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Abstract. Micro-perforated panel (MPP) is a thin panel absorber capable of absorbing sound energy 
at a targeted frequency range by adjusting the MPP parameters. An analytical model is available, but 
it is not a direct, convenient method for practitioners to determine the required MPP parameters. 
This paper presents an optimized empirical model to calculate the sound absorption coefficient of 
a single-layer MPP.  The response surface methodology is employed for a simple case to generate a 
second-order polynomial model through a sequence of designing processes to analyze the 
functional relationships and variation of the outcome performance (sound absorption coefficient) 
concerning the MPP parameters, namely the panel thickness, hole diameter, perforation ratio, and 
the depth of the back air layer.  The analysis is carried out for frequencies between 300 to 900 Hz. 
The predicted data (empirical) is compared with the actual data (analytical), leading to a coefficient 
of variation of 0.145%. The proposed empirical model can be used as a  method to select the suitable 
MPP parameters according to the targeted frequency bandwidth of absorption with less 
computational time. 
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1. Introduction 

The Microperforated panel (MPP) absorber proposed by Maa (1975) has been widely 
used as a next-generation sound absorbers system (Mosa et al., 2018). It has the advantages 
of providing a high sound absorption coefficient, ease of installation, fine washability, 
environmental friendliness, and attractive appearance (Tayong et al., 2018; Yang et al., 
2019), as an alternative to porous absorbing materials  (Ahmad & Salih, 2020; Prasetiyo et 
al., 2020). Aimed for a wide absorption bandwidth; many studies have been presented on 
a single layer MPP using various techniques. This includes the presents of the MPP model 
with incompletely partitioned cavities (Huang et al., 2017) broadband MPP model with 
ultra-MPP (Qian et al., 2014a); thin MPP models (Prasetiyo et al., 2021), inhomogeneous 
MPP systems with multiple cavity depths (Prasetiyo et al., 2016; Mosa et al., 2019; Kusaka  
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et al., 2021). 
The analysis and optimization of the MPP parameters to enhance the absorption 

performance have been presented (Qian et al., 2014b; Yu et al., 2016); however, most of 
these processes are consumed time with convoluted processing steps, especially models of 
a large structure (Hussein, 2020; El-Basheer et al., 2017). Generally, it should be considered 
that the potential interactions between model variables could cause incorrect optimum 
parameters as any modifying parameter at a time. In order to minimize these computational 
efforts, the approach of the response surface methodology (RSM) has been employed to 
implement the optimization of the acoustic absorption for numerous noise control 
applications (Liang et al, 2007; Harahap et al., 2019; Wang et al., 2017; Wahab et al., 2019).  

 Box and Wilson (1951) first presented this method to initialize and evolve empirical 
models and by providing the basic principles framework of RSM, they denote the response 
process. Randall P. and Terence J. (Niedz & Evens, 2016) attained a review discussing the 
theoretical aspects and practical applications of RSM literature. Essentially, the RSM 
involves replacing the complete procedure along with an empirical model by collecting a 
series of results at several detached points within the design domain. The impression of the 
second-order functions is because of the low-order processes are powerful, since 
generating the corresponding response surface is fast and cheap. (Boulandet & Lissek, 
2010; Hawashi et al., 2019; Petrus et al., 2021; Saleh et al., 2021).  

Even though several studies have been presented on the absorption performance of 
MPP using analytical or simulation methods. Still, they are not direct, convenient methods 
for practitioners to determine the required MPP parameters. Thus, the current study uses 
a factorial design of experiment software to present a novel empirical model for a single-
layer-MPP absorber based on RSM to contribute a straightforward and more accessible 
model with less computational time. Furthermore, to optimize the relationship between the 
model parameters (holes diameters and ratio, cavity depth, and panel thickness). The paper 
structure presents recent studies on the MPP and the RSM, followed by the empirical model 
theories and generation methodology step. Section 3 summarized the model validation and 
predicted results. The conclusion of the study is present at the end. 

