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Abstract. The operation of power transformer in an electric system is the cause of noise in form of 
sound. At a certain level, this noise can be considered as pollution, interfering with the comfort and 
health of human hearing. The phenomenon shows the need to understand load noise that is 
generated during the design process of power transformer. However, a major related problem is the 
unavailability of an accurate load noise model capable of precise prediction during the design stage. 
Therefore, this research aimed to develop load noise model based on an artificial neural network 
for power transformer to predict the generated load noise value. The development process was 
carried out using a trained backpropagation neural network (BPNN) with the Levenberg-Marquardt 
algorithm. Before training for neural network, input parameters such as power, impedance, and 
winding geometry factors were selected and normalized. The linear regression method was used to 
assess the quality of neural network model training results. For performance comparison, the 
multiple linear regression (MLR) model and the Reiplinger method were also developed. The results 
showed that load noise model was developed based on BPNN with seven hidden layers and nine 
neurons for each layer. Model showed acceptable output variables, with mean absolute percentage 
error (MAPE), mean absolute error (MAE), root mean square error (RMSE), and correlation 
coefficient (R) of 0.007, 0.464, 0.708, and 0.998, respectively. Furthermore, the prediction of load 
noise achieved through BPNN showed significantly high accuracy compared to the existing standard 
formulas. 
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1. Introduction 

Power transformer is an essential component in the electric system, playing an 
important role in meeting the energy demands of customers (Aziz, Indarto, and Hudaya,  
2021; Rozhentcova et al., 2020; Indarto et al., 2017). During operation, power transformer 
generate noise, which can be considered as pollution, potentially disturbing the comfort of 
surrounding community. This noise is classified into three types, namely no-load, load, and 
noise caused by the cooling system (Al-Abadi, 2019). Based on classification, no-load noise  
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has an almost constant value during the operation of power transformer (Shilyashki et al., 
2016). In contrast, load noise varies significantly depending on the amount of electric 
current flowing and the winding parameter (Al-Abadi et al., 2017; Rohilla and Palani Samy, 
2015). Among these three types, load noise becomes the most dominant source, 
particularly as power transformer increases (Vasques, Miguel, and Campelo, 2013; Lukic et 
al., 2012). Load noise is an important aspect that is considered during the design process 
after power losses, efficiency, dimension, and costs of power transformer. Designers usually 
use an empirical formula to predict the amount of load noise. However, this formula has not 
considered all aspects affecting load noise value, resulting in inaccuracies in the predicted 
values (Paghadar and Kantaria, 2016). Reiplinger has developed the formula for predicting 
load noise. The formula shows a significant difference in measured value, without 
considering other variables, such as physical form and electromagnetic force, which are 
sources of load noise (Girgis, Bernesjö, and Anger,  2009). Therefore, the empirical method 
must be modified to include other parameters affecting load noise (Lukic et al., 2012). 
Previous research has included the effect of transformer impedance and the presence of tap 
winding in the formula to improve the method. Although the results show a better value 
compared to Reiplinger formula, there is a high standard deviation of 3.5 dB (Girgis, 
Bernesjö, and Anger,  2009). A new calculation method for load noise caused by windings 
has also been carried out by considering both radial and axial forces (Yoshida et al., 2021; 
Witczak and Swiatkowski, 2017), influenced by load current flowing (Kim et al., 2020). The 
results showed superior measurement accuracy, but the standard deviation is still 1.4 dB 
(Girgis, Bernesjö, and Anger,  2009). The main problem associated with load noise is the 
difficulty of accurately quantifying the value of noise generated by transformer. The 
incompatibility of load noise values against the standards or consumers' specifications 
poses a significant problem for power transformer manufacturers (Pramono et al., 2021; 
Pramono, Wijaya, and Hadi, 2020). Several efforts that have been carried out to reduce load 
noise in power transformer require high costs and a longer time, causing losses to 
manufacturers. Therefore, knowledge about load noise at the design stage is essential to 
minimize losses and implement corrective measures (Zhu, Hao, and Lu, 2022).  

