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Abstract. A new path loss model for high-speed rail (HSR) in the 5G communication system is 
constructed in this paper. The model is identified to obtain an accurate mathematical representation 
of path loss multipath propagation in line of sight of HSR scenarios. The grey box modelling 
utilization of Generalized Reduced Gradient (GRG) and Genetic algorithm (GA) is applied to find the 
unknown parameters of the constructed path loss model since some uncertainties in obtaining the 
corresponded parameters are unavoidable to be collected in the field. Both algorithms achieve 
excellent results in finding the unknown parameter values with RMSE and MAPE evaluation which 
are converging finally to 2.779 and 1.701 %. The visualization of fitting plots is also presented, and 
GA provides a better-adjusted agreement with the measurement dataset of HSR. Accordingly, the 
constructed path loss model is successfully validated since it is capable of following the dynamic 
characteristic of the original HSR path loss measurement. The path loss model can then be utilized 
for the future dense deployment of HSR infrastructures for the 5G communication network.  
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1. Introduction 

 High-speed rail (HSR) refers to passenger rail systems utilizing a specialized rolling 
stock integrated system in the dedicated tracks. The deployment of FRCMS (Future Railway 
Communication System) is expected to fulfill the significantly increased demand for railway 
signaling systems. Some major communication functions in FRMCS are strictly related to 
railway operations with safety implications for the critical applications of the similar 5G 
technologies as radio communication cellular systems (Monserrat et al., 2020).  Over  
the last decades, many researchers have been focusing on wireless communication 
technology that will be applied to HSR to ensure data transmission in the 5G framework 
(Suryanegara, 2018). A satisfying investigation of millimetre-wave propagation 
characteristics for HSR on field measurement in viaduct and tunnel scenarios has yielded 
the reliability of wireless transmission (Park et al., 2020). 

The train backbone wireless networking is implemented based on  point-to-point links 
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devices, and the study of path loss in multipath propagation of HSR is stepping into new 
challenges when dealing with  large-scale fading and shadowing. This types of propagation 
are the most likely  to occur in railway scenarios. Since practically, HSR runs over 300 km/hr, 
it suffers from severe fading, vehicle penetration losses (VPL) and unavoidable Doppler effect. 
Accordingly, it is important to understand a chosen path loss model that can be utilized in line 
of sight of HSR propagation for a 5G communication system. At the same time, still  revealing 
the stability of parameter, accuracy, and functionality of the limited measurement dataset. 

 It brings out some new challenges in obtaining some path loss parameters value in the 
field because of the combination of high velocity and spectrum allocation, particularly for the 
future 5G-HSR wireless system level. Those uncertainties parameters issues are almost 
existed not only in 5G cellular systems but also in the 5G-HSR scenario therefore a path loss 
parameterization scheme related to HSR environment scenarios from surrounding physical 
factors to the model variables must accommodate causal functions of associated 5G-HSR 
particularly, in line-of-sight variables which in this study, a new path loss model for 5G-HSR 
is constructed. The accuracy is validated by using a different approach of grey box modelling 
to yield a comprehensive knowledge of path loss for 5G-HSR that allows network designers 
to plan the most optimal infrastructures for HSR.  