 
2. Methodology 
2.1.  Maa model 
 The basic theory of the traditional single-layer MPP absorber model has been 
presented by Maa Maa (1975; 1987). Usually, the MPP comprises holes of a similar size and 
uniformly distributed over the panel surface. The mathematical model of the acoustic 
impedances using the electrical equivalent circuit method can be expressed as the following 
Equations: 

MPP resistance reactanceZ =Z +Z                                                                         (1) 
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      Where ZMPP in Equations 1 and 2 represents the panel impedance, then the total acoustic 
impedance and the sound absorption coefficient of the system including the impedance of 
the air cavity can be expressed as in Equations 3 and 4 (Mosa et al., 2019): 

 total MPP DZ =Z +Z                                                                                   (3) 
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Where η represents the kinematic-viscosity of air, x=((d)⁄(2)√(ωρ⁄η)) with ω=2πf 
is the angular frequency, ρ  is the ambient air density, c  is the speed of the sound,  p is 
perforation ratio, t is the panel thickness, d is the hole diameter and j=√(-1), and D is the 
depth of the air cavity between the MPP and the rigid wall.  

2.2. Design of Experiment (DoE) 
        Utilizing the Design of Experiment (DoE) method is needed to characterize an effective 
range of working conditions in multivariate systems. Determining the relationship between 
the model input variables (parameters) and the output of that process can be the main 
target of this method; furthermore, it is to investigate each parameter affecting the 
response. Here, the DoE tool is used to determine the relationship between the parameters 
of a single-layer MPP, namely hole sizes, perforation ratio, depths of the back-air cavity, and 
the panel thickness with the generated response, which is the sound absorption coefficient. 
Figure 1 shows the DOE progress methodology flowchart to govern the relationship 
between the output and the MPP parameters.  

 
Figure 1 Flowchart of the design experiment methodology 
2.3. The utilization of RSM 
        The term (RSM) can be defined as the “Response Surface Methodology” which is 
identified as a technique combined of arithmetical and statistical methods. The analyzing 
process of this method allows for assessing the interactions between the system factors and 
their effects on response variables (Wang et al., 2017; Deeying et al., 2018). It develops an 
appropriate approximated relationship between the responses and the input variables. The 
choice of the varied parameters is according to the required application. Once the 
parameters are picked, their ranges should be chosen. In this study, the governed 
relationship is only valid for that corresponding frequency range. Generally, the 
relationship among the response variable (R) and the predictor variables (v1, v2,...., vi) can 
be expressed in Equation 5 (Liang et al., 2007): 

1 2 iR=g(v , v ,...,v ) +ε                                                                (5) 
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 Where R is the predicted response, 𝜀𝜀 is the model error. Usually, low-order polynomial 
in some regions of the independent variables is used in the RSM, including the first-order 
model. The response can be expressed in Equation 6: 

n

0 i i
i-1

R=β + β V + ε∑                                                                      (6) 

        A higher degree polynomial function must be utilized, such as the second-order model, 
if the system behavior cannot be well modeled with a linear equation. The response is 
expressed in Equation 7: 

n n n n
2

0 i i ii i ij i j
i-1 i=1 i=1 i<j

R=β + β V + β V + β VV + ε∑ ∑ ∑∑                                (7) 

 Where 𝛽𝛽0 is constant, 𝛽𝛽𝑖𝑖  is the linear effect or can be defined as the slope of the factor 
𝑉𝑉𝑖𝑖 . 𝛽𝛽𝑖𝑖𝑖𝑖denote the quadratic effect of the factor 𝑉𝑉𝑖𝑖 .  𝛽𝛽𝑖𝑖𝑖𝑖  is the effect of the interaction between 
the structure factors 𝑉𝑉𝑖𝑖  and 𝑉𝑉𝑗𝑗 , where 𝜀𝜀 is the residual term.   
 The analysis of variance (ANOVA) that supplied the diagnostic inspection tests led to 
adequacy projected model. As well the optimization predictions can be obtained by using 
RSM. Consider a simple case where the response variable R is dependent only on two 
variables 𝑉𝑉1 and 𝑉𝑉2, then we can write the second-order model according to equation 7 as 
the following in Equation 8: 