Based on the background above, this research aimed to develop load noise model 
generated by power transformer based on design data using backpropagation neural 
network (BPNN). Generally, power transformer parameters have a very complex 
relationship with each other, leading to difficult application in conventional mathematical 
methods. To address this challenge, an artificial neural network (ANN) offers a promising 
solution by effectively modeling complex system without previous knowledge of 
mathematical relationships (Alas and Ali, 2019; Dhini et al., 2015). In addition, ANN can 
generalize model to predict outcomes with new input data, which are suitable for handling 
high data volatility and non-constant variance. One learning method that has been proven 
effective with good accuracy and speed is backpropagation, providing additional 
advantages such as minimal parameter tuning requirements, flexibility, and independence 
from knowledge of network features (Dhini et al., 2020). This load noise model will 
incorporate the main parameters, known as noise sources and others to provide accurate 
values. This research is organized as follows, the first part discusses the proposed method, 
consisting of selecting input parameters and developing load noise model. The second part 
presents the result, validation, and comparison. The last part contains conclusions and 
opportunities for improvement. 

 
2. Materials and Methods 

 The first step in the proposed is the selection parameters that significantly affect load 
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noise. Subsequently, the second step is to develop load noise model using MLR and BPNN 
methods, while the last step is testing of model. 

2.1. Selection of The Input Parameters 
This research developed model for predicting load noise by considering the main 

contributing parameters. During the selection of input parameters, there is a need to 
consider factors that closely influence the final model of load noise (Fagbola, Thakur, and 
Olugbara, 2019). The parameters used in the development process are the nominal power, 
impedance, and winding geometry factor (WGF). Specifically, nominal power is the product 
of the current's square and transformer's impedance. The square of current flowing directly 
correlates with the electromagnetic force in the winding (Jin and Pan, 2016; Negi, Singh, 
and Kr Shah, 2013). Therefore, the nominal power is a parameter that significantly affects 
the amount of load noise. 

The impedance of power transformer for each phase is influenced by the number of 
turns, the axial height of the winding, the winding width, the duct channel width, the 
average length of the conductor, and frequency. Furthermore, the impedance parameters 
refer more to the physical geometric shape of the winding (Al-Abadi, 2019). Generally, the 
current flowing in the winding produces magnetic flux, causing vibrations that serve as 
primary sources of noise (Duan et al., 2018; Al-Abadi et al., 2017; Jingzhu et al., 2016). In 
the event of a short circuit occurs, the calculation of axial and radial forces becomes 
essential. According to (Sathya and Savadamuthu, 2019), axial and radial forces of the 
winding are influenced by several parameters of height, diameter, the average diameter of 
the two windings, width, and the channel width. As described by (Yu et al., 2022; Lukic et 
al., 2012), load noise is affected by axial and radial forces, showing the importance of 
selecting appropriate impedance parameters. WGF mechanically influences load noise 
generated. This is attributed to WGF, serving as the ratio between the winding height, 
diameter 𝑟ℎ𝑑, weight of LV, 𝐺𝐿𝑉 (kg), and HV, 𝐺𝐻𝑉  (kg) (Pramono et al., 2023). 

2.2. Selection of The Output Target 
 BPNN or MLR output in target data containing load noise data was measured in this 
research. The measurement of load noise was carried out on power transformer during 
short circuit testing. Although the current flowing was nominal, the input voltage was not 
more than 10% of nominal voltage. Therefore, noise generated by power transformer was 
predominantly load current. Input and output data, serving as targets, have a large variation 
in values. This variation can be overcome by changing data input such as power, impedance, 
and the weight of the winding in the form of logarithmic functions in dB, as shown in Table 
1. Based on the analysis, load noise data are obtained from short circuit testing, while other 
parameters are collected from power transformer design data. 