 Furthermore, the major limitation of the existing research is based on particular 
scenarios, whether empirical or deterministic models. (He et al., 2018) was motivated to 
observe the path loss model using key parameters such as coherence time, polarization 
ratios, and Doppler shifts. A simulation was demonstrated based on channel measurement 
for HSR communications in a 5G Millimeter-Wave Band. As the future 5G technology requires 
many supporting technologies such as base station infrastructures and fiber optics to be laid 
on the tracks (Suryanegara, 2016), a local standard emerges as another solution to 
mainstream technologies. It led to another challenge for a requirement of an accurate path 
loss that can be utilized world-widely. 
 The early studies of the path loss model are majorly conducted in cellular networks. The 
models are derived from electromagnetic propagation theory (MacCartney et al., 2013), 
which are not very accurate but easy to implement. Therefore, some correction mechanisms 
must be constructed in a definite environment to achieve desired accuracy results. (Phillips 
et al., 2013) investigated additional parameters such as carrier frequency, distance, 
transmitter, receiver heights and carrier frequency for these cellular path loss models. The 
research yielded a more accurate path loss model for a 5G cellular network. Accordingly, a 
prior knowledge or an explicit measurement must be combined for a special path loss model 
for 5G-HSR (Zhong et al., 2021). 
 Several studies concerning 5G coverage path loss prediction were evaluated in recent 
years with the development of promising stochastic path loss models with the combination 
of antenna configuration and beamforming in cellular networks (Sousa et al., 2021). Other 
researchers introduced some key parameters of a line-of-sight characteristics (Sun et al., 
2015). This work provided important key parameters of large-scale path loss scenarios and 
shadow fading for the future 5G communication system in urban macro cellular. The 
comparison was presented as well at the frequency of 2, 10, 18, and 28 Ghz in Aalborg, 
Denmark.  Other works in realizing 5G stochastic path loss models were studied by 
(Rappaport et al., 2017) by investigating large-scale path loss models in wireless 
communication channels such as mm-MAGIC, NYUSIM, and 3GPP TR38,901. The study 
concluded that additional random variables in a path loss model must account for 
supplementary fading due to scattering and multipath effects, which are dominant but 
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difficult to obtain in most stochastic path loss models. 
 One of the revolutionary technologies to develop a critical signaling 5G-HSR is millimeter 
wave technology. It is accessible to a massive capacity and bandwidth in frequency bands 
above 24 GHz. Since millimeter-wave suffers from higher propagation loss, MIMO directional 
antenna is widely accepted for designing a wireless communication system. However, 5G-
HSR employs different characteristics from traditional cellular scenarios. Some specific 
characteristics in the 5G-HSR propagation environment, such as line of sight dominance, 
Doppler shift, high velocity, and multiple scenarios, must be carefully considered to obtain 
the optimal design and performance (Zhang et al., 2018). These considerations were related 
to diversity effects and the Doppler shift. Tuned free space path loss model was analyzed, and 
in this term a path loss model for HSR was estimated theoretically by gaining its diversity 
effect and Doppler shift performed by Maximal Ratio Combining (MRC) scheme (Roy & 
Fortier, 2004). 
 The capability of machine learning in analyzing the existing system performance to be 
more accurate is undoubtedly more resourceful for performing prediction tasks.   It has been 
conducted several times by performing various training and testing on path loss datasets 
where an estimated model contains necessary predictions to be compared with the actual 
dataset. It produced the best prediction model for path loss, majorly in the cellular 
environment. In a single scenario, a requirement of evenly distributed data must be sufficient 
to be fed to the model for given prediction accuracy. However, the process becomes more 
complicated when incremental learning algorithms are involved because of gradual model 