  1 2 0 1×1 2×2R=f(V ,V )+ε=β +β +β +ε                                                       (8) 
       Usually, the RSM is utilized if the response variable counts on either the mixture of both 
models or the multiple input variables. In cases like this, the matrix format as R=Vβ+ε can 
describe the multiple regression models, where: 

11 12 1p
1 o 0

2p21 22
2 1 1

npn1 n2
n p n

1 v v … v
R β ε

… vv v1
R= R , X= ,β= β and ε= ε

MM MM O
M M M

vv v1 …
R β ε

                     (9) 

          The simulated equation 9 produces a multi-dimensional response surface; this 
response can be utilized to optimize the system according to multiple response variables. 
Here, the RS model is to be created as a functional relationship among the response of the 
node of interest and the input structure parameters.  

2.4.  Central composite design 
         It is one of the extremely basic RSM augmented that can be symbolized as “CCD” with 
the center and axial points to fit second-order (quadratic) and cubic models for the 
response variables. Regularly it has five levels for each input factor. In this work, the CCD is 
applied with four independent parameters to evaluate their effects on the sound absorption 
coefficient. The parameters namely frequency range (f), panel hole diameter and 
perforation ratio (d and p), and the air cavity depth (D). While the thickness of the panel, t 
remains constant. The various values of each input variable (parameter) are itemized in 
Table 1. The parameters have been specified according to literature as a simple case chosen 
for the building acoustics application (Liu et al., 2017; Bucciarelli et al., 2019). 
         The design implementation includes 24 non-central points and 6 central points. 
Therefore, a compilation of 300 test points is utilized. The measure of precision is chosen 
according to center point replication. Then it is followed by entering the model response 
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data in the design layout; it should choose the response on the corresponding node under 
analysis.  
         Transformation of the response is needed as an important component of any data 
analysis (Wyantuti et al., 2020). An inverse square root transformation has been chosen, 
and a quadratic model is suggested. The analysis of variance (ANOVA) is obtained through 
the selected model and the results can be generated. 
Table 1 Design level range for the input parameters (independent variables) of the SL-MPP 
model 

Factor Variable Units Lowest value Highest value 
1 d mm 0.4 0.8 
3 p % 0.5 2.5 
5 D mm 20 60 
7 f Hz 300 900 

 The response equation in terms of coded parameters was inversely proportional to the 
four input factors; meanwhile, the response was proportional by actual factors (coded 
terms). The final equation in terms of basic parameters is given in Equation 10: 

1/ α= F1+ F2× d+ F3× p+F4 × D+F5× f                                   (10) 
where parameters coefficients are symbolized by the terms F1 to F5.  The predictions 
around the response for the input factor can be represented by equation 10, where the 
original units of the elements have to be written in their original units. However, since the 
parameters coefficients aren’t intercepted at the center of the design space and they are 
scaled to adapt the units of each factor, the calculation of the relative impact of each factor 
can’t be done through this equation. 
 
3. Results and Discussion 
3.1.  Analysis of the RSM Statistical 
 As described in the previous, 30 trials using five-level coded independent parameters 
are taken into consideration for the statistical modelling. Thus, to obtain the regression 
mathematical model, second-order polynomial functions are used. The general form of the 
results from the multiple regression analysis of variance (ANOVA) of the response surface 
is given by selecting the appropriate model either the mean, linear, quadratic, or cubic with 
interactions that describe the relationship with the response variable. The CCD proposed 
the experimental combination of the coded levels, and the response are shown in Table 2. 
The frequency f here represents the input frequency in the range of 300 Hz to 900. 
3.2. Analysis of variance (ANOVA) 
 The investigation of the multiple regression analyzes on the model is important. Here 
in this work, the process coefficients with model [(Prob > F) < 0.050] are highly significant 
with neglecting the non-significant terms. The summary statistics depict that the “quadratic 
model” has the highest determination coefficients, which focus on the model maximizing 
the "Adjusted R-Squared" and the "Predicted R-Squared". Table 3 shows the final regression 
analysis of the model. The model show p-value less than (0.0001) with F-value of (52.98), 
which implies that the model is highly significant. The lack of fit test confirmed the fitness 
of the model validation with a value of 3.25 (not significance), which confirmed the model 
appropriateness to predict the variations of the response alpha (which is the sound 
absorption coefficient) (Bimakr et al., 2019). 
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Table 2 The CCD for the response  predicted values “sound absorption coefficient” for the 
SL-MPP 