Table 1 Data of input parameters 

Load  
Noise 

Measured 
(dB) 

Input Parameters 

log(𝑆) log(𝑍) 
log  (𝐺𝐿𝑉

+ 𝐺𝐻𝑉) 
𝑟ℎ𝑑 

51 0.6990 0.7709 3.2299 1.2516 
63.8 0.8751 0.9800 3.3948 1.5986 
56.5 1.0000 0.9956 3.5717 1.0508 
63.5 1.2304 1.1875 3.6096 1.6166 
69.5 1.4471 1.4150 4.0918 1.2407 
67.5 1.4471 1.1271 3.8302 1.2777 
69 1.5441 1.1303 3.7582 1.5166 

77.8 1.6021 1.3979 4.0925 1.3316 
73 1.6021 0.9085 3.8640 1.8836 

61.7 1.6021 1.0719 3.9428 1.1801 
 

Load  
Noise 

Measured 
(dB) 

Input Parameters 

log(𝑆) log(𝑍) 
log  (𝐺𝐿𝑉

+ 𝐺𝐻𝑉) 
𝑟ℎ𝑑 

72.5 1.6532 1.1239 3.9658 1.3050 
75 1.7782 1.1931 3.9352 1.2589 

67.5 1.8129 0.9956 4.0527 1.3833 

81.8 1.8751 1.5315 4.2048 1.3204 
74.9 1.9031 1.1303 3.9898 1.3531 
78.4 1.9031 1.0828 4.1651 1.4260 

78.5 1.9542 1.1541 4.2379 1.9788 
77.3 2.1303 1.0997 4.1217 1.2293 
80.8 2.1614 1.1206 4.1847 1.3142 
90.8 2.3802 1.1458 4.5795 0.9997 
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2.3. Development of Load Noise Model 
 The development of load noise model was carried out using two methods, namely 
multiple linear regression (MLR) and BPNN. 

2.3.1. MLR Method 
MLR is a statistical method that simulates the relationship between two or more 

independent variables and a dependent variable through a relationship in the form of a 
linear equation (Rinanto and Kuo, 2021). The form of MLR equation used in this research 
is showed by Equation (1). The output variable, 𝑦, is a function of input variable 𝑥1, 𝑥2 . . . 
𝑥𝑘, and a random error 𝜀̂ added to develop a probabilistic model rather than deterministic. 
Subsequently, the coefficient 𝛽0, 𝛽1 … 𝛽𝑘 , usually unknown, are estimated, where 𝑦𝑗  is a 

dependent variable, 𝛽0  is an intercept for regression equations, 𝛽𝑖  is the coefficients of 
independent variable 𝑥𝑖  and 𝜀𝑖,𝑗 is an error between the measurement and the prediction 

result. Equation (1) can be written as Equation (2).  

𝑦𝑗 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝜀𝑖,𝑗  (1) 

𝑌 = 𝑋𝐵 + 𝐸 (2) 

where 𝑌  is the matrix of dependent variables, 𝑋  is the input matrix, and 𝐸  is the error 
matrix. To obtain the coefficient value of each independent variable, the error value is made 
minimum with the least square method. Equations (2) and (3) are used to obtain the 
coefficient of independent variable. Finally, MLR equation can be written as Equation (4), 
where �̂� is the MLR model's output and 𝑋𝑇 is the matrix transpose of 𝑋. 

𝑚𝑖𝑛 ∑ 𝜀𝑖
2

𝑛

𝑖=1

= 𝑚𝑖𝑛 𝜀𝑇𝜀 = 𝑚𝑖𝑛 ∑(𝑌 − 𝑋𝐵)𝑇(𝑌 − 𝑋𝐵) → 0

𝑛

𝑖=1

       (2)    

𝐵 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (3) 

�̂� = 𝑋𝐵 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑌 (4) 

 Optimum MLR was determined based on statistical performance criteria. These criteria 
included the coefficient of multiple determinations (R2), adjusted coefficient of multiple 
determination (Radj

2 ), and prediction coefficient of multiple determination (Rpred
2 ). 