constructions are performed without retraining accomplishment (Zhang et al., 2019). 
 The path loss models utilized in most existing research do not contemplate physical 
factors. In accordance with it, this work investigates an alternative approach to achieving an 
accurate path loss model for 5G-HSR. A grey box modelling is initiated as the mathematical 
representation of the path loss model for HSR in 5G communication system. The provision of 
grey box modelling implementation with appropriate algorithms will allow an optimal or 
almost optimal model that adjusts to the given path loss measurement. The idea is to find the 
global minimum cost function in a search space direction. The objective is to minimize the 
mean square error between the prediction dataset from the optimized model with the real 
measurement established in the field of study (Řehoř & Havlena, 2011). 
 The utilization of grey box modelling to obtain mathematical representation had been 
investigated to find the unknown parameters for AMPS (Automated People Mover System) 
train by using the Generalized Reduced Gradient Method (Suryana et al., 2020). A near-
optimal solution was also achieved by maximizing the sum-rate capacity of a dynamic beam 
strategy to fulfill the critical quality of high-speed rail requirements through a problem 
decomposition using GA (Gao et al., 2018). Garah et al. (2016) investigated the Genetic 
Algorithm (GA) to produce a near-optimal solution for the GSM path loss model. The 
comparison has yielded a good agreement with the measurement result of the SUI model, 
COST-231 empirical path loss model, and COST-231 Hata.  
 Numerous path loss predictions in 5G scopes with different methods have been analyzed 
mostly for the case of cellular networks with recent contributions of machine learning 
implementation (Wu et al., 2010). However, to the best of author’s knowledge, a grey box 
modelling approach to validate path loss models for 5G-HSR has not been found in any 
literatures because not only unavoidable measurement difficulties to be taken in the field but 
also a comprehensive knowledge about causative relationship between path loss parameters 
must be well constructed. 
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 For a typical deployment of HSR wireless communication infrastructures, the line of Sight 
(LOS) scenario is usually referred to minimize radio waves reflection after traveling over a 
large area (Kanhere & Rapapport, 2021). The terminal equipment in HSR can add signal 
interferences either constructively or destructively. Random and rapid fluctuations in the 
received amplitude on a running HSR will cause a situation where signals spread in the 
frequency domain. It leads to one of the measurement difficulties, which copes with the path 
loss value 𝑃𝐿̅̅̅̅ (𝑑0) . This parameter denotes a close-in measurement or a free space 
assumption from the transmitter where the signal starts to attenuate (Vahidi., 2021). The 
values of fading 𝑋𝜎 under HSR scenario is perhaps the most difficult parameter to achieve 
because of multipath propagation in a high mobility environment; consequently, an 
alternative solution must be considered for this parameter. The performance of wireless 
system transmission under increased mobility of high-speed rail is dependent on sub-carrier 
signal frequency shift and Orthogonal frequency division multiplexing [OFDM] due to 
Doppler Effect. This parameter explains a functional relationship with distance, and when 
the millimeter -Wave is taken into account for data transmission, a higher Doppler effect will 
be emerged (Xiong et al., 2021). 
 In this study, the investigation of GRG and GA for a grey box model identification is 
utilized to find some missing parameters value of the constructed path loss model for HSR in 
a 5G communication network. In this regard, the error between the output of the optimized 
path loss model and path loss original measurement data will be considered as objective 
functions with the visualization of fitting plots. The rest of the paper is organized as follows. 
The grey box model is introduced in Section 2. The optimization method and the constructed 
path loss model for 5G-HSR are investigated in Section 3. Section 4 displayed the simulation 
results, and finally, the paper is concluded in Section 5. 
 
