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Abstract. Smoothed Particle Hydrodynamics (SPH) has previously used in hydrodynamics as a 
Lagrangian numerical method to simulate fluid behavior. Recently the SPH is also being used to 
simulate soil deformation, since the largely known Finite Element Method (FEM) cannot represent 
the soil deformation after failure. In SPH, soil materials are modeled as a set of particles, and the 
behavior of those particles can be simplified using the equivalent viscosity or using the soil failure 
criterion. This research tries to implement the Drucker-Prager model using Fortran platform to 
simulate a simple soil model deformation behavior, by modifying the previous model that used the 
equivalent viscosity. A simple model of small slope is built by a stack of SPH particles, which are 
expected to behave as the collapsing soil mass. The movement of the particles and the change of the 
model’s geometry are observed visually after the SPH simulation. The preliminary results show that 
the particles can already behave like a failure in granular soil, yet it still needs to be improved due 
to the unwanted particle movements. 
  
Keywords: Fortran; Numerical method; Smoothed particle hydrodynamics; Soil constitutive 
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1. Introduction 

The most popular numerical method used in geotechnical analyses nowadays is the 
Finite Element and Finite Difference. Those methods have the ability of simulating the 
stress-strain behaviour of soil, hence they can predict the deformations. However, both 
numerical methods have drawback regarding the large deformation or the deformation 
after failure due to the mesh and grid system. To overcome this problem, the Smoothed 
Particle Hydrodynamics had been introduced.  

 Smoothed Particle Hydrodynamics (SPH) is a mesh-free or gridless particle method 
based on Lagrangian formulation, that was first applied to solve the astrophysical problems 
in open space (e.g., Gingold and Monaghan, 1977; Lucy, 1977). Recently, this method is also 
applied for geomaterials and geodisaster models as mentioned by Huang et al. (2014) and 
Bui and Nguyen (2021). Examples of applications are for dam-break analysis (Wang and 
Shen, 1999), large deformation and slope failure (Bui et al., 2011), seepage (Maeda et al., 
2004), piping erosion (Sjah and Vincent, 2017), liquefaction and flow failure (Naili et al., 
2005; El Shamy and Sizkow, 2021; Sizkow and El Shamy, 2021). 
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This article presents the progress of the on-going research on the use of SPH model to 
simulate the soil deformation after failure. The large lateral deformation phenomenon after 
the big earthquake in Central Sulawesi, Indonesia, in 2018 highlights the importance of the 
prediction of post failure deformation. The SPH research group in the Department of Civil 
and Environmental engineering of University of Indonesia tried to develop their own 
platform to model the post-liquefaction deformation. The first attempt has been conducted 
using the equivalent viscosity as in (Mahardima et al., 2021). The liquefied soil behaviour 
was modelled as Bingham fluid, which is one of the viscoplastic models (e.g., Uzuoka et al., 
(1998).  

In this article, the Elasto-plastic SPH Procedure is used in its programming algorithm 
with the Drucker-Prager model to describe the behaviour of soil particles which refers to 
research that has been developed by Bui et al. (2008). The Drucker-Prager failure criterion 
is one of the soil constitutive law to represent the elasto-plastic soil behaviour, and is 
considered as the most stable compared to the other criterion (e.g., Potts and Zdravković, 
2001). The recent model is built base on the previous codes by Mahardima et al. (2021) 
using Fortran platform. This study is a small part of the bigger research scheme with the 
main objective is to build a SPH model to predict the large deformation after liquefaction. 
 
2. Theoretical Base 

2.1.  Basic Concept of SPH 
 The concept of SPH as mentioned by Liu and Liu (2010) is that a state of a system is 
represented by a set of particles, which possess the material properties and interact with 
each other within a range that controlled by a weight or smoothing function. SPH is built on 
interpolation theory with two essential aspects, which are the kernel approximation and 
particle approximation (e.g., Huang et al., 2014). Consider a particle 𝛼 as shown in Figure 1, 
the value of a function at computing particle 𝛼 is approximated using the average of those 
values of the function at all particles in the influence domain of particle 𝛼, weighted by the 
smoothing function, which is W in Figure 1. The neighbouring particle is shown as 𝛽, and the 
radius of influence from particle 𝛼 is h. 