2.3.2. Artificial Neural Network (ANN) Method 
The structure of ANN consists of input, hidden layer, and output. Among ANN 

architectures, network with MLP structures are very commonly used to model system 
(Sholahudina and Han, 2015). ANN architectures consist of three or more layers, namely the 
input, hidden, and output, with each neuron interconnected with a set weight. The 
determination of neurons in each layer lacks standard rules and varies based on the specific 
problem to be solved (Najemalden, Ibrahim, and Ahmed, 2020; Dhini et al., 2015). 
Currently, there is no mathematical method capable of determining the exact number of 
hidden layers and neuron elements. According to (Haykin, 2008), it was suggested to start 
training on an ANN using a small number of hidden and increased neurons to obtain a 
satisfactory mean square error (MSE) value. Although no definite mathematical equation 
for the number of hidden layers and neurons, the theory by Kolmogorov as expressed in Eq. 
(5) has been proven effective (Wang et al., 2021). 

𝑛ℎ = 𝑛𝑖 + 1 (5) 
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𝑛ℎ and 𝑛𝑖  is the number of neurons in the hidden and input layers. 
 ANN uses a supervised training method because the input and target have been known. 
Therefore, knowledge and appropriate input selection are needed during modeling with 
ANN (Munakata, 2007). Training ANN is a mathematical exercise that optimizes all weight 
and threshold values using fractions of the available data. Neural network provide 
empirical model of a complex system capable of unraveling the underlying relationships 
and completely understanding the system (Dhini et al., 2015). In this research, the 
relationship between the input signal and the output is expressed by Equation (6). 

𝑦𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖

𝑛

𝑗=1

 (6) 

where 𝑤𝑖𝑗 is the weight of the relationship, 𝑏𝑖 is the bias value.  

ANN with hidden layer and adequate units has the capability to theoretically method a 
non-linear relationship model. The mathematical relationship between input X and output 
Y can be established by adjusting the weight of the matrix W as well as bias vector B in the 
hidden and output layers to minimize the MSE during the training process. This adjustment 
of network parameter values occurs iteratively during the training or learning phase. After 

training, network is tested with a signal 𝑥𝑖
(𝑝)

, transmitted forward from input to output. The 

output result 𝑦𝑖
(𝑝)

 is compared with the target 𝑡𝑖
(𝑝)

 to obtain the error, followed by 

evaluation of model performance using the determination coefficient (R), and the value of 
MSE. When the error obtained does not meet the required criteria, network parameters are 
recalculated. The correction of parameters is carried out in the backward direction and 
network trained are called backpropagation network. During the training process, the 
transmission of a single signal from the start to backpropagation of the error is called the 
epoch. The iteration process continues until one of the stopping criteria is met through many 
epochs or errors. Although various learning methods have been developed, this research uses 
Levenberg-Marquardt optimization. 

2.4. Prediction Performance Criteria 
 The determination of the best model was carried out by testing with the same data and 
selecting the optimal criteria. The best model was identified based on the smallest root 
mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error 
(MAPE), and the largest determination coefficient (R). Subsequently, Equations (7) to (10) 
were used to measure model's performance. 

MAPE =
1

𝑛
∑ |

𝑌𝑎𝑐𝑡 − 𝑌𝑝𝑟𝑒

𝑌𝑎𝑐𝑡
|

𝑛

𝑖=1

 (7) 

MAE =
1

𝑛
∑|𝑌𝑎𝑐𝑡 − 𝑌𝑝𝑟𝑒|

𝑛

𝑖=1

 (8) 

RMSE = √∑ (𝑌𝑎𝑐𝑡 − 𝑌𝑝𝑟𝑒)
2𝑛

𝑖=1

𝑛
 (9) 

