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Abstract. This paper describes the improved performance measuring model for vessel dry-docking. 

Dry-docking represents the operation where the vessel is put out of the water to clean and coat the 

vessels, and equipment check. This model deals with data collected from thirty-four completed dry-

dockings, all supported by the Data Envelopment Analysis (DEA) methodology. To solve the limits 

appearing from extreme values for some vessels, an extension in the form of the categorical model 

was introduced. By the categorical model implementation, a more precise efficiency measurement 

was enabled. The performance calculation results contain the efficiency scores for all vessels and 

target improvements for the inefficient vessels. Inefficiency sources were detected using the DEA 

methodology, and the proposed solutions are based on process knowledge and data set. This model 

also introduced and set the parameters for category division and revealed the benchmarks among 

the studied vessels. The model introduced can be used for efficiency measurement of similar vessels, 

or as a prediction-based model by introducing vessels with hypothetic data. This model could also 

be utilized for similar manufacturing processes which can be found in civil engineering, project 

manufacturing, or transportation. Further research could be conducted based on the slack-based-

measure model, respecting the limitation of data homogeneity. 

 
Keywords: Data envelopment analysis; Dry-docking; Manufacturing; Performance measurement; 

Shipbuilding 
 
1. Introduction 

1.1.  Dry-docking process 
This paper describes the dry-docking performance measurement model based on Data 

Envelopment Analysis (DEA) methodology. DEA is a linear-programming-based, non-
parametric, multi-criteria decision-making method. This method is applied to a population 
of thirty-four vessels under the final stage of construction (also called newbuildings), which 
are transferred by their own propulsion to the repair shipyard where they are lifted up 
from the water. During the vessel’s dry-docking, the underwater part is cleaned, checked, 
and recoated. Upon undocking, the vessel is ready for sea trials and a five-year  service
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period until the subsequent dry-docking. The dry-docking project is a work-intensive, cost-
sensitive process carried out in a remote place linked with logistic challenges. Therefore, 
the necessity for a performance measurement model creation has appeared. The 
management staff involved in the newbuilding dry-docking is faced with a huge amount of 
technical and business data. Consequently, the performance targets are needed for proper 
managerial decision-making. 

The scope of the mainline of dry-docking activities is: i) vessel’s outer shell underwater 
part cleaning from fouling and grease by means of  high-pressure washing and solvents 
application, ii) steelwork such as launching the supporting structure removal, and shell 
plates welding/grinding, iii) spot grit blasting to remove damages, and coating system 
application, usually four touch-ups and one full coat, iv) check-ups of the main propulsion, 
steering, sea chests, side thrusters and  underwater sensors. 

The dry-docking period is also used to carry out the vessel’s systems check before the 
upcoming sea trials. This time frame could be used to complete works that were delayed in 
the previous time while the vessel remained berthed in the shipyard. The place of vessel 
dry-docking depends on the following factors: i) dry-docking place suitability based on 
vessel weight and overall dimensions, ii) dedicated dry-dock facility availability in a 
scheduled time window, iii) forecasted weather conditions. 

The DEA methodology allows the dry-docking to be described as a process determined 
by its inputs and outputs for performance measurement purposes. The categorical DEA 
model is going to be used in order to refine the process research and efficiency 
measurement.  

The performance measurement model is to be improved compared to the basic one 
formulated in the paper prepared by (Rabar et al., 2021). 

1.2. Literature review 
The literature review shows a limited number of papers dealing with the dry-docking 

practice.  The dry-docking practice has been comprehensively described in (House, 2015). 
Working activities usually carried out during the regular dry-dockings were described and 
categorized by (Butler, 2012). The dry-docking cost estimation model was developed by 
(Apostolidis et al., 2012). For the development of this model, data related to the vessels' 
age, size, and purpose were used by (Surjandari & Novita, 2013) and (Surjandari et al., 
2015) using the Data Mining method and Numerical Ant-Colony Decision Tree algorithm, 
which considers the dry-docking time as shipyard productivity parameter as well as the 
vessel's service downtime impact related to dry-docking. The dry-docking data analysis 
model using linear regression for dry-docking duration, depending on the vessel's size and 
age, was made by (Dev & Saha, 2015). The improved multiple regression model dealing with 
the labor needed for dry-docking depending on the vessel size, deadweight, and age was 
introduced by (Dev & Saha, 2016). Further research improvement in the dry-docking 
process and labor was completed by (Dev & Saha, 2018). An analysis using the DEA studying 
twelve repair shipyards in China was published by (Yang & Wang, 2017). The Croatian 
shipbuilding industry analysis using DEA methodology, assessing the shipyard’s 
performance over time, identifying sources of inefficiency as well as propositions for 
increasing performance and altering decisions, was proposed by (Rabar, 2015). The United 
States East Coast repair shipyards capability estimation using DEA was made by (Mayo et 
al., 2020) to find the optimal repair solution for the ferry vessel fleet. 