2. The Grey Box Model 

 In mathematics, statistics, and computational modelling, a grey box model is a well-
known combination of partial theoretical structures and the real output system to gain an 
approximate model. The accuracy of parameter values as the representative of real dynamics 
behavior in a real system can be achieved by using optimization techniques (Bohlin, 2006; 
Hauth, 2008). Figure 1 illustrates the modelling procedure applied in this investigation. 

 
Figure 1 Modelling procedure using identification technique 

 Until now, the existing studies of resolving path loss problems are situated only at 
particular scenarios of high-speed rail without any physical factors considered. 
Subsequently, this work introduces a new path loss model for HSR with 26 Ghz in 5G 
spectrum allocation which is represented by: 
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 Where 92.45 is a constant value when f is measured in units of Ghz, The parameter 𝑑 is 
in km units, and the utilized frequency carrier  𝑓𝑐  is 26 Ghz. Figure 2 displays a typical HSR 
communication link under a line of sight scenario. 

 
Figure 2 The illustration of high-speed rail communication link 

Assuming  𝑃𝐿̅̅ ̅̅ (𝑑𝑜) is denoted as 𝑋1  is which is the first unknown parameter that 
describes the path loss values from close-in reference distance and typically determines from 
measurements where the signal starts to attenuate. The bars in the equation denote the 
ensemble average of all possible path loss values for a given value (𝑑). When a log scale is 
plotted, the modeled path loss is a straight line with a slope equal to 10𝛾 dB per decade. The 
value of 𝛾 depends on the specific propagation environment of HSR, as in free space 𝛾 is equal 
to 2, but larger obstructions will cause larger values of 𝛾. 

𝑋𝜎 is the second unknown parameter which is denoted as 𝑋2 . It refers to large-scale 
fading when signal power is attenuated and fluctuated due to obstacles and interferences 
between the transmitter and receiver over a long distance. The last unknown parameter is 
the Doppler Effect, denoted as 𝑓𝑑

𝑎𝑏 . The parameter of the Doppler Effect is defined as a 

nonlinear equation. It denotes the function of distance to time: 𝑓𝑑
𝑎𝑏(𝑡) = 𝑥(𝑡). 𝑋3. 

Particularly, Vehicular penetration loss (VPL) must be considered in the path loss 
parameterization because it severely affects signal propagation handovers due to the rapid 
change in the environment and multiple intersections, especially for high mobility scenarios 
of HSR. VPL can be put in the range of 15-25 dB depending on the operating frequency and 
vehicle types (Laiyemo, 2018). It is quantified by the ratio of received power immediately 
outside the HSR to the receiver inside the vehicle. Moreover, the signal attenuation in uplink 
and downlink is significantly affected by antenna configuration, carrier frequency, and the 
material used in the construction of high-speed rail. In the constructed path loss model, VPL 
is calculated 25 dB for 5G railway frequency band occupation.  It is one of the critical 
challenges to perform an accurate path loss measurement since a large VPL will lead to the 
unreliable achievement of broadband communication for high-speed rail. 

The antenna gain of 14.89 dB is added in the path loss model as the simulation result of 
26 Ghz of MIMO 2x2 micro-strip antenna configuration for the 5G railway communication 
system. This gain antenna achievement is adequate than the existed gain of an integrated 
antenna system for 4G and mm-wave 5G (Naqvi et al., 2019). Data acquisition was carried 
out by measuring power transmission level when high speed approached and retreated the 
BTS (Base Station). Data acquisition was conducted when high-speed rail is in an idle state 
condition, which means no communications such as computers information, automatic data 
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processing, information, or control system exchanges were being transmitted or received, 
and since most HSRs are built on viaducts scenario so consequently, additional undesirable 
random noises no longer existed. Moreover, the achievement of simulated antenna gain in 
the model is more than sufficient to cover those unwanted interferences. As easy as it is to 
represent the unknown parameters during the iteration process, the constructed path loss 
model can be written:
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The objective function for the optimization process is represented by the root mean 
square error (RMSE) and Mean Absolute Percentage Error which are given as below 
formulae. 
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 GRG and GA are utilized to provide physical knowledge for model structures, combined 
with system identification, adaptation of the parameters and measurement dataset. The 
constraints to the optimization are defined by minimizing Equation 3 and Equation 4 where: 
−500 ≤ 𝑋1 ≤ 100, −500 ≤ 𝑋2 ≤ 500, 𝑋3 ≥ 0 . The constraints are chosen large enough, 
assuming the anticipation of the high velocity and high frequency of 5G. By modifying 
𝑋1, 𝑋2, 𝑋3desirable results of the optimized path loss model for high-speed rail, which fits 
adjustably to the given measurements, are achieved. 
 
3. Optimization Method 

3.1.  GRG Algorithm 
Solving a nonlinear equation system is perhaps the most difficult problem in numerical 

computations because of range in engineering application diversities. The convergence and 
performance characteristics are dominantly sensitive to the initial guess of the solution for 
most numerical methods such as metaheuristic algorithms. 