R =
∑ (𝑌𝑎𝑐𝑡 − �̅�𝑎𝑐𝑡)(𝑌𝑝𝑟𝑒 − �̅�𝑝𝑟𝑒)𝑛

𝑖=1

√∑ (𝑌𝑎𝑐𝑡 − �̅�𝑎𝑐𝑡)2(𝑌𝑝𝑟𝑒 − �̅�𝑝𝑟𝑒)
2𝑛

𝑖=1   

 
(10) 
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3. Results and Discussion 

3.1. MLR Model 
 Based on Table 2, with log(𝑆) , log(𝑍) , log  (𝐺𝐿𝑉 + 𝐺𝐻𝑉) , and 𝑟ℎ𝑑  as independent 
parameters and load noise as dependent, the initial step is to select the best model among the 
independent parameters. 
Table 2 shows the possibility of MLR model with various parameter combinations. Since R2is 
significantly influenced by the number of parameters, there is a need to use other criteria for 
determining the best model. In this research, Radj

2  was used to combine the number of 

parameters affecting dependency. Specifically, Rpred
2  value provides information on how well 

model can predict with new data, indicating that higher Rpred
2  shows a better model for 

predicting load noise. 

Table 2 Possibility of MLR model with various parameters 

Pars 𝑅2 𝑅𝑎𝑑𝑗
2  𝑅𝑝𝑟𝑒𝑑

2  
Mallows 

Cp 
S 𝑙𝑜𝑔(𝑆) 𝑙𝑜𝑔(𝑍) 

𝑙𝑜𝑔  (𝐺𝐿𝑉

+ 𝐺𝐻𝑉) 
𝑟ℎ𝑑  

1 80.4 79.3 76.0 5.0 4.2643   X  
1 79.9 78.8 74.8 5.5 4.3154 X    
2 84.0 82.2 77.7 3.1 3.9589 X X   
2 82.8 80.8 77.0 4.5 4.1107 X  X  
3 85.4 82.6 75.3 3.7 3.9063 X X  X 
3 84.5 81.5 75.6 4.7 4.0269 X X X  
4 86.0 82.3 71.7 5.0 3.9457 X X X X 

The results showed that model with two parameters, namely log  (𝑆)  and log  (𝑍) 
produced the best results, as indicated by R2 = 84 %, Radj

2  = 82.2 %, and Rpred
2  = 77.7 %. 

Based on Equations (1) to (4), load noise model was obtained in the form of MLR equation, 
as expressed in Equation (11) : 

𝑌 = 29.25 + 17.66 𝑙𝑜𝑔(𝑆) + 11.92 𝑙𝑜𝑔(𝑍) (11) 

 The comparison between MLR method and the measurement results is shown in Figure 
2(a), presenting the maximum and minimum deviations of 7.41 dB and -8.62 dB, 
respectively, with a MAPE, MAE, RMSE, and R in a row 0.039, 2.727, 3.649 and 0.917. 

3.2. BPNN Model 
According to (Wang et al., 2021), the number of neurons in each hidden layer can be 

determined by Equation (5). Since there are four input parameters, number of neurons in 
each hidden layer is nine. However, there are no exact rules or equations to determine the 
appropriate number of hidden layers for load noise model. Therefore, number of hidden 
layers in load noise model is carried out by trial and error, from the smallest number until 
the best results are achieved (Sadighi, Mohaddecy, and  Abbasi, 2018). 

In this research, the appropriate number of hidden layers is selected based on the MSE 
and R values of each test performed. According to the search results in Table 3, several 
hidden layers did not always give the best results. Therefore, seven hidden layers were 
selected with MSE and R values of 0.271 and 0.998, respectively. Figure 1 shows the BPNN 
structure that has the best results with seven hidden layers, each consisting of nine 
neurons.  
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Figure 1 The structure of BPNN for load noise model 