The literature review revealed the useful samples of DEA methodology use, such as 
(Putri et al., 2016), where the comprehensive performance measurement on the industrial 
level was carried out. The DEA application in analysing two manufacturing processes was 
carried out by (Jain et al., 2011), allowing getting a deeper insight into manufacturing 
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process efficiency measurement. A good opportunity for the use of DEA methodology in 
process optimization was noticed in (Gunawan et al., 2018) where the “ex post” principle 
in process analysis could be useful.  As referred by (Jandhana et al., 2018), the production 
function used is a good impulse for performance measurement in project manufacturing 
processes such as shipbuilding, and consequently, the dry-docking in this particular case. 

The literature review conclusion discloses a gap in research in relation to new building 
dry-docking performance measurement. The improvements of the existing papers could be 
achieved using the extended DEA models. This paper should at least partially fill the 
research gap by introducing the improved new building dry-docking efficiency 
measurement model using basic DEA model extensions. The DEA categorical model, which 
is not common in performance measurement research, has been used in this research in 
order to sort out the researched vessels by their technical characteristics, and it has 
resulted in the more precise efficiency measurement scores. The authors believe that the 
proposed methodology could be useful in various manufacturing performance measuring 
applications. 
 
2. DEA Methodology 

 The Data Envelopment Analysis (DEA) as an efficiency measuring methodology was 
launched by (Charnes et al., 1978). This methodology will be adapted for the improved dry-
docking performance measurement in this paper. DEA is based on linear programming; it 
is a non-parametric methodology used to evaluate the operating entities called Decision 
Making Units (DMU). For the purpose of this research, every single researched vessel 
represents a DMU. Each DMU has an empirical data homogenous set, divided into inputs 
and outputs. Following the DEA calculations, the DMU’s efficiency score is calculated. The 
efficiency score values range from 0 to 1, where the higher efficiency score means that a 
DMU is more efficient. All efficient DMUs have an efficiency score equal to 1, and they create 
the efficient frontier, and these DMUs are considered best practice units. All DMUs with an 
efficiency score less than one is considered inefficient because they are placed outside of 
the efficient frontier. There are two basic DEA models considered in this paper. The first is 
the CCR model, which considers the constant returns to scale, and was named after Charnes, 
Cooper, and Rhodes (Charnes et al., 1978). The second is the BCC, variable returns to scale 
model, named after Banker, Charnes, and Cooper (Banker et al., 1984). Relative efficiency 
measurement and evaluation, benchmarking, and target setting, as well as the best practice 
identification, are the DEA’s basic purposes. The main points of the DEA methodology value-
added potential are expressed in the simplified display of the underperforming DMUs, the 
ability to point the peers and to calculate the projection of inefficient DMUs to the efficient 
frontier, as well as to quantify the improvements needed to reach the efficient frontier. 
According to (Cooper et al., 2007), if there are n DMUs (𝐷𝑀𝑈𝑗, 𝑗 = 1, 2, … , 𝑛), every single 

DMU produces s outputs by means of m inputs. Let the 𝑥𝑗 = {𝑥𝑖𝑗, 𝑖 = 1, 2, … , 𝑚}  be the 

input vector, and 𝑦𝑗 = {𝑦𝑟𝑗 , 𝑟 = 1, 2, … , 𝑠}  the output vector of  DMUj . The data set is 

described by the input matrix  𝑋 = (𝑥𝑖𝑗 , 𝑖 = 1, 2, … , 𝑚, 𝑗 = 1, 2, … , 𝑛)  and output 

matrix  𝑌 = (𝑦𝑟𝑗 , 𝑟 = 1, 2, … , 𝑠, 𝑗 = 1, 2, … , 𝑛) . The sought virtual DMU, with inputs and 