Nevertheless, a former GRG (Generalized Reduced Gradient) algorithm offers some 
advantages of reliability and robustness. GRG describes a first-order optimization algorithm 
with the first derivative when updating the parameters. It was applied for solving large 
sparse nonlinear programs and the complete description of how to code the GRG algorithm 
was conducted efficiently. In its most basic form, the GRG algorithm focuses on the gradient 
or slope of the objective function as the change of decision variables or input values by 
regulating them until the optimum solution is achieved. The inequality constraints are 
converted into equality forms by utilizing the slack variables. GRG is proven to be robust for 
a former local search algorithm.   

Basically, it linearizes nonlinear objective functions with some constraints for each 
candidate solution which in this term is the path loss of unknown parameter values 𝑋1, 𝑋2, 𝑋3 
by applying Taylor expansion in the search space. The candidate solutions 𝑋1, 𝑋2, 𝑋3 are 
driven to find the most optimal points while avoiding some appointed constraints. The 
candidate solutions 𝑋1, 𝑋2, 𝑋3 will automatically reverse themselves whenever they collide 
with the constraints, as depicted in Figure 3. 
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Figure 3 The procedure of GRG in finding the unknown parameters in the path loss model 

A general form of a nonlinear equation where 𝐹(𝑐𝑑)  and 𝑔(𝑐𝑑)  are denoted as 
continuous functions that can be derived in the domain {𝑐𝑑|𝑙 ≤ 𝑐𝑑 ≤ 𝑢} . The problem is 
defined as: 
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It is added to the decision variable of all constraints by setting a lower bound of zero, so 
it can start as a natural basic feasible solution. The procedure to complete the GRG algorithm 
can be written as follows: 

1. Initialize 𝑐𝑑 as an initial value and Find a feasible solution which must be less than 
the error value 𝜀  where 𝜀 > 0.  

2. If the value is less than error value ε , the process must be terminated.  If else, proceed 
to step 3. 

3. Compute Jacobian (𝐽) of the constraints. 
4. Select  a group of basic variables 𝑐𝑑  as the basic solution for non-zero values. The 

matrix value 𝐵𝑝 from the base, column 𝐽 becomes non-singular, followed by the 

factorization of 𝐵𝑝.The remaining variable, which is namely the non-base variable 

𝐶𝑑𝑛𝑏  and the variable in the basic solution, which has zero value, can be written as 

𝐵𝑝 =
𝜕𝑔(𝐶𝑑)

𝜕𝑔(𝐶𝑑)
 and calculate The multiplier value 𝐵𝑃

𝑇 =
𝜕𝐹(𝐶𝑑)

𝜕(𝐶𝑑𝑏)
 is calculated. 

5. Solve the value of reduced gradient  𝑟 =
𝜕𝐹(𝐶𝑑)

𝜕(𝐶𝑑𝑏)
− 𝐽𝑇𝑝, If the 𝑟 value is projected on the 

small constraints, the calculation is terminated due to the optimal value achievement. 
6. Find and construct search directions 𝑑  for the non-base variables r and construct 

tangential directions. For each step, adjust the value 𝐶𝑑𝑏  which fulfills 𝑔(𝐶𝑑𝑏, 𝐶𝑑𝑛𝑏) =
 𝑏𝑔 by utilizing  𝐵𝑝 

7. Return to step 2 

3.2.  Genetic Algorithm 
The Genetic Algorithm (GA) is a random-based evolutionary algorithm inspired by 

Charles Darwin’s theory of natural evolution. The GA is inspired by the process of natural 
genetics, which comprises reproduction of an original population, crossover performances, 
mutation, and selection of the best (D’Angelo, 2021). GA, as the utilized optimization 
technique, works on some solutions in the population size. However, unlike the GRG 
algorithm, every candidate solution is individually driven to find optimal solutions while 
strictly considering some constraints. In GA, candidate solutions of 𝑋1, 𝑋2, 𝑋3 are dispersed 
in the search space as a single chromosome representing genes to be converted into the 
binary system. Figure 4 illustrates the searching process of the unknown path loss 
parameters for the most optimal solution.  



