
International Journal of Technology 14(4) 713-723 (2023)
 Received April 2022 / Revised August 2022 / Accepted January 2023

 International Journal of Technology

 http://ijtech.eng.ui.ac.id

ReqGo: A Semi-Automated Requirements Management Tool

Shi-Jing Koh1, Fang-Fang Chua1*

1Faculty of Computing and Informatics, Multimedia University,63100 Cyberjaya, Selangor, Malaysia

Abstract. This study deals with issues of changes in requirements management by dealing with
requirements ambiguity and prioritization. A hypothesis about the possibility of integrating
machine learning techniques and requirements management processes has been proven. It
highlights the efforts in automating requirements ambiguity identification, requirements
classification, and prioritization considering multi-criteria in decision-making through the
utilization of Natural Language Processing (NLP) techniques and Universal Sentence Encoder. Naïve
Bayes (NB) classifier has been applied with its remarkable performance on binarily classifying
requirements. Although existing methods proved to improve one or two of the process significantly,
it rarely integrates the whole requirements management activity. The proposed tool helps the
development team to manage the requirements systematically. The prioritization algorithm is
proved to work as expected by considering multiple constraints before calculating the priority
value. Meanwhile, it identifies the ambiguity that exists in the requirement automatically. The
ambiguity classifier successfully identifies 87.5% of requirements accurately. Possible future work
could be done in improving the prioritization module by allowing automated estimation of priority
value upon requirements change. Future work may extend the automation coverage by providing
test case generation.

Keywords: NLP; Requirements; Requirements ambiguity; Requirements prioritization

1. Introduction

 Requirements Management has been the backbone of most software development to
achieve the goal of every project. It handles rapidly changing requirements with proper
planning, analysis, documenting, prioritizing, and integration of requirements to provide
up-to-date requirements for a project.
 It is crucial to get the "right" requirements from the clients and put the requirements
in the "right" place (Hafeez, Rasheed, and Khan, 2017). Nevertheless, constantly changing
requirements may end up in a large-scale system and require much effort in managing the
details to ensure the information is always up to date. A key part of requirements
management is managing the changes. The manual process of labeling requirements could
be time-consuming and error-prone (Iqbal, Elahidoost, and Lucio, 2018). A failure to
identify any issues in requirements in the early stage could result in project delay, which
brings out the issues of loss of revenue, tarnished reputations, and loss of trust (Riazi and
Nawi, 2018), other than adversely affect the expectation of the clients and the final product
and finally, lead to project failure.

*Corresponding author’s email: ffchua@mmu.edu.my, Tel.: +60383125406
doi: 10.14716/ijtech.v14i4.5631

714 ReqGo: A Semi-Automated Requirements Management Tool

 This paper aims to propose a semi-automated requirements management tool, ReqGo
and analyses how it benefits the existing requirements management process. More
precisely, we pursue the following research questions: 1) How to identify ambiguity in
requirements automatically? 2) How to improve requirements prioritization tasks through
semi-automation? 3) How to integrate automated tasks into the requirements management
process? The proposed tool makes use of Natural Language Processing (NLP) to classify
requirements, detect requirement ambiguity, and automatically prioritize them using
multi-criteria decision-making to facilitate effective resource utilization, besides providing
the ability for users to manage their requirements and relevant artifacts. Among various
NLP algorithms available to analyze and process the data, Naïve Bayes (NB) has been
chosen due to its feature that supports binary classification, which is ideal for classifying
the requirement into two categories, i.e., Functional and Non-Function Requirements.
 According to previous studies, the correct requirements classification of requirements
and clear definition of requirements have been the main focuses of researchers to allow
filtering and prioritizing of requirements. There are numerous algorithms, including Term
Frequency - Inverse Document Frequency (TF-IDF) (Wein and Briggs, 2021; Dias-Canedo
and Cordeiro-Mendes, 2020) and machine learning techniques like Support Vector Machine
(SVM) (Shariff, 2021; Kurtanović and Maalej, 2017), Naïve Bayes (NB) (Shariff, 2021),
Logistic Regression (LR) (Dias-Canedo and Cordeiro-Mendes, 2020) and Natural Language
Processing (NLP) (Wein and Briggs, 2021; Asadabadi et al., 2020; Aysolmaz et al., 2018;
Kurtanović & Maalej, 2017; Emebo, Olawande, and Charles, 2016), have been implemented
in various requirements management tasks to analyze and classify requirements by going
through requirements normalization, feature extraction, feature selection, and finally
classification.
 Existing requirements management software such as IBM DOORS Next (IBM, n.d.) and
MaramaAIC (Kamalrudin, Hosking, and Grun, 2017) provide the ability to manage
requirements for complex software and systems requirements environment with NLP
techniques supported to improve the abilities in detecting requirements quality issues and
traceability through a certain degree of automation. However, it is notable that they are still
lacking the integration of automatic requirements prioritization in the tool. Inspired by the
existing tools, ReqGo emphasized capturing requirements issues in the early stage while
proposing a semi-automated requirements prioritization module to reduce the human
effort in ranking the requirements.
 The remaining part of the paper is structured as the followings: Section 2 describes the
fundamental theory and the working procedure of ReqGo, including its overall architecture,
the workflow of requirements ambiguity identification and requirements prioritization
with their corresponding algorithms, as well as print screens of the tool, followed by Section
3 which presents the results and summarize the major findings of our study. Finally, Section
4 concludes the paper.

