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Abstract. We propose a batch-scheduling model to minimize the total actual flow time (TAF) of 
parts to be processed in a flow shop consisting of m batch-processing machines. A batch-processing 
machine (BPM) is a machine that can process several parts at once, and the TAF of parts is the total 
interval time from the arrival times to the corresponding due date. In the real world, shop floors 
often have production lines with BPMs and multistage processes. We were motivated by a real 
problem in the aircraft industry and aimed to simultaneously satisfy the due dates and minimize 
the total time that parts spend in the shop. The problem was formulated as a mathematical model 
and solved using a proposed algorithm. The batch-scheduling problem is divided into batching and 
scheduling subproblems. The solution has been obtained by adopting backward scheduling. This 
paper develops a new model of flow shop scheduling problem for the shop with batch processing 
machines and the heuristic solution method. It provides numerical examples and their results to 
demonstrate the effectiveness of the proposed algorithm for solving the problem.  
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1. Introduction 

A batch can be defined as several parts sharing the same setup, and the parts can be 
processed either on a job-processing machine (abbreviated as JPM) or on a BPM. The 
difference between a JPM and a BPM lies in how they process parts in a batch. A JPM 
individually processes all parts in a batch sequentially, whereas a BPM processes them 
simultaneously. This research focuses on the shop floor with BPMs found in many 
industries, such as that used for burn-in operations in the semiconductor industry, heating 
and pressure operations in aeronautical manufacturing, and hardening and soaking 
processes in automobiles gear manufacturing, and drying operations in the lumber 
industry.  

Several researchers have discussed flow shop scheduling problems. Gong et al. (2010) 
addressed a flow shop scheduling in steel manufacturing consisting of a soaking pit as the 
first stage with BPM and a rolling mill as a second stage with a JPM. The ingots (parts) in a 
batch will remain in the soaking pit if the rolling mill is processing another ingot, during 
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which the soaking pit will be blocked. Fu et al. (2012) also considered the blocking 
constraint in a flow shop scheduling problem with two stages where the first stage is a BPM, 
and the second stage with a JPM follows it. The buffer between consecutive machines is 
limited; thus, the completed batch will keep the BPM blocked if the buffer between straight 
machines is full. Chen et al. (2014) also considered the blocking constraint, particularly for 
the flow shop scheduling problem with two BPMs with dynamic job arrivals at the first BPM.  

Liao and Huang (2011) have developed a batch scheduling model for a flow shop 
consisting of two BPMs with unlimited buffer capacity, and the objective is makespan 
minimization. To solve the problem, they created a heuristic procedure based on a Tabu 
search. It is shown that the heuristic is effective for solving scheduling problems with 
relatively many jobs. Matin et al. (2017) dealt with issues of BPMs flow shop where the 
parts in a batch and its batch size may change when the batch is processed on different 
machines. Rosi et al. (2013) developed a hybrid model of a flow shop for a sterilization plant 
to minimize makespan and the number of tardy jobs. They aim to reduce the number of 
tardy jobs (surgical kits) because late jobs will cause the surgery to be rescheduled, which 
brings heavy medical and economic consequences. The makespan is considered an 
objective because a lower makespan results in lower idle time and higher machine 
utilization and efficiency. On the other hand, Gokhale and Mathirajan (2011), Chou and 
Wang (2012), Peres and Monch (2013) have used due-date as a performance measurement. 
Utama et al. (2019) proposed a flow shop scheduling model to minimize energy 
consumption in scheduling jobs on each machine and adopted a new hybrid meta-heuristic 
for solving the problems. 

However, those research adopted the forward scheduling approach that may violate 
the due dates of jobs, and precisely represents what customers need. Many manufacturing 
companies intend to satisfy the due dates and minimize inventory. For fulfilling the due 
date, we should adopt the backward-scheduling approach, starting from the due dates of 
jobs and moving backward until the job is released. Meanwhile, the so-called actual flow 
time, defined as an interval from the arrival time of a part to the due date, was used as an 
objective for batch-scheduling (abbreviated as BS) problems in Halim and Ohta (1993). 
They showed that minimizing TAF of parts in the shop minimizes the total time that the 
parts spend in the shop and guarantees that the delivery of the completed parts always 
meets the due date. Note that TAF is based on the backward-scheduling approach. This 
objective was applied for various cases of BS problems (Surjandari et al., 2015; Yusriski et 
al., 2016; Maulidya et al., 2020), but the research pieces were for shop floors with JPMs. In 
reality, in many cases, the shop floor constitutes production lines with BPMs and multistage 
processes.  

Hidayat et al. (2013) adopted the TAF and the  backward scheduling approach for a BS 
problem with a single BPM processing part of a single item where the completed parts 
should be sent simultaneously on d as a due date. The model proposed by Hidayat et al. 
(2013) was developed further from different viewpoints: to tackle the condition of m 
heterogeneous BPMs by distributing parts to each of the m heterogeneous BPMs (Hidayat 
et al., 2014); to handle multiple due dates by distributing parts into all periods between two 
consecutive due dates (Hidayat et al., 2016); and to handle the condition of  multiple items 
(Hidayat et al., 2018). These researches focus on single-stage scheduling issues but 
demonstrate how BPM challenges differ from JPM challenges. 