Table 3 Comparison of trained network for load noise model 

No. of hidden layer Hidden transfer function MSE R 

4×9×9×1 Logsig, Logsig 65.38 0.589 
4×9×9×9×1 Logsig, Logsig, Logsig 46.17 0.748 
4×9×9×9×9×1 Logsig, Logsig, Logsig, Logsig 48.32 0.790 
4×9×9×9×9×9×1 Logsig, Logsig, Logsig, Logsig, Tansig 0.877 0.996 
4×9×9×9×9×9×9×1 Logsig, Logsig, Logsig, Logsig, Logsig, Logsig 70.83 0.479 
4×9×9×9×9×9×9×9×1 Logsig, Logsig, Logsig, Logsig, Logsig, Logsig, Tansig 0.271 0.998 

The bold values are selected as model with the optimum structure. 

  
(a) Comparison with MLR method (b) Comparison with Reiplinger method 

  
(c) Comparison with design calculation (d) Comparison with BPNN method 

Figure 2 Comparison of load noise between measurement and the other method 

The accuracy of model was evaluated by comparing the measurement results, the 
Reiplinger method, and load noise calculated at the design stage of the industry. Figure 2(b) 
shows that the Reiplinger method has a large deviation compared to the measurement 
results. Based on the results, the maximum and minimum deviations were 9.96 dB and -



Pramono et al. 1557 

6.14 dB, with MAPE, MAE, RMSE, and R in row 0.058, 4.285, 5.199, and 0.894, respectively. 
Meanwhile, Figure 2(c) shows the results of calculations carried out at the industrial design 
stage, which obtained the maximum and minimum deviation values of 9.24 dB and -6.62 
dB, with a MAPE, MAE, RMSE, and R in a row 0.057, 4.049, 4.942, and 0.900, respectively. 

Load noise model developed by BPNN method has the smallest deviation from the 
measurement results compared to others. The maximum and minimum deviations are 1.25 
dB and -1.69 dB, with a MAPE, MAE, RMSE, and R in a row 0.007, 0.464, 0.708, and 0.998, 
respectively. These performance criteria showed that the development of load noise model 
with BPNN provided better accuracy. The comparison results in Figure 2(d) showed that 
BPNN could be developed for predicting load noise at the early design stage of power 
transformer. 

Figure 3 shows a comparison of each performance criterion, where BPNN model 
produces the best results. Specifically, Figure 3(a) shows that the MAPE for BPNN model 
has the lowest value of 0.7% compared to others. The low MAE, as presented in Figure 3(b), 
shows that BPNN model can forecast load noise compared to others. The low RMSE, shown 
in Figure 3(c), indicates that the variation in predicted value is close to BPNN observational 
value. The R-value presented in Figure 3(d) shows the strong correlation between 
independent and dependent variables. Statistically, Table 4 shows a summary of the three 
models tested, with BPNN producing the best results compared to others. 

  
(a) MAPE value of different model (b) MAE value of different model 

  
(c) RMSE value of different model (d) R value of different model 

Figure 3 Statistical performance comparison of each model 

Table 4 Summary of comparisons of all models 

Performance criteria 
BPNN 

method 
Design 

calc. 
Reiplinger 

method 
MLR 

method 

MAPE 0.007 0.057 0.058 0,039 
MAE 0.464 4.049 4.285 2.727 

RMSE 0.708 4.942 5.199 3.649 
R 0.998 0.900 0.894 0.917 
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4. Conclusions 

 In conclusion, this research successfully developed load noise model using BPNN. 
Based on the results, the optimal structure of BPNN for power transformer load noise 
model with power, impedance, and WGF as inputs was found to be 4-9-9-9-9-9-9-9-1, with 
MAPE, MAE, RMSE, and R values of 0.007, 0.464, 0.708 and 0.998, respectively. This model 
should potential to predict load noise for power transformer without using detailed design 
data. The prediction of load noise with BPNN produced high accuracy compared to the 
existing standard formulas. Therefore, load noise model obtained in this research could be 
implemented for further investigation to design a low-load noise power transformer. 
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