 
Figure 1 Basic Concept of SPH 

 The kernel approximation can be written as a function f(x) as the position of vector x: 
 

〈𝑓(𝑥)〉 = ∫ 𝑓(𝑥′) 𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′
𝛺

     (1) 

 
where Ω is the volume of integral that contains x. The particle approximation can be written 
as: 
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⟨𝑓(𝑥)⟩ = ∑
𝑚𝑗

𝜌𝑗
𝑓(𝑥𝑗) 𝑊(𝑥 − 𝑥𝑗, ℎ)𝑁

𝑗=1  (2) 

where N is the total number of particles within the influence area of the particle at x, and 
m/ 𝜌  is the ratio of mass to the density of particle j. There are some alternatives of 
smoothing function W, one of them as suggested in Bui et al. (2008) is written as: 

𝑊𝑖𝑗 = {

5

14𝜋ℎ5
(4ℎ3 − 6𝑟2ℎ + 3𝑟3), 0 ≤ 𝑟/ℎ < 1

5

14𝜋ℎ5 (2ℎ − 𝑟)3, 1 ≤ 𝑟/ℎ < 2

0, 𝑟/ℎ ≥ 2

           (3) 

 

2.2.  Governing Equation 
Elasto-plastic SPH model follows the governing equation that consists of the 

conservation of mass and conservation of momentum. The continuity equation is written 
as: 

𝜕𝜌

𝜕𝑡
= −𝜌

𝜕𝑣𝛼

𝜕𝑥𝛼 (4) 

 

 
where 𝜌 is density, t is time, v represents the velocity vector. The ground motion equation, 
which is based on conservation of momentum is: 
 

𝜕𝑣𝛼

𝜕𝑡
=

1

𝜌

𝜕𝜎𝛼𝛽

𝜕𝑥𝛼 + 𝐹 (5) 

 

where 𝛼  and 𝛽  are Cartesian components x, y and z; 𝜎  is the total stress tensor and F 
external force vector which is the gravitational force in this study. The Equations 4 and 5 
can be written in SPH, respectively as: 
 

𝐷𝜌

𝐷𝑡
= − ∑ 𝑚𝑗(𝑣𝑖

𝛼 − 𝑣𝑖
𝛼)

𝜕𝑊𝑖𝑗

𝜕𝑥𝑗
𝛼

𝑁
𝛽  (6) 

𝐷𝑣𝑖
∝

𝐷𝑡
= ∑ 𝑚𝑗 (

𝜎𝑖
𝛼𝛽

𝜌𝑖
2 +

𝜎𝑗
𝛼𝛽

𝜌𝑗
2 − 𝛿𝛼𝛽𝛱𝑖𝑗)

𝜕𝑊𝑖𝑗

𝜕𝑥𝑗
𝛽 + 𝑔𝛼𝑁

𝑗=1  (7) 

 

where 𝛿𝛼𝛽 is Kronecker's delta which has a value of 𝛿𝛼𝛽=1 if 𝛼 = 𝛽, and 𝛿𝛼𝛽= 0 if 𝛼 ≠ 𝛽. 

2.3.  Soil Constitutive Model 
The soil behavior is simplified using the elastic-perfectly plastic model. This model is 

presented by the total strain rate tensor, 𝜀 ̇𝛼𝛽 , which consists of the elastic strain tensor 𝜀 ̇𝑒
𝛼𝛽

 

and plastic strain tensor 𝜀 ̇𝑝
𝛼𝛽

 . Each of those strain tensor is described as the following: 

 

𝜀�̇�
𝛼𝛽

=
�̇�𝛼𝛽

2𝐺
+

1−2𝜐

3𝐸
�̇�𝛾𝛾𝛿𝛼𝛽 (8) 

𝜀�̇�
𝛼𝛽

= �̇�
𝜕𝑔

𝜕𝜎𝛼𝛽 (9) 

 

where 𝑠 ̇𝛼𝛽  is the deviatoric shear stress rate tensor, 𝜐  is Poisson’s ratio, G is the shear 
modulus, E is Young’s modulus, 𝜎 ̇𝛾𝛾  is the sum of the three components of the normal 
stress, 𝜆 ̇  is the rate of change of the plastic multiplier 𝜆 , and 𝑔  is the plastic potential 
function.  