However there is a need to develop a model of BS problems for a flow shop with BPMs 
to minimize the TAF. Such a model will extend the single-stage BS model with a BPM 
discussed in Hidayat et al. (2013 and 2016) to handle flow-shop processing parts of a single 
item delivered on d as a due date. Under the premise that the due date is far enough off to 
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produce workable schedules, it is possible to split the problem of BS for a flow shop with 
BPM into two subproblems that are solved concurrently. The first subproblem is 
determining the number of batches and the size of each batch. The second sub-problem is 
the scheduling of the resulting batches. 
 
2. Experimental 

We were motivated by a real problem in the aircraft industry to propose a BS model for 
a flow shop with m BPMs. The problem is as follows: Let there be n ordered parts of a single 
item where the completed parts should be sent on a due date, d. Each part should be 
processed through m operations performed on corresponding BPMs. Thus, the parts are to 
be processed in a flow shop with m BPMs, 𝐵𝑃𝑀1 − 𝐵𝑃𝑀2 − ⋯ − 𝐵𝑃𝑀𝑚  in this machine 
order. Each BPM simultaneously processes c parts in a batch, where the part-processing 
times on a machine are 𝑡1, 𝑡2,..., 𝑡𝑚 respectively where 𝑡1 ≠ 𝑡2 ≠ ⋯ ≠ 𝑡𝑚 , and the setup time 
required before processing equals s.  

Assumptions for the proposed model are: (1) all of the parts can be arrived at the 
starting time of batch processing, (2) during the scheduling period, all of BPMs are available, 
and (3) no rejection of the processed parts and the completed parts are always conforming. 
Figure 1 shows the problem for a flow shop with m BPMs. 
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Figure 1 Problem for a flow shop with m BPMs 

The notations used in the proposed models are as follows.  

Indices 
𝑖  : The index denoting the positions of a batch on a production schedule. 
𝑘  : The index that identifies the machine number in the shop, 𝑘 = 1,2, … , 𝑚 

Parameters  
𝑑 : The common due date 
𝑠𝑘  : The setup time before processing a batch on 𝐵𝑃𝑀𝑘 
𝑠𝑘(𝑖) : The setup time before processing a batch  𝑏𝑘(𝑖) on 𝐵𝑃𝑀𝑘 

𝑡𝑘   : The processing time of each part on 𝐵𝑃𝑀𝑘 
𝑡𝑘(𝑖) : The processing time of batch 𝑏𝑘(𝑖)  

Variables  
𝐵𝑘(𝑖)  : The starting time of the processing batch 𝑏𝑘(𝑖) 

𝐶𝑘(𝑖)  : The completion time of batch 𝑏𝑘(𝑖) 

𝐹𝐿𝑘(𝑖)
𝑎  : The actual flow time of batch 𝑏𝑘(𝑖) 

𝑁  : The number of batches in the shop 
𝑄𝑘(𝑖) : The size of batch 𝑏𝑘(𝑖) 

𝐹𝑎  : TAF of parts through the shop 
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 The flow shop model with a single item and an expected due date (Model FsCdd) is 
shown in Figure 2.  
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Figure 2 Flow shop of m BPMs with N batches 

 Batches 𝑏𝑘(𝑁), for k = 1,2,..., m, are the first batches processed on the corresponding 

𝐵𝑃𝑀𝑘 (Figure 2). The first operations of each batch 𝑏1(𝑖), for i=1, 2,..., N, are processed on 

𝐵𝑃𝑀1, and so on until the last operations of each batch 𝑏𝑚(𝑖) on 𝐵𝑃𝑀𝑚. Since an identical 

sequence of batches is assumed for each BPM, it is sufficient to determine the TAF of the 
batches only on 𝐵𝑃𝑀1. For only 𝐵𝑃𝑀1, the Gantt chart will be identical to that for the single-
stage BS problem where the completed parts are sent on a due date, d (Figure 3).  
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 Figure 3 Batch-scheduling problem with N batches on 𝐵𝑃𝑀1 

 From Figure 3, the TAF of each batch can be determined as follows. 

𝐹𝐿1(𝑖)
𝑎 = 𝑑 − 𝐵1(𝑖) 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁                                                                                               

The sizes of respective batches are defined as 𝑄𝑖 , for i= 1, 2, …, N; then, TAF of all parts 
through the shop is formulated as follows:  

𝐹𝑎 = ∑(𝑑 − 𝐵1(𝑖))𝑄𝑖

𝑁

𝑖=1

                                                                                                                         (1) 

 The following conditions must be satisfied to minimize the TAF of all parts through the 
flow shop with m BPMs: 

(1) The completion time of the batch 𝑏𝑚(1)  on the last machine 𝐵𝑃𝑀𝑚  should exactly 

coincide with the due date, 𝐶𝑚(1) = 𝑑 and 𝐶𝑚(1) = 𝐵𝑚(1) + 𝑡𝑚, thus, 𝐵𝑚(1) + 𝑡𝑚 = 𝑑.  