Lukman et al.   855 

  
Figure 4 The procedure of the Genetic Algorithm in finding the best solution for the path loss 
model 

Figure 4 shows that each individual who is this term is the unknown parameters of the 
path loss model in a population has a fitness value. The best individuals that represent the 
quality of the solutions are selected in a fitness function.  Each individual’s fitness score is 
given based on their ability to compete with others the best individual selection based on 
quality is called a mating pool, where the genes are exchanged. The higher probability is 
achieved by a higher quality individual as well. Mating high-quality individuals are expected 
to attain a better quality offspring than their parents, which will prevent bad individuals from 
generating more bad individuals. So accordingly, there shall be higher opportunities to keep 
only good properties of the individuals. 

This process will end up with the desired optimal solution. The most significant phase in 
GA is crossover. The process of cross-over is selected randomly from within the genes for 
each mated pair of parents. The offspring have the characteristics of their parents and thus 
the similar drawbacks in their parents will actually endure in the new offspring. Some genes 
can be subjected to a mutation of a low random probability for particular new offspring 
formed. The diversity in the population is maintained, and the premature convergence can 
be avoided as well. The process is slow and gradual until the best solution is achieved. The 
iteration of GA is terminated when the population has reached its convergence. It implies 
that significant differences from the previous generation of offspring are no longer produced. 
The sequence of phases is repeated to obtain individuals in each new generation who are 
better than the previous generation. 

 
4. Simulation Results 

GRG and GA require initial values before starting the iteration process to solve the 
unknown parameters of path loss for 5G-HSR (Koshikawa et al., 2007; He et al., 2020). 
Equation 2 shows there are three parameters that will be approximated: 𝑋1, 𝑋2 and 𝑋3. These 
candidate solutions must be fulfilled the initial constraints, which are shown is Table 1 and 
Table 2.  The dataset was separated into trainingand testing datasets in a ratio of 80:20, 
where 80% is used for data training and the rest 20% is for data testing. The objectivity of 
doing this procedure is to evaluate the model’s consistency and achieve better model 
robustness. 
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Table 1 The initial 𝑋1,𝑋2,𝑋3 approximate new values and performance evaluation of GRG 

Trial 1 2 3 4 5 

Initial 
1X  47 57 67 77 87 

Initial
2X  -100 -200 -300 -400 -500 

Initial
3X  0.01 0.02 0.03 0.04 0.05 

New
1X  0.0017 37.745 59.10 74.29 87.44 

New
2X  -399.41 -437.15 -458.51 -473.70 -486.86 

New
3X  0.01075 0.01075 0.01075 0.01075 0.01075 

Training Set 
RMSE 2.708 2.708 2.708 2.708 2.708 

MAPE 1.676% 1.676% 1.676% 1.676% 1.675% 

Testing Set 
RMSE 2.979 2.979 2.979 2.979 2.979 

MAPE 1.775% 1.775% 1.775% 1.775% 1.775% 

Fully Optimized Set 
RMSE 2.7790 2.7791 2.7790 2.7790 2.7791 

MAPE 1.7015% 1.7014% 1.7014% 1.7015% 1.7015% 

 
Table 2 The initial 𝑋1,𝑋2,𝑋3 approximate new values and performance evaluation of GA 