2. Methods

2.1. ReqGo Architecture and Workflow
 In general, ReqGo contains five modules which are User Account Management,
Requirement Record Management, Requirement Prioritization, Requirement Verification &
Validation, and Requirement Traceability. Figure 1 represents a high-level flow of how the
user could utilize the tool. By using ReqGo, users need to insert the requirements collected
in natural language. The extracted requirements will then be ready for documentation and
analysis. The requirements are processed and tagged for different categories and possible

Koh and Chua 715

ambiguity. The requirements will then be prioritized accordingly, and finally, verification
and validation.

Figure 1 High-Level Flow of ReqGo

2.2. Data Collection
Before proceeding with any classification process, we need to collect the dataset for

training and evaluation purposes. The dataset collected with being divided into two
portions. The first part will be used to train the classifier, while the second part will serve
as the validation set. To perform this requirements classification phase, the datasets are
gathered from three sources (Lima et al., 2019; Ferrari et al., 2017; Cleland-Huang et al.,
2007). Figure 2 presents a summary of requirements and their composition in the dataset.
The dataset is divided into twelve categories, including Functional (F) and Non-Function
requirements like Security (SE), Usability (US), Operational (O), Performance (PE), Look
and Feel (LF), Availability (A), Maintainability (MN), Scalability (SC), Fault Tolerance (FT),
Legal (L), and Portability (PO).

Figure 2 Distribution of Requirement Compositions on Datasets

2.3. Requirements Classification and Ambiguity
ReqGo is deploying Machine Learning techniques for classifying Functional

Requirements and Non-Functional Requirements and identifying ambiguous terms in
requirements to discuss the machine learning methods utilized for classifying the
requirements. The implementation of Machine Learning can be divided into three

716 ReqGo: A Semi-Automated Requirements Management Tool

processes, namely Text Normalization, Text Vectorization, and Text Classification. Before a
requirement can be further processed according to the need, text normalization is essential
to convert the requirement into a standard form. In our case, we make use of Tokenization,
Part-Of-Speech (POS) tagging, and Lemmatization to break down the words in terms of
sentence structure and vocabulary. Then, we utilize Google's Universal Sentence Encoder
method to embed the text into meaningful vector representations to evaluate words in
requirements (Figure 3). In ReqGo, we utilize its ability to measure the degree of two pieces
of text that carry similar meanings. It is useful in sentence classification tasks by analyzing
the semantics similarity through the vectors generated through cosine similarity
calculation based on the given equation:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) =
𝐴∙𝐵

‖𝐴‖‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

(1)

Figure 3 Illustration of the process of Universal Sentence Encoder

In ReqGo, we employ the NB classifier, a supervised classification algorithm, to group
the requirements automatically. NB supports binary classification to divide the
requirements into functional and non-functional requirement categories; the requirements
are further identified as ambiguous or non-ambiguous to discover any possible issues that
exist in the requirements. The classifier is trained using datasets collected before it can be
used to provide a more accurate result. Figure 4 presents an algorithm for initializing
requirements classification, including model training and model testing. The function
requires labeled dataset input to produce the outcome of a well-trained requirement
classifier. There are several values to be set at the beginning of the process, such as the total
amount of data in the dataset used for this training, the amount of data for testing the
classifier, and the amount of data for training the classifier. After the classifier has been
trained and tested, it is stored in a JSON file for reuse purposes.

In order to analyze the ambiguity that exists in requirements, an ambiguity checker is
implemented. The process is started with a step in line 1 of Algorithm 2 (as shown in Figure
5), where the threshold value is set. Threshold value places an important role as it
determines whether a requirement is identified as ambiguous once it exceeds the value.
Using TensorFlow.js, we embedded the requirements and ambiguous terms through
Universal Sentence Encoded to support our process of examining the similarity of the words
with high dimension vectors generated. Finally, the outcome is stored in the database. With
ambiguous requirements detected, the users will be notified to take action to prevent any
issues.