outputs determined as a linear combination of inputs and outputs belonging to the 
remaining DMUs from the studied DMU set, is the basic principle of the efficiency 
assessment of 𝐷𝑀𝑈𝑜 , 𝑜 ∈ {1,2, … , 𝑛} . The 𝑋𝜇  and 𝑌𝜇  are the vectors where 𝜇 =
(𝜇1, 𝜇2, … , 𝜇𝑛), 𝜇 > 0  fits proportionally to the contributions of efficient DMUs to the 
projections of 𝐷𝑀𝑈𝑜 to the efficient frontier, while e is a row vector with all elements equal 
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to 1. The virtual DMU needs not to be worse but preferably better than 𝐷𝑂𝑜. Pursuing the 
virtual DMU could be solved by the linear programming methodology. 

Output oriented model: 
                                                                  max

𝜂,𝜇
𝜂                                                                              (1) 

subject to: 
    𝑋𝜇 ≤ 𝑥𝑜                                                                           (2) 

                                                          𝜂𝑦𝑜 − 𝑌𝜇 ≤ 0                                                                       (3) 
      𝜇 ≥ 0                                              (4) 
     𝑒𝜇 = 1                           (5) 

where 𝜂 represents the reciprocal of the efficiency score in  output-oriented model. The 
constraints determined by formulae from (1) to (4) create the CCR model, and the BCC 
model is determined by the constraints expressed in formulae from (1) to (5). The formula 
(6) describes the input excesses and the output shortfalls, i.e. “slack” vectors:  

    𝑡− = 𝑥𝑜 − 𝑋𝜇   and  𝑡+ = 𝑌𝜇 − 𝜂𝑦𝑜      (6) 

where the efficiency score  θ is described as: 

           𝜃 =
1

𝜂
                   (7) 

(𝜂∗, 𝜇∗ , 𝑡−∗, 𝑡+∗), is the result of maximizing 𝜂 and minimizing the sum of 𝑡−∗ and 𝑡+∗. If 
a DMU0 reaches 𝜃∗ = 1, it is considered efficient, otherwise, it is not efficient. 

During this research, it has been noted that some of the observed DMUs were in a more 
favourable position compared to the rest of the DMU set. Therefore, a kind of DMU 
categorization needs to be introduced in the form of the DEA categorical model extension 
introduced by (Banker & Morey 1986) in order to reduce discrimination among the DMUs 
due to some DMU’s technical characteristics which are impossible to overcome. It is 
assumed, according to (Cooper et al., 2007), that each of n entities (i.e., DMUs) could be 
categorized into one of the K different categories, commencing from category 1, as the 
lowest one, up to category K, which is the highest one. In order to adjust the DEA model to 
the described categorization, the following new attributes are introduced:  𝐺 =
{1, 2, … , 𝑛} =  𝐺1  ∪ 𝐺2  ∪ … ∪ 𝐺𝐾, where G is the index set of all DMUs, and 𝐺𝑙 is index set 
of DMUs belonging to category l where 𝑙 = 1, 2, … , 𝐾. It needs to be pointed out that each 
DMU belongs to only one category, i.e., the category set intersection is an empty set, 
meaning that 𝐺𝑗  ∩  𝐺𝑙 =  ∅ for every 𝑗 ≠ 𝑙 . To determine the efficiency of 𝐷𝑀𝑈0  from 

category 𝐿 ∈ {1, 2, … , 𝐾}, all the DMUs from this category and all the lower categories have 
to be considered, which implies that only the DMUs indexed in the set ∪𝑙=1

𝐿 𝐺𝑙 will be 
considered. 

The expressions from (8) to (11) and from (8) to (12) represent respectively the 
extended output-oriented CCR and BCC models previously shown by (1) to (4) and (1) to 
(5). The second step in efficiency calculation is now dealing with slacks expressed as input 
excesses (13) and output shortfalls (14): 

Output oriented categorical model: 
  max

𝜂,𝜇
𝜂      (8) 

Σ𝑗 ∈ ∪𝑙=1
𝐿 𝐺𝑙

𝑥𝑖𝑗𝜇𝑗 ≤ 𝑥𝑖𝑜 , 𝑖 = 1, … , 𝑚        (9) 

      𝜂𝑦𝑟𝑜 − Σ𝑗 ∈ ∪𝑙=1
𝐿 𝐺𝑙

𝑦𝑟𝑗𝜇j ≤ 0,   r = 1, … , s      (10) 