Run No. 
Factor no.1 Factor no.2 Factor no.3 Factor no.4 Response (Predicted) values 

d (mm) p D (mm) f  (Hz) Absorption coefficient (𝛼𝛼) 
1 0.6 0.015 40 900 0.79 
2 0.5 0.020 30 450 0.15 
3 0.6 0.015 40 600 0.65 
4 0.5 0.010 30 750 0.98 
5 0.7 0.010 50 450 0.7 
6 0.6 0.015 40 300 0.1 
. . . . . . 
. . . . . . 

28 0.6 0.025 40 600 0.32 
29 0.6 0.015 20 600 0.23 
30 0.6 0.015 60 600 0.87 

 The model accuracy is validated using the “R-Squared (R2)”, “adjusted R-Squared (Adj 
R2)”, “predicted R-Squared (Pred R2)”, and the value of the coefficient of variance (CV%). 
The obtained value of the Adj R2 (0.9517) is closer to the R2 (0.9700) of the response; also, 
the Pred-R2 of (0.8787) is in the acceptable range with the Adj-R2. In other words, the 
contrast is fewer than 0.2 which demonstrates that the generated model can analyze the 
relationship of the parameters with the response. The CV% is drawn upon to observe the 
data average value, and it depends on the standard error data between the experimental 
and predicted values. 

Table 3 Assessment of variance ANOVA for Response Surface model 

1-Source 2-Sum of 
Squares 3-df 4-Mean 

Square 
5-F 

Value 
6-p-value 
Prob > F 

 

“Model 9.50 11 0.86 52.98 < 0.0001 Significant- 
“A-d” 0.20 1 0.20 12.08 0.0027 Significant- 
“B-p” 1.10 1 1.10 67.35 < 0.0001 Significant- 
“C-D” 1.37 1 1.37 83.72 < 0.0001 Significant- 
“D-f” 4.32 1 4.32 264.61 < 0.0001 Significant- 
“AD” 0.079 1 0.079 4.83 0.0412 Significant- 
“BC” 0.19 1 0.19 11.45 0.0033 Significant- 
“BD” 0.41 1 0.41 25.29 < 0.0001 Significant- 
“CD” 0.61 1 0.61 37.69 < 0.0001 Significant- 
“B2” 0.098 1 0.098 6.01 0.0246 Significant- 
“C2” 0.14 1 0.14 8.55 0.0090 Significant- 
“D2” 1.15 1 1.15 70.73 < 0.0001 Significant- 

Residual 0.29 18 0.016    

Lack of Fit 0.26 13 0.020 3.26 0.0999 not significant- 
Pure Error 0.031 5 0.006198    

Std. Dev. 0.13    R-Squared- 0.9700 
Mean 1.52    Adj R-Squared- 0.9517 

CoV. % 8.43    Pred R-Squared- 0.8787 
     Adeq Precision- 25.570 

 Lower CV% can confirm the reliability of the model, which means a low disparity 
among the actual and predicted values. Additionally, it approves that the developed model 
is highly significant for predicting the sound absorption of the MPP model. Then the 
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ultimate equation in terms of the actual MPP parameters in a frequency range from 300 Hz 
to 900 Hz is given by the Equation 11:  

1/ √𝛼𝛼 = 5.85229 + 3.71379 d + 186.639 p - 0.126313 D - 0.0128599 f - 0.0046795 
d f -2.16064 p D - 0.214094 p f + 0.000130669 D f + 2367.61 (p)2 + 

0.000705862 * (D)2 + 9.02113e-006 (f)2 
(11) 

 Where, the unit of the hole diameter d, the perforation ratio p, the cavity depth D, and 
the frequency f are the parameters in MPP, and must have the unit as listed in Table 1. 
Equation 11 represented the final empirical model that use to predict the sound absorption 
coefficient, 𝛼𝛼 for the parameters of the given level in the equation. 