Koh and Chua 717

Figure 4 Algorithm of Requirement Classifier Training and Testing

Figure 5 Algorithm of Requirement Ambiguity Checker

2.4. Requirements Prioritization Logic
ReqGo provides semi-automated requirements prioritizing methods based on a

requirement priority value (RPV) formulation function (Hujainah et al., 2021), including the
decision-making method, priority clustering, and insertion sort. To simplify the process,
ReqGo involves the sorting algorithm after the calculation of RPV for each requirement
without clustering algorithms. Figure 6 presents the flow of how the two categories of
prioritization tasks interact to produce the desired outcome, i.e., reduce the manual effort
in finalizing the priority value and the order of requirements collected when it comes to
implementation.

Figure 7 illustrates the flow of the requirements prioritization method algorithm by
gathering all the necessary data. This includes stakeholder weights, priority values assigned
by each stakeholder, requirement dependencies and their occurrence as parent
requirements, and the efforts required to turn the requirement into reality.

718 ReqGo: A Semi-Automated Requirements Management Tool

Figure 6 Illustration of Requirements
Prioritization Flow in ReqGo

Figure 7 Algorithm of Requirement
Prioritization

2.5. Printscreens of ReqGo
We have demonstrated several screens of ReqGo to achieve or complete tasks,

specifically in triggering the ambiguity checker and automatic requirements prioritization.
In such a case, the ambiguous requirement(s) is identified, and a warning message will be
displayed on the requirements listing page (as shown in Figure 8).

Figure 8 Ambiguous warning message on requirements listing page

In the view of prioritizing requirements, there are a few information needed before one
can automate the priority ranking. With the values of stakeholders' weight and inputs
collected, the tool will normalize the values, the dependencies among the requirements, and
the efforts required to complete the requirement. The results present a ranking of the
requirements to indicate the priority value of the requirements. Figure 9 demonstrates the
information that has to be collected to allow requirements prioritization.

Koh and Chua 719

Figure 9 Print Screen of Requirement Priority Form of ReqGo

3. Results and Discussion

 In this study, we have proposed a semi-automated requirements management tool,
ReqGo, to help in managing the requirements and their relevant artifacts while improving
the process through the utilization of machine learning techniques. Testing has been
performed to identify and remove defects while comparing the expected and actual
outcomes to ensure the tool performs well and complies with the objectives. The accuracy
of the requirements classifier is evaluated to verify the accuracy of the classifier in
identifying the requirement categories. Then, a user evaluation was conducted by gathering
feedback from the testers to verify the usability of the proposed tool to allow future
improvements.

3.1. Classifier Accuracy Analysis
 In this accuracy test, the requirement classifier is measured based on its ability to
accurately classify the functional and non-functional requirements. One collection has been
used for training the classifier, while the other is applied to test the classifier's accuracy.
From the 1006 rows of requirements we have gathered, 200 data are used to test the
correctness of the classifier in performing the classification task. As the requirements in the
dataset will be shuffled and the data used for training and testing might vary for each
training and testing phase, the process is repeated ten times. The mean value of the ten
experiments is calculated to obtain a more reliable record. The result is then recorded and
discussed. Equation 2 displays the formula for calculating the accuracy of the classifier,
which computes the number of data classified correctly over the total number of datasets.
The summary table of the accuracy obtained from ten times classifier execution is described
in Table 1. It showed that the accuracy of the classifier is around 87.5% on average. The
classifier remains stable at an accuracy of 86% to 87.5% most of the time. The classifier's
result is satisfactory in classifying the functional and non-functional requirements.
However, it can be further improved by expanding the datasets for training and testing, as
Siswanto et al. (2022) noted that a more extensive and comprehensive dataset is required
to achieve better accuracy. This will be useful to ensure the classifier is well-trained before
utilizing it.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡𝑠
 (2)

720 ReqGo: A Semi-Automated Requirements Management Tool

Table 1 Classifier Accuracy Result

Execution No. Accuracy (%)

1 89
2 90.5
3 84.5
4 90
5 86
6 87.5
7 87
8 87.5
9 87

10 86

Average 87.5

3.2. Comparative Analysis
 Many researchers work with automating the requirements management process to
reduce human effort, cost, and possible errors and mistakes. To observe the significance of
ReqGo in enhancing the process, the comparison of ReqGo with current requirements
management tools is discussed. As very little research has been conducted for a fully
integrated requirements management tool, we have reviewed the current requirements
management tool on the marketplace, with different degrees of automation, to discuss the
features and functionalities provided.