Σ𝑗 ∈ ∪𝑙=1
𝐿 𝐺𝑙

𝜇𝑗 ≥ 0       (11) 

Σ𝑗 ∈ ∪𝑙=1
𝐿 𝐺𝑙

𝑒𝑗𝜇𝑗 = 1       (12) 
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𝑡− = 𝑥𝑖𝑜 −  Σ𝑗 ∈ ∪𝑙=1
𝐿 𝐺𝑙

𝑥𝑖𝑗𝜇𝑗 , 𝑖 = 1, … , 𝑚        (13) 

       𝑡+ = Σ𝑗 ∈ ∪𝑙=1
𝐿 𝐺𝑙

𝑦𝑟𝑗μj − 𝜂𝑦𝑟𝑜 , 𝑟 = 1, … , 𝑠     (14) 

 
3. Results and Discussion 

The dry-docking performance measurement research is carried out on a set of thirty-
four dry-docked vessels. Dry-docking is adjusted to the DEA requirements and shown as a 
process with inputs and outputs. It has also been checked and confirmed that the data set 
for each studied vessel is homogenous. The data set has been used in a non-parametric form 
in order to avoid misuse. Uncontrollable variables such as gross tonnage and area are 
combined with the controllable variables in the data set to get the highest possible freedom 
for DEA model calculation. This is achieved by variables combination on the input process 
side such as i) length of launching supporting structure divided by the vessel’s GT (STEEL 
GT, X1) – this ratio favourites steelwork activities reduction and a higher vessel's volume, 
ii) multiplication of the underwater area and the time period between launching and dry-
docking (AREATIME, X2), in favour to the less area treated in dry-dock and less time period 
spent afloat, iii) ratio between embarked and optimum crew (CREW, X3), which  favours 
less crew embarkment and considers less delayed works.  

The data usage in the form of ratios was recommended by (Sarkis, 2000) and (Dyson 
et al., 2001). The model outputs consist of various cost categories followed by their symbols 
in brackets, such as i) dry-dock rent and preparation cost (DD COST,Y1), ii) dry-dock 
services cost (SERV COST, Y2), ii) steelwork and staging cost (STEEL COST, Y3), iii) coating 
process cost (COAT COST, Y4), iv) cost of vessel transfer from the shipyard to the dry-dock 
and back, including the cost of waiting time out of dock and delays cost (TRANSF DELAY, 
Y5), vi) crew cost (CREW COST, Y6). Dry-docking process modelling resulted in the 
improved model presented in Figure 1, which is intended for the measurement and 
assessment of the dry-docking efficiency that includes the decision member related to the 
categorical model. 

According to the DEA methodology, the inputs tend to be decreased, and outputs tend 
to be increased. In this particular situation, it causes the outputs to become undesirable. 
The undesirable output issue is going to be solved by data scaling. The output data scaling 
is carried out by taking reciprocals as recommended by (Liu et al., 2010), and (Cook et al., 
2014). The management objective determines the DEA model orientation. In this particular 
case, the objective is to reduce expenses. Therefore, for the purpose of this study, the output 
model is favourable. The model with constant returns to scale is designated as CCR-O, while 
the model with variable returns to scale is designated as BCC-O. Suffix “O” means that the 
models are output-oriented. 

The CCR-O and BCC-O model’s efficiency scores are shown in Figure 2. The dry-docked 
vessels are DMUs numbered from DMU01 to DMU34. It is noted that some DMUs have 
superior performance, which impacts all the DMU’s performance results. These DMUs are 
DMU27 and DMU28 of the same vessel type, and DMU31, DMU32, DMU33, and DMU34 of 
another vessel type.  
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Figure 1 The dry-docking efficiency model 

 