Trial 1 2 3 4 5 

Initial 
1X  47 57 67 77 87 

Initial
2X  -100 -200 -300 -400 -500 

Initial
3X  0.01 0.02 0.03 0.04 0.05 

New
1X  50.40 38.67 64.79 53.04 74.80 

New
2X  -449.79 -438.12 -462.22 -452.45 -474.22 

New
3X  0.01074 0.01079 0.01075 0.01074 0.01075 

Training Set 
RMSE 2.7089 2.7090 2.7089 2.7089 2.7089 

MAPE 1.674% 1.678% 1.677% 1.676% 1.677% 

Testing Set 
RMSE 2.9799 2.9770 2.9786 2.9793 2.9789 

MAPE 1.7738% 1.7793% 1.7770% 1.7755% 1.7766% 

Fully Optimized 
Set 

RMSE 2.7793 2.7786 2.7789 2.7791 2.7790 

MAPE 1.6993% 1.7056% 1.7027% 1.7010% 1.7022% 

Choosing the initial parameter values that can provide a fast convergence of RMSE and 
MAPE value is challenging because incorrect ones will trap the values in the local minima. As 
in definition, RMSE shows how accurate the model is in performing prediction tasks even 
though the criterion depends on individual objectives, so more than one indicator might be 
very useful. Additionally, mean absolute percentage error (MAPE) describes the average of 
the absolute percentage errors. It simply indicates how many errors are yielded in 
performing prediction tasks with the real value of measurements. Table 1 and Table 2 show 
similar satisfying RMSE and MAPE values that eventually converge to RMSE = 2.779 and 
MAPE = 1.701 %. Even though GA suffers from a slow convergence right start from the 
beginning of the iteration process, GA has already proven its robustness in performing 
approximation tasks. For a better understanding of the performance evaluation from both 
algorithms, an additional evaluation performance is provided to show agreements with the 
measurement dataset presented in Figure 5 below. 

Figure 5 displays the almost similar visualization fitting plots. Both optimization 
techniques are confident to follow the dynamic behavior of HSR at the distance of 230.65 
meters and path loss value at 120.29 dB for GRG, followed by GA at the distance of 219.90 
meters and path loss value of 120.53 dB. Although, slight discrepancies exist in the fitting 
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plot of both algorithms. GA provides a better-adjusted agreement with the measurement 
dataset result which is faster than GRG. The validation performance shows that the 
constructed path loss model for 5G-HSR is accurate.  

 

             
 
    [a]           [b] 

Figure 5 The visualization of fitting plot performance: [a] GRG; and [b] GA 

Hence, based on the satisfactory achievement from GA, the new parameter values are 
put back into Equation 2, and the resulting path loss model for high-speed rail in a 5G 
communication system is as below. 

       

5000
( ) 92.45 20log 26 74.80( ) 10 log ( 474.2)( ) 21.9( ) 385

240
PL dB Ghz dB dB dB dB

 
= + + + + − + + 

 
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The representation of GRG and GA path loss model complies with the best fit 
approximate solutions to the original path loss measurement of high-speed rail even though 
slowness in converging to the solution was performed in GA. The satisfactory result indicates 
that the construction path loss model of 5G-HSR has successfully dealt with the original data 
measurement, and accordingly, the accuracy validation of the path loss model is effectively 
implemented by utilizing grey box modelling 
 
5. Conclusions 

As the significance of 5G wireless network planning continues to grow, so will the 
requirements for better methods of measuring wireless signal propagation and modelling   a 
path loss prediction for high speed rail.  This paper gives a broad overview of approaches 
given in a grey box modelling to validate a newly constructed path loss model in the 5G 
communication system for HSR. The grey box modelling with the application of GRG and GA 
has shown excellent results in finding the unknown parameters value of the newly 
constructed path loss model with satisfying results of RMSE convergence approximately to 
2.779 and MAPE value 1.701 %, respectively. The results revealed that the new path loss 
model is successfully validated. The framework in this study had shown that the created path 
loss model had a good adjusted agreement with the dynamic characteristic of the original 
path loss measurement which GA ultimately achieves. In future works, many possible 
directions in this area with promising great impacts in high-speed rail crucial applications 
are widely open for investigation. Comparative validation techniques and measurement-
based approaches are required, so the validated path loss model can be utilized to design the 
future dense wireless communication infrastructures for high-speed rail in a 5G 
communication network. 
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