Table 2 Comparison Among Requirements Management Tools with ReqGo

Feature & Functionality
Automation

DOORS Next HP ALM MaramaAIC ReqGo

Elicitation ✘ ✘ ✘ ✘
Documentation ✔ ✘ ✔ ✘
Tasks & Technique Requirements

quality analysis
with IBM
Watson

- Inconsistencies
checking with a
pattern library

Requirements
Ambiguity
Identification &
Classification
with NLP

Prioritization ✘ ✘ ✘ ✔
Tasks & Technique - - - Priority Value

Formulation
Function
(Hujainah et al.,
2021)

Verification & Validation ✘ ✔ ✔ ✘
Tasks & Technique - Test case

automation
with UFT

Prototype
generation from
pattern library

matching

Manual test case
management

Traceability ✘ ✘ ✔ ✘
Tasks & Technique - - Traceability

automation with
NLP

Manual
traceability links.

Table 2 presents a few requirements management tools that exist in the marketplace,
namely IBM Doors Next (IBM, n.d.), HP ALM (Micro Focus, n.d.), and MaramaAIC
(Kamalrudin, Hosking, and Grun, 2017). The tools are mainly focusing on the requirements
documentation with quality analysis and inconsistencies checking. Concerning vague
requirements that might result in unexpected and unnecessary problems when acquiring
software, ReqGo focuses on the identification of ambiguous terms in the requirements

Koh and Chua 721

through semantical analysis. Besides, ReqGo has made a move in integrating the semi-
automated requirements prioritization considering multi-criteria make calculate the
priority value.

3.3. User Evaluation
 User evaluation has been conducted to study how well users can learn and utilize
ReqGo to assist them in managing their requirements during the development process. In
this study, a few qualitative post-task interviews have taken place to collect the opinions
from the participants in measuring the tool usability pertaining to system performance,
usability issues, or design suggestions. Several users have been invited to test out the tool,
and users' satisfaction has been collected to analyze the usability of ReqGo. The evaluation
was divided into two phases. The first phase was carried out with no documentation or
guide provided before the testing; the second phase was performed after the users had been
given clear guidance. Questions were asked in both the first and second phases of the
evaluation to get insights into user experiences, existing design issues, and possible
improvements throughout the utilization of the tool. On average, the testers might consider
getting some assistance to fully utilize the tool even though the system gives an error
message sufficiently clear to identify any problem to be fixed. Besides, a user claimed that
more functionality and capabilities are expected to manage requirements. Then, testers
declare that the ambiguity identification module is more likely to assist users in discovering
any requirements defects in the early stage while enhancing productivity. However, it is
also suggested to provide an ambiguous reason whenever vague requirements are found to
allow requirements engineers to resolve the ambiguity.
 Meanwhile, the requirements prioritization module provides a positive experience in
effectively prioritizing the requirements. In the second evaluation, the users suggest a
better dependency display within an entity detail page. Testers also reported that the
response time of ReqGo is found to be slow, and it takes a few seconds to obtain the data
from the server. Overall, most users are satisfied with the user interface, functionality, and
workflow of ReqGo.

3.4. Discussion
 Overall, the study has covered three research questions. The first research question,
"How to identify ambiguity in requirements automatically?" has been addressed through
the utilization of the Universal Sentence Encoder to match the semantic similarity of the
requirements with our requirements ambiguity terms. The user evaluation shows that it
has been helpful in identifying the issues in requirements in the early stage. On the other
hand, the requirements prioritization task is automated with the initial value obtained from
the user to calculate the priority value considering multiple criteria, namely stakeholders'
influence, stakeholders' input, dependencies among requirements, and effort for executing
the requirement. The testers show a positive response toward the implementation of
requirements prioritization automation. Then, we integrated the automated tasks
proposed in our requirement management tool, ReqGo, to allow easy requirements
management while reducing the manual efforts in performing the tasks. Through the
utilization of ReqGo, the requirements and their relevant artifacts could be traced along
with the development phase. The user evaluation shows an encouraging user acceptance of
ReqGo through usability verification with real-world testers.

4. Conclusions

 In this paper, we have proposed a semi-automated requirements management tool to
cover the requirements management process with automated tasks through the utilization

722 ReqGo: A Semi-Automated Requirements Management Tool

of Machine Learning techniques. Naïve Bayes (NB) classifier, Natural Language Processing
(NLP), and Universal Sentence Encoder has been used to support the requirements
classification, requirements ambiguity identification, as well as requirements
prioritization. Several limitations have been identified, including the number of datasets
used to train the classifier is less than sufficient to increase the accuracy and reliability of
the classification results. Besides, the response time of ReqGo is undesired. This tool may
encourage researchers to automate the requirements management process through
different algorithms based on the tasks by overcoming the limitations. The ambiguity of the
requirements can be identified in the early stages of development to avoid severe issues in
the later phase. The proposed requirements prioritization algorithm contributes to
calculating the priority value based on multi-criteria. It can be improved by automatically
estimating a requirements priority value on requirements change.