Figure 2 DEA CCR and BCC models efficiency scores 

These six DMUs represent vessels with the lowest dimensions, which per contributes 
to greater efficiency, and therefore should be classified into a separate category. The criteria 
for DMUs division into categories are, therefore, gross tonnage and underwater part surface 
because those technical criteria clearly demonstrate the differences between the 
categories. The cut-off for the classification into the categories is determined as 20,000 for 
the gross tonnage and 5,500 sq. meters for the underwater part area. The first category, 
referred to as “category 1”, includes 28 vessels. The second category, referred to as 
“category 2”, consists of the six vessels with superior performance calculated by CCR-O and 
BCC-O models. The overall length and breadth, gross tonnage, underwater part surface and 
steelwork structure length of category 2 vessels show the lower absolute values compared 
to all the studied vessels. Due to these characteristics, the dry-docking process for the six 
vessels from category 2 requires a shorter period of time as well. These characteristics are 
definitely not attainable by the other studied vessels from category 1, which indicates the 
necessity of the vessels categorization in order to reduce discrimination among the vessels. 
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DMU04, DMU08, and DMU17 are efficient in both CCR-O and BCC-O categorical models, 
while DMU20 and DMU21 are efficient in the BCC-O model only. Table 1 contains input and 
output data used in performance measurement calculations. These data are sorted by the 
established vessels categorization. It should be noted that the dry-docking duration 
expressed in days is very important due to time-related increases in the costs which are 
related to the dry-docking process, such as dry-dock rent, dry-dock services, and crew cost 
and delays cost.   A shorter dry-docking period has overall benefits for the ship construction 
process as well. 

Table 2 shows the descriptive statistics in relation to the dry-docking duration and 
underwater part area differences between category 1 and category 2 vessels, as well as the 
dry-docking duration. The gross tonnage, underwater area, and dry-docking duration are 
not directly expressed in table 1, but it is needed to derive them from the original data for 
categorization purposes. 

Table 1 Input and output data descriptive statistics 
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A

Y
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Y
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) 

C
R
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O
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(Y
6

) 

C
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eg
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y
 1

 Maximum Value 2.17 6.55 31607 20.39 16.33 26.13 28.14 88.51 91.06 
Minimum Value 1.10 2.61 9778 10.56 4.83 5.35 9.87 4.52 32.24 
Medium Value 1.55 4.66 20015 14.77 8.45 14.37 17.78 21.48 60.75 
St. Deviation 0.29 1.51 5946 3.00 3.06 6.87 4.88 18.43 16.25 
Max./Min.Ratio 1.98 2.51 3.23 1.93 3.38 4.88 2.85 19.59 2.82 

C
at

eg
or

y
 2

 Maximum Value 1.61 7.02 50553 8.66 3.50 7.30 10.87 9.38 30.86 
Minimum Value 1.14 1.17 10942 1.78 1.32 2.71 5.41 5.92 19.60 
Medium Value 1.36 5.07 23025 3.70 2.16 4.88 8.37 7.44 25.87 
St. Deviation 0.20 3.02 15096 2.92 0.95 1.74 1.80 1.59 4.70 
Max./Min.Ratio 1.42 6.01 4.62 4.86 2.66 2.70 2.01 1.59 1.57 

C
at

eg
or

y
 1

 +
 2

 

Maximum Value 2.17 7.02 50553 20.39 16.33 26.13 28.14 88.51 91.06 

Minimum Value 1.10 1.17 9778 1.78 1.32 2.71 5.41 4.52 19.60 

Medium Value 1.52 4.73 20546 12.82 7.34 12.70 16.12 19.00 54.59 

St. Deviation 0.28 1.81 8051 5.20 3.70 7.25 5.76 17.54 20.04 
Max./Min.Ratio 1.98 6.01 5.17 11.43 12.40 9.66 5.20 19.59 4.65 

 
Table 2 Descriptive statistics by categories 

  
GROSS 

TONNAGE 
UNDERWATER 

AREA 
DRY-DOCK 

DAYS 

C
at

eg
o

ry
 1

 Maximum Value 47300 8825 14 
Minimum Value 27207 5641 8 
Medium Value 35152 7467 10.29 
St. Deviation 7677 1236 1.98 
Max./Min.Ratio 1.74 1.56 1.75 

C
at

eg
o

ry
 2

 Maximum Value 17130 5378 7 
Minimum Value 8547 3492 6 
Medium Value 11408 4121 6.50 
St. Deviation 4432 974 0.55 
Max./Min.Ratio 2.00 1.54 1.17 

C
at

eg
o

ry
  1

 +
 2

 

Maximum Value 47300 8825 14 

Minimum Value 27207 3492 6 

Medium Value 37254 6888 9.62 
St. Deviation 14208 1830 2.32 
Max./Min.Ratio 1.74 2.53 2.33 
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Table 3 shows the efficiency scores results obtained by both categorical models used. 
It is also noted that both efficient frontiers (CCR and BCC) are created by the same DMUs 
with the exception of the DMU25. According to (Cooper et al., 2007), it is concluded that the 
data set generally shows a constant return to scale behaviour, which implies that further 
calculations will be performed by the CCR-O model only. It is also noticed that the use of the 
categorical model maintains category 1 efficiency scores on a higher level.  