In this study, the Drucker-Prager failure criterion is chosen as to represent the soil 
plastic flow behavior. Drucker-Prager criterion was used in the previous study by Bui et al. 
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(2008). It is known that this failure criterion improved the Mohr-Coulomb criterion as it 
seen on Figure 2, that the sphere shape of Drucker-Prager covers the hexagonal shape of 
Mohr-Coulomb. This condition is written as: 

𝑓(𝐼1, 𝐽2) = √𝐽2 + 𝛼𝜙𝐼1 − 𝑘𝑐 = 0 (10) 

𝐼1 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧   𝑎𝑛𝑑   𝐽2 =
1

2
�̇�𝛼𝛽�̇�𝛼𝛽 (11) 

𝛼𝜙 =
𝑡𝑎𝑛 𝜙

√9+12 𝑡𝑎𝑛2 𝜙
   𝑎𝑛𝑑   𝑘𝑐 =

3𝑐

√9+12 𝑡𝑎𝑛2 𝜙
 (12) 

 
 

 

Figure 2 Illustration of Drucker-Prager criterion (reproduced from Bui et al., 2008) 
 
where 𝛼𝜙 and 𝑘𝑐 are Drucker-Prager constants, which correspond to the Coulomb material 
constants c (cohesion) and ϕ (angle of friction); 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧  are three normal stress 
components; 𝐼1 and 𝐽2 are the first and second invariants of the stress tensor. The plastic 
potential function is chosen to be similar as the yield function (associated flow rule) of 
Drucker-Prager, thus it can be expressed as: 
 

𝑔 =  √𝐽2 + 𝛼𝜙𝐼1 − 𝑘𝑐  (13) 

 
To determine the second invariants 𝐽2 for the Drucker-Prager criterion, the deviatoric shear 
stress rate 𝑠 ̇𝛼𝛽 should be obtained from the rheological model as described in Yang et al. 
(2020) as: 
 

�̇�𝛼𝛽 = 2𝜂𝜀̇𝛼𝛽 (14) 

𝜂 =
𝜇𝑃

√�̇�𝛼𝛽�̇�𝛼𝛽
 (15) 

𝜇 = 𝜇𝑠 +
𝜇𝑝−𝜇𝑠

𝐼0 𝐼𝑖⁄ +1
 (16) 

𝑃𝑖 = 𝑐2(𝜌𝑖 − 𝜌0) (17) 
 
where 𝜂 is the apparent viscosity, P is the isotropic pressure, c is the speed of sound, 𝜌𝑖  is 
the density of particle i, 𝜌0 is the reference density of the material. The plastic multiplier λ  ̇
for the associated flow rule is calculated from the Drucker-Prager constants as: 
 

�̇� =
3𝛼𝜙𝐾�̇�𝛾𝛾+(𝐺 √𝐽2⁄ )𝑠𝛼𝛽�̇�𝛼𝛽

9𝛼𝜙
2 𝐾+𝐺

 (18) 
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The rate of stress that is invariant to the rigid-body rotation should be employed for 
constitutive relations considering the large deformation. For this purpose, Bui et al. (2008) 
use the Jaumann stress rate: 

�̇̂�𝛼𝛽 = �̇�𝛼𝛽 − 𝜎𝛼𝛾�̇�𝛽𝛾 − 𝜎𝛾𝛽�̇�𝛼𝛾 (19) 

where �̇� is spin rate tensor which defined as: 

�̇�𝛼𝛽 =
1

2
(

𝜕𝜐𝛼

𝜕𝑥𝛽
−

𝜕𝜐𝛽

𝜕𝑥𝛼
) (20) 

 
The above-mentioned equations are included in the algorithm for numerical calculation 
which will be translated to Fortran codes. 
 