References

Asadabadi, M.R., Saberi, M., Zwikael, O., Chang, E., 2020. Ambiguous Requirements: A Semi-
Automated Approach to Identify and Clarify Ambiguity in Large-Scale Projects.
Computers & Industrial Engineering, Volume 149, p. 106828

Aysolmaz, B., Leopold, H., Reijers, H.A., Demirörs, O., 2018. A Semi-Automated Approach for
Generating Natural Language Requirements Documents Based on Business Process
Models. Information and Software Technology, Volume 93, pp. 14–29

Cleland-Huang, J., Mazrouee, S., Liguo, H., Port, D., 2007. NFR. Zenodo. Available online at
https://doi.org/10.5281/zenodo.26854, Accessed on November 11, 2021

Dias Canedo, E., Cordeiro Mendes, B., 2020. Software Requirements Classification Using
Machine Learning Algorithms. Entropy, Volume 22(9), p. 1057

Emebo, O., Olawande, D., Charles, A., 2016. An Automated Tool Support for Managing
Implicit Requirements Using Analogy-Based Reasoning. In: 2016 IEEE tenth
international conference on Research Challenges in Information Science (RCIS),
Volume 2016, pp. 1–6

Ferrari, A., Spagnolo, G.O., Gnesi, S., 2017. Towards a Dataset for Natural Language
Requirements Processing. In: REFSQ workshops

Hafeez, M.S., Rasheed, F., Khan, M.R., 2017. An Improved Model for Requirement
Management System. Journal of Information Technology & Software Engineering,
Volume 7(196), p. 2

Hujainah, F., Bakar, R.B.A., Nasser, A.B., Al-haimi, B., Zamli, K.Z., 2021. Srptackle: A Semi-
Automated Requirements Prioritisation Technique for Scalable Requirements of
Software System Projects. Information and Software Technology, Volume 131, p.
106501

IBM., n.d. IBM Engineering Requirements Management DOORS Next. Available online at
https://www.ibm.com/my-en/products/requirements-management-doors-next,
Accessed on November 11, 2021

Iqbal, T., Elahidoost, P., Lucio, L., 2018. A Bird’s Eye View on Requirements Engineering and
Machine Learning. In: 2018 25th Asia-Pacific Software Engineering Conference
(APSEC), Volume 2018, pp. 11–20

Kamalrudin, M., Hosking, J., Grundy, J., 2017. Maramaaic: Tool Support for Consistency
Management and Validation of Requirements. Automated Software Engineering,
Volume 24(1), pp. 1–45

Kurtanović, Z., Maalej, W., 2017. Automatically Classifying Functional and Non-Functional
Requirements Using Supervised Machine Learning. In: 2017 IEEE 25th International
Requirements Engineering Conference (re), Volume 2017, pp. 490–495

Koh and Chua 723

Lima, M., Valle, V., Costa, E.A., Lira, F., Gadelha, B., 2019. Software Engineering Repositories:
Expanding the Promise Database. In Proceedings of the XXXIII Brazilian Symposium on
Software Engineering, Volume 2019, pp. 427–436

Micro Focus, n.d. HP ALM. Available online at: https://www.microfocus.com/en-
us/products/alm-quality-center/overview, Accessed on November 11, 2021

Riazi, S.R.M., Nawi M.N.M., 2018. Project Delays in The Malaysian Public Sector: Causes,
Pathogens and The Supply Chain Management Approach. International Journal of
Technology, Volume 9(8), pp. 1668–1680

Shariff, H., 2021. Non-Functional Requirement Detection Using Machine Learning and
Natural Language Processing. Turkish Journal of Computer and Mathematics Education
(TURCOMAT), Volume 12(3), pp. 2224–2229

Siswanto, J., Suakanto, S., Andriani, M., Hardiyanti, M., Kusumasari, T.F., 2022. Interview Bot
Development with Natural Language Processing and Machine Learning. International
Journal of Technology, Volume 13(2), pp. 274–285

Wein, S., Briggs, P., 2021. A Fully Automated Approach to Requirement Extraction from
Design Documents. In: 2021 IEEE Aerospace Conference (50100), Volume 2021, pp. 1–
7

