. 
 
4. Conclusions 

 In this paper, we have proposed a semi-automated requirements management tool to 
cover the requirements management process with automated tasks through the utilization 
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of Machine Learning techniques. Naïve Bayes (NB) classifier, Natural Language Processing 
(NLP), and Universal Sentence Encoder has been used to support the requirements 
classification, requirements ambiguity identification, as well as requirements 
prioritization. Several limitations have been identified, including the number of datasets 
used to train the classifier is less than sufficient to increase the accuracy and reliability of 
the classification results. Besides, the response time of ReqGo is undesired. This tool may 
encourage researchers to automate the requirements management process through 
different algorithms based on the tasks by overcoming the limitations. The ambiguity of the 
requirements can be identified in the early stages of development to avoid severe issues in 
the later phase. The proposed requirements prioritization algorithm contributes to 
calculating the priority value based on multi-criteria. It can be improved by automatically 
estimating a requirements priority value on requirements change. 
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