3. Methodology 

The steps in this study are first building the algorithm for numerical iteration based on 
the related equations, followed by translating the equations to the Fortran codes based on 
the algorithm. After that the codes are executed and the output are plotted so they can be 
evaluated visually. 

3.1.  Algorithm for Numerical Calculation 
 The numerical calculation in this study is carried out using Fortran platform. The 
algorithm for the simulation is shown as flow chart in Figure 3. 
 

 

Figure 3 Flowchart for the SPH simulation algorithm 

 
The steps begin with stating the initial conditions and positions of the particles, then it will 
do an iteration for each time steps, which includes the smoothing function that governs the 
behavior of each particle to the neighboring particles as written in Equation 3. The 
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implementation of Drucker-Prager failure criterion which are spread out in Equation 8 to 
Equation 20 are included in the iterations of rheological model, plastic multiplier, stress-
strain calculation, and Jaumann stress rate. After that, the process continues with 
acceleration and velocity updates for each particle, time integration, and collision handling. 
The final step is for updating the position and velocity of each particle in each iteration.  
Some examples of the written codes will be shown in the following section.  
 

4. Results 

4.1.  Numerical Simulation 
As mentioned in the previous section, the simulation begins with the declaration of 

initial position and velocity of the particles. The example of Fortran codes for this step is: 
 
!Identification of position and velocity    

      do i = 1, ntotal 

         x(i)  = xo(i) ; y(i)  = yo(i) ; z(i)  = zo(i)  

         xt(i) = xo(i) ; yt(i) = yo(i) ; zt(i) = zo(i) 

         vx(i) = vxo(i); vy(i) = vyo(i); vz(i) = vzo(i) 

         mass(i) = m(itype(i)) 

      enddo 

 

These particles are arranged in a 3D planes, with the shape resembles a small slopes as 
shown in Figure 4.  The material is assigned to be a loose soil with cohesion 10 kPa and 
angle of friction 20° (Andreatama, 2021) 

 

Figure 4 The intial condition of particles with the view from the top (x-y plane), side (x-z plane), 
and front (y-z plane) 
 
The soil parameters such as cohesion and angle of friction are included in the Drucker-Prager 
constants as in Equation (10), and written in the codes as: 

!Drucker-Prager Constants 

      do i = 1, ntotal 

         dpa(i) = (tan(phi*pi/180))/sqrt(9+(12*(tan(phi*pi/180))**2)) 

         dpk(i) = (3*c)/sqrt(9+(12*(tan(phi*pi/180))**2)) 

         bmk(i) = elas/(3*(1-2*pr)) 

         smg(i) = elas/(2*(1+pr)) 

      enddo 

 
The density of particles is calculated after the calculation of distances between particles 
through the smoothing kernel, as written in the codes: 
 

!Smoothing Kernell & Density    

         DO i = 1, ntotal 

            rho(i)   = 0.0 

            a(i)     = 0.0 

            do j = 1, ntotal 

               r(j) = ((x(i)-x(j))**2 + (y(i)-y(j))**2 + (z(i)-z(j))**2)**0.5   

               if (r(j) <= h) then 
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                  wdensity(j) = (315/(64*pi*(h**9)))*((h**2)-(r(j)**2))**3 

               else 

                  wdensity(j) = 0.0 

               endif 

               rho(i) = rho(i)+(mass(j)*wdensity(j))                     

            enddo 

            p(i) =  (200*9.81*he/(rho(i)*7))*(((rho(i)/rest(itype(i)))**7)-1)         

            write (2,702) i, mass(i), rho(i), p(i), wdensity(i), av(i) 

         ENDDO 

 
The strain rate which related to the particle velocity is calculated through these codes: 
 