Table 3 Ranking and efficiency scores, categorical CCR-O and BCC-O models 

 CAT CCR-O CAT BCC-O  CAT CCR-O CAT BCC-O 
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DMU01 1 0.89867 23 0.95091 21 DMU18 1 1 1 1 1 
DMU02 1 0.58613 32 0.70195 30 DMU19 1 0.93538 19 0.93563 22 
DMU03 1 0.79023 28 0.80361 29 DMU20 1 1 1 1 1 
DMU04 1 1 1 1 1 DMU21 1 1 1 1 1 
DMU05 1 1 1 1 1 DMU22 1 0.9262 21 0.9263 23 
DMU06 1 1 1 1 1 DMU23 1 0.66652 30 0.67345 31 
DMU07 1 0.60067 31 0.63661 34 DMU24 1 0.88916 24 0.89782 26 
DMU08 1 1 1 1 1 DMU25 1 0.93174 20 1 18 
DMU09 1 0.95381 18 0.95994 20 DMU26 1 1 1 1 1 
DMU10 1 0.56829 34 0.64096 33 DMU27 2 1 1 1 1 
DMU11 1 0.9051 22 0.9051 25 DMU28 2 1 1 1 1 
DMU12 1 0.88323 25 0.90801 24 DMU29 1 0.58045 33 0.65975 32 
DMU13 1 0.80388 27 0.81763 27 DMU30 1 0.68303 29 0.80539 28 
DMU14 1 1 1 1 1 DMU31 2 1 1 1 1 
DMU15 1 0.8527 26 0.99998 19 DMU32 2 1 1 1 1 
DMU16 1 1 1 1 1 DMU33 2 1 1 1 1 
DMU17 1 1 1 1 1 DMU34 2 1 1 1 1 

 
The categorical CCR-O results for category 1 show an average score of 0.8734, a 

minimum efficiency score of 0.5683, and nine DMUs show an efficiency score lower than 
the average one. The DEA categorical model calculation results in more accurate efficiency 
scores for DMUs belonging to category 1 because they are not evaluated with category 2 
DMUs. It needs to be stressed that category 2 DMUs have got the underwater part area and 
gross tonnage values which are not reachable for category 1 DMUs.  

Figure 3 shows the proposed input and output improvements for inefficient DMUs. By 
reaching the proposed improvements, the inefficient DMU becomes an efficient one. These 
improvements are a measure of input reduction and output augmentation, finally reaching 
the efficient frontier for each particular inefficient DMU. The improvement’s direction and 
intensity are shown in figure 3, but the causes of inefficiency are placed in the dry-docking 
process. In figure 3, the efficient DMUs from category 1 and all the (efficient) DMUs from 
category 2 are omitted because those DMUs create the efficient frontier, and therefore, their 
projection values do not differ from their original values. It needs to be noted that inefficient 
DMUs’ proposed input and output improvements are expressed in relative values in order 
to make differences more distinct. Figure 3 also contains CAT CCR-O efficiency score data 
in order to emphasize the relation between lower efficiency scores and higher demands for 
output values reduction (efficiency scores are also expressed in percentages). According to 
data retrieved from figure 3, it could be noticed that the greater improvement potential is 
contained in output TRANSF DELAY (Y5) with an average 46.68%, followed by the CREW 
COST (Y6) with an average 34.67% potential improvement. Both outputs have the delay-
dependent improvements. TRANSF DELAY (Y5) is mainly dependent to the waiting time 
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before dry-docking commencement and dry-docking delays due to weather conditions and 
dry-dock staff non-organization. CREW COST (Y6) output values are caused by engaging 
more crew in order to complete delayed works, which are supposed to be completed before 
dry-docking; when crew engagement is combined with time delay, there is even more room 
for improvements. At the completion of the modelled process, the following data become 
available i) efficiency scores and ranking of DMUs, ii) results’ descriptive statistics, iii) 
inefficient DMUs projections to the efficient frontier. The obtained data, together with the 
process data and dry-docking process knowledge, lead to conclusions and improvement 
recommendations. According to its sources, inefficiency could here be divided into three 
main groups: i) inefficiency related to technical/technological issues, ii) inefficiency related 
to planning and organization, and iii) inefficiency due to unfavourable weather conditions. 