3.3. Comparison of the empirical model 
        After the estimated response values have been found, then to verify the empirical 
model equation 11, 20 combination points of MPP parameters are chosen and utilized in 
the equation as shown in Table 4.  
Table 4 Central Composite Design for the absorption coefficient of Single layer MPP 

Run d 
(mm) 

p 
(%) 

D 
(mm) 

f 
Hz 

Alpha, 𝛼𝛼 
(response) 

𝛼𝛼𝐴𝐴𝐴𝐴𝐴𝐴.

𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
 

Actual Predict 
1 0.6 0.015 40 900 0.85 0.82 1.031 
2 0.5 0.02 30 450 0.15 0.36 0.414 
3 0.6 0.015 40 600 0.7 0.80 0.875 
4 0.5 0.01 30 750 0.98 0.98 0.999 
5 0.7 0.01 50 450 0.7 0.68 1.026 
6 0.6 0.015 40 300 0.1 0.34 0.291 
7 0.7 0.02 30 450 0.1 0.32 0.308 
8 0.8 0.015 40 600 0.65 0.70 0.930 
9 0.6 0.015 40 600 0.7 0.80 0.875 

10 0.6 0.005 40 600 0.65 0.94 0.688 
11 0.7 0.02 50 750 0.73 0.92 0.790 
12 0.6 0.015 40 600 0.7 0.80 0.875 
13 0.6 0.015 40 600 0.7 0.80 0.875 
14 0.5 0.01 50 450 0.8 0.87 0.916 
15 0.5 0.02 30 750 0.55 0.75 0.738 
16 0.7 0.01 30 450 0.25 0.47 0.530 
17 0.7 0.02 50 450 0.27 0.50 0.540 
18 0.7 0.01 50 750 0.7 0.84 0.834 
19 0.4 0.015 40 600 0.8 0.94 0.855 
20 0.5 0.01 50 750 0.75 0.87 0.863 
21 0.6 0.015 40 600 0.7 0.80 0.875 
22 0.6 0.015 40 600 0.7 0.80 0.875 
23 0.7 0.02 30 750 0.45 0.72 0.622 
24 0.5 0.02 50 450 0.35 0.60 0.587 
25 0.5 0.01 30 450 0.35 0.56 0.629 
26 0.7 0.01 30 750 0.93 0.94 0.986 
27 0.5 0.02 50 750 0.85 0.96 0.885 
28 0.6 0.025 40 600 0.3 0.52 0.574 
29 0.6 0.015 20 600 0.23 0.50 0.462 
30 0.6 0.015 60 600 0.87 0.95 0.918 

      mean 1.042 
      SD 0.151 
      CoV% 0.145 

         The comparison shows a significant convergence between the predicted absorption 
coefficient values, 𝛼𝛼, and the actual values. As result, the main value is close to 1, and the 
coefficient of variation (CoV) approaches 0.145%, which is acceptable (Bimakr et al., 2019). 
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Figure 2 shows the plot between the predicted data and actual data. According to the 
results, the distribution of the predicted data to the actual one is very close. This verifies 
the accuracy of the generated regression in equation 11. The data are distributed normally 
in a straight line with some fluctuation at some points; thus, the error is insignificant within 
the range of operating parameters.  
 The verification of the empirical model is also presented in the form of absorption 
coefficient via frequency range. Figures 3 (a, b, and c) compare the sound absorption 
coefficient for SL-MPP between the actual data using the numerical solution and predicted 
data using the empirical equation 11. Results show a good agreement between the two 
methods, especially in Figure 3 (a and b) with a slight deviation in (c). Since the model 
depends on an approximate solution thus, it's normal to get a difference between actual and 
predicted data. However, both curves have similar behavior, and the slight deviation in 
frequency, especially in figure (c) is around 10% to 20%, which is in the same range of CoV 
listed in Table 4 and matches with reference (Bimakr et al., 2019). The developed empirical 
model can provide accurate results in designing single-layer MPP models. 