!Strain rate 

  if (vx(i) == 0.0) then 

     exx(i) = 1 

  exy(i) = 1 

  exz(i) = 1 

        eyx(i) = 1 

  eyy(i) = 1 

   eyz(i) = 1  

  ezx(i) = 1 

  ezy(i) = 1 

  ezz(i) = 1 

    else 

  exx(i) = 0.5*(((mass(i)/rho(i))*(vx(j)- 

   vx(i))*wdensity(i))+((mass(i)/rho(i))*(vx(j)-vx(i))*wdensity(i))) 

  exy(i) = 0.5*(((mass(i)/rho(i))*(vx(j)- 

   vx(i))*wdensity(i))+((mass(i)/rho(i))*(vy(j)-vy(i))*wdensity(i))) 

  exz(i) = 0.5*(((mass(i)/rho(i))*(vx(j)- 

   vx(i))*wdensity(i))+((mass(i)/rho(i))*(vz(j)-vz(i))*wdensity(i))) 

  eyx(i) = 0.5*(((mass(i)/rho(i))*(vy(j)- 

   vy(i))*wdensity(i))+((mass(i)/rho(i))*(vx(j)-vx(i))*wdensity(i))) 

  eyy(i) = 0.5*(((mass(i)/rho(i))*(vy(j)- 

   vy(i))*wdensity(i))+((mass(i)/rho(i))*(vy(j)-vy(i))*wdensity(i))) 

  eyz(i) = 0.5*(((mass(i)/rho(i))*(vy(j)- 

   vy(i))*wdensity(i))+((mass(i)/rho(i))*(vz(j)-vz(i))*wdensity(i))) 

  ezx(i) = 0.5*(((mass(i)/rho(i))*(vz(j)- 

   vz(i))*wdensity(i))+((mass(i)/rho(i))*(vx(j)-vx(i))*wdensity(i))) 

  ezy(i) = 0.5*(((mass(i)/rho(i))*(vz(j)- 

   vz(i))*wdensity(i))+((mass(i)/rho(i))*(vy(j)-vy(i))*wdensity(i))) 

  ezz(i) = 0.5*(((mass(i)/rho(i))*(vz(j)- 

   vz(i))*wdensity(i))+((mass(i)/rho(i))*(vz(j)-vz(i))*wdensity(i))) 

     endif 

 
To obtain the particle stress, the plastic multiplier (Equation 18) should be calculated first 
from the Drucker-Prager constants as written in these codes: 
 
!Plastic Multiplier               

 dpj2(i) = 0.5*tao(i)*tao(i) 

 esum(i) = exx(i)+eyy(i)+ezz(i) 

 pm(i) = (3*dpa(i)*bmk(i)*ezz(i))+((smg(i)/sqrt(dpj2(i)))*tao(i)*exy(i)))/ 

  ((9*(dpa(i)**2)*bmk(i))+smg(i)) 

 
The last parts of the codes represent the steps for updating collision handling, which 
resulting to the updated positions of each particle. 
 
5. Discussion 

The results of the above simulation are the position of each particle relative to the 3D 
coordinate system for each iteration step. The examples of the visualized results are shown 
here in Figure 5, Figure 6, Figure 7, for the 10th, 50th, and 100th iterations, respectively.  
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Figure 5 The particles' position after 10th iteration 

 

Figure 6 The particles' position after 50th iteration 

 

Figure 7 The particles' position after 100th iteration 
 

It is shown that the movement of particle is visually resemble the behavior of loose 
granular materials at the 10th iteration and 50th iteration. However, the 100th iteration 
shows an unexpected behavior where the particles still jumping up instead of staying in the 
more stable position. Another anomaly also shown near the boundary of the sample, where 
the particles tend to avoid the initial boundary. The cause of this behavior is still unknown 
and needs to be address in the next stage of research. This problem was similarly found in 
the previous research by Mahardima et al. (2021) in which the model uses equivalent 
viscosity instead of the soil constitutive model. Hence, the problem may not be caused by 
the choice between the application of equivalent viscosity or soil constitutive model such 
as Drucker-Prager criterion. 

 
6. Conclusions 

This article shows the progress of an on-going research of application of SPH method 
to the simulation of granular materials using the Fortran platform. The main objective is to 
model the behavior of granular materials (i.e., sands) while interacting with water during 
the liquefaction phenomena. At the recent study, the results have shown that the proposed 
algorithm can simulate the behavior of granular material as particles after the failure. Yet 
the interaction between particles still not completely correct, possibly due to the later part 
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of the algorithm, which is the collision handling. This part will be the next subject for the 
next study. 
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