 

 

 

Figure 3 Proposed input and output improvements, inefficient DMUs from Category 1, relative 
values /Source: authors’ calculation 
 

Technically/technologically related inefficiency is determined within the process 
inputs. Namely, the quantity and fixing solutions of the launching supporting structure 
affect the steelwork cost. Improvements in the way of the launching supporting structure 
design could reduce the steelwork cost. There is a similar situation in the coating process. 
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Reducing the damages caused by the steelwork activities can reduce the coating process 
cost. Generally, reducing the number of spot damages on the underwater part can reduce 
the coating process cost. The choice of the coating system used for the vessel’s underwater 
part treatment can be improved. The improvements could be achieved by reducing the 
number of coats, the over-coating intervals, and the undocking time after the last coat 
application, which all reduces the time spent in the dry-dock and, consequently the overall 
cost. The inefficiencies related to planning and organization could be represented by the 
increased number of the enlisted crew on board the vessel and delays occurred during the 
dry-docking. The crew ratio input shows the measure of the remaining works/delayed 
activities to be completed at the dry-docking commencement. By reducing the crew ratio, 
the optimal overall crew cost could be achieved. Besides the technical/technological 
sources of inefficiency, the planning and organization of the dry-docking project are 
recognized as inefficiency sources as well. Delays while the vessel is in the dry-dock could 
be caused by i) planning and organization failures, ii) dry-dock staff underperformance, iii) 
unexpected scope of work on the underwater part, and iv) adverse weather conditions. 

It needs to be pointed out that input improvements are strongly linked to the outputs 
because of the generated expenses in outputs, which are in fact, expenses divided into 
categories. These categories were created in order to enable a simpler and more precise 
improvement analysis on the output side. 

The applied categorical DEA model assessed and detected the inefficiencies that 
occurred during the dry-docking projects. 

 
4. Conclusions 

An improved dry-docking performance measurement model has been introduced in 
this paper. This model is based on DEA, and it could serve as a benchmarking tool for 
organization management. The studied dry-docking projects data were adjusted to DEA 
methodology by expressing the dry-docking process efficiency. The orientation was chosen 
according to the management strategy to reduce dry-docking overall costs. The dry-docking 
model uses the DEA advantage that no expert opinion is necessary for input and output 
weights determination, but the model relies on process knowledge while choosing inputs 
and outputs. During the research, several DEA model calculations have been carried out. 
The CCR and BCC models calculations and data set descriptive statistics have been 
completed, with the conclusion that a kind of distinction among the DMUs needs to be made 
because six DMUs have superior results due to their technical characteristics. This 
distinction has been carried out by the categorical DEA approach. During the research, the 
categorization criteria have been determined based on input and output data. The 
categories have been established for further calculations. The subsequent DEA calculations 
were performed with the categorical CCR model after concluding that the CCR model 
represents the data set in a proper way. The chosen new building dry-docking performance 
measurement model using the DEA methodology with extension to the categorical CCR 
model has resulted in the establishment of the efficient frontier that contains the efficient 
DMUs, giving the efficiency score to each particular DMU and detecting benchmarks 
determined by categories. The projections to the efficient frontier show the direction and 
intensity of required improvements of inputs and outputs representing each inefficient 
DMU. And finally, based on the used data, the inefficiency sources have been detected 
among the data used and sorted into three main groups: i) technical/technological issues, 
ii) planning and organization, iii) unfavourable weather conditions. The decision-making 
process follows the “ex-post” principle, making conclusions on already dry-docked vessels, 
and giving recommendations for future dry-docking projects. This vessel population could 
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be augmented with the new dry-docked vessels and evaluated in repeated calculations 
using the same model. The introduced model could be used for performance measurement 
in other project manufacturing enterprises related to but not limited to shipbuilding, civil 
engineering, mining, project manufacturing, etc. Further research on this topic could lead 
to the usage of DEA slack-based-measure (SBM) models in combination with the categories 
in order to achieve higher rate of discrimination among the DMUs in the same category and 
probably a more sensitive detection of inefficiencies. The research path for ranking the 
efficient DMUs’ purpose could lead toward super-efficiency DEA models. 
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