                                            
Figure 2 Comparison of absorption coefficient, predicted data via the actual data for SL-MPP 

   
      (a) (b)       (c) 

Figure 3 Comparison of sound absorption coefficient between the actual data and predicted data 
for SL-MPP, (a) d: 6mm, p:0.15%, D:40 mm (b) d: 9mm, p:0.09%, D:60 mm (c) d: 8mm, p:0.1%, D:30 
mm 

        RSM is also utilized to realize the relationship between the tested parameters affecting 
the response (α). The contour plots are generated to represent the parametric individual 
combined effects on the absorption coefficient, α for the SL-MPP model. The lower and 
upper limits of the parameter ranges are determined in this optimization process. 
        Figure 4 illustrates the contour graphs of the sound absorption coefficient variation 
against panel hole size and frequency range at constant perforation ratio, p= 0.02%, and for 
multiple cavity depths of D = 30 mm and of D = 40 mm. Furthermore, in order to investigate 
the variation of sound absorption coefficient against panel hole size and perforation ratio, 
Figure 5 is presented for the frequencies 600 Hz and 900 Hz at a constant cavity depth of D 
= 30 mm. It can be observed from the figure that a decrease in the perforation ratio can 



504  An Empirical Model for Optimizing the Sound Absorption of Single Layer MPP  
Based on Response Surface Methodology 

produce a half absorption coefficient α > 0.5 for holes diameters range of 0.5 mm to 0.8 mm. 
however, higher perforation can produce lower values of the absorption coefficient.  

  
             (a) (b) 

Figure 4 Contour Plots representing sound absorption coefficient variation against panel hole size 
and frequency range at structure parameters of (a) D = 30 mm, (b) D = 40 mm 

  
                (a) (b) 

Figure 5 Contour Plots representing sound absorption coefficient variation against panel hole size 
and perforation ratio at a frequency range of: (a) freq. = 600Hz, (b) freq. = 900Hz 

 

 
(a) (b) 

Figure 6 Contour Plots representing sound absorption coefficient variation against panel 
perforation ratio and cavity depth at a frequency range of: (a) freq. = 600Hz, (b) freq. = 900Hz 
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                          (a)   (b) 

Figure 7 Contour Plots representing sound absorption coefficient variation against panel hole size 
and cavity depth at a frequency range of: (a) freq. = 600Hz, (b) freq. = 900Hz 

 In addition, the effect of the cavity depth is an important parameter of absorption 
response. In order to investigate this effect, Figures 6 and 7 are presented the value of cavity 
depth against panel perforation ratio and hole size for the frequencies 600 Hz and 900 Hz, 
at hole size of d = 0.6 mm. It's clear from the figures the cavity depth has a significant impact 
and can control the absorption bandwidth range. With the results of RSM of equation 7 and 
the figures below, designers can select the appropriate system structure for the relevant 
application. 
 
4. Conclusions 
 The optimized empirical model to calculate the sound absorption coefficient of a single-
layer MPP has been presented in this paper. The model was developed using the response 
surface methodology to generate a second-order polynomial model as a function of MPP 
parameters, namely the hole diameter, the perforation ratio and the depth of the back air 
layer. The predicted data is evaluated with the actual data leading to a coefficient of 
variation of about 0.145%. The predicted model is then verified with the analytical model 
with good agreement. The proposed model in this paper is however, only valid for the 
frequency range of 300 – 900 Hz. The same method can be used to generate empirical 
models of a single layer MPP with a different frequency range of interest. In future work, 
these empirical models can be utilized as the complete set of mathematical tools to calculate 
the absorption coefficient of MPP conveniently. The work can also be extended with the 
more complicated configuration of the MPP structure, such as the double-leaf MPP and the 
multi-cavity MPP. 
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