(2) Processing of batch 𝑏𝑚(1) on 𝐵𝑃𝑀𝑚  should start immediately after the processing of 

batch 𝑏𝑚−1(1) on 𝐵𝑃𝑀𝑚−1 is completed. Thus 𝐵𝑘(1) = 𝐵𝑘+1(1) + 𝑡𝑘  for k = 2, 3,..., (m-1). 
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(3) Processing a batch on a machine can be started if the previous processing is completed 
and the machine is not currently processing any batch. Thus  𝐵𝑘(𝑖) = 𝑀𝑎𝑥 {𝐵𝑘−1(𝑖) +

𝑡𝑘−1 ; 𝐵𝑘(𝑖+1) + 𝑡𝑘 + 𝑠} for i = 1, 2,..., (N-1); k = 2, 3,..., m and 𝐵𝑘(𝑁) = 𝐵𝑘−1(𝑁) + 𝑡𝑘−1 for 

k = 2, 3,..., m.  

(4) 𝐵𝑃𝑀1  is the machine that performs the first operation for all batches. If 𝐵𝑃𝑀1  has 
completed an operation, then 𝐵𝑃𝑀1 will be ready to set up and process the next batch. 
Thus, 𝐵1(𝑖) ≥ 𝐵1(𝑖+1) + 𝑡1 + 𝑠 for i = 1, 2,..., (N-1) and 𝐵1(𝑁) ≥ 0. 

 In this study, the parts are assumed to arrive at the scheduled starting time of 
processing; all machines are always available, and there is no defect in the processes. The 
formulation of Model FsCdd is as follows.  

Model FsCdd 

Minimize 

𝐹𝑎 = ∑ (𝑑 − 𝐵1(𝑖))𝑄𝑖
𝑁
𝑖=1  (2) 

subject to 
𝐵𝑚(1) + 𝑡𝑚 = 𝑑 (3) 

𝐵𝑘(1) = 𝐵𝑘+1(1) + 𝑡𝑘        ∀𝑘 = 2, 3, … , (𝑚 − 1) (4) 

𝐵𝑘(𝑖) = Max {𝐵𝑘−1(𝑖) + 𝑡𝑘−1 ; 𝐵𝑘(𝑖+1) + 𝑡𝑘 + 𝑠𝑘}   ∀𝑖 = 1, … , (𝑁 − 1),     ∀ 𝑘 = 2, … , 𝑚 (5) 

𝐵𝑘(𝑁) = 𝐵𝑘−1(𝑁) + 𝑡𝑘−1       ∀𝑘 = 2, 3, … , 𝑚 (6) 

𝐵1(𝑖) ≥ 𝐵1(𝑖+1) + 𝑡1 + 𝑠1        ∀𝑖  = 1, 2, … , (𝑁 − 1) (7) 

𝐵1(𝑁) ≥ 0 (8) 

∑ 𝑄𝑘(𝑖)
𝑁
𝑖 = 𝑛    ∀𝑘 = 1,2, … , 𝑚 (9) 

0 < 𝑄𝑘(𝑖) ≤ 𝑐  ∀ 𝑖 = 1,2, … , 𝑁; ∀𝑘 = 1,2, … , 𝑚 (10) 

𝑁 ≥ 1 (11) 

 Equation (3) shows that the completion time of the last batch processed on the last 
machine must coincide with the due date, d. Equation (5) determines the start time of all 
other batches. A batch can only be started on 𝐵𝑃𝑀𝑘 after it is completed on the previous 
machine and after the batch previously processed on 𝐵𝑃𝑀𝑘 is completed. As soon as a batch 
is completed, the processing on the next machine can be started, and so on for the other 
subsequent batches until the last machine 𝐵𝑃𝑀𝑚, as shown in Equation (6). Equation (7) 
determines the relationship between the start time of consecutive batches on the first 
machine 𝐵𝑃𝑀1. Equation (8) guarantees the schedule feasibility, that is, the start time of 
the batch processed first on 𝐵𝑃𝑀1  will be on after time zero. Equation (9) ensures the 
material balance in the shop. Equations (10) and (11) restrict the batch sizes and the 
number of batches to positive values.  
 
3. Results and Discussion 

3.a. Solution Procedure 
The problem in this study is complicated because we must simultaneously solve 

batching and scheduling subproblems—the former involves determining the number of 
batches and the size of each  batch and the latter determining the schedule of processing 
the resulting batches in a flow shop. Hence, a heuristic procedure is necessary. The TAF of 
the parts through the shop will be minimized if the solutions of both subproblems are 
minimized, considering the problem's constraints.  

In a BPM, the number of parts in a batch is limited by capacity; thus, the maximum batch 
size is c, where c is the BPM’s capacity. The batch size must be an integer, so the minimum 
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batch size equals 1. The number of resulting batches will be minimum if the batch size is 
maximized, as 𝑁 = 𝑛 𝑐⁄ , where n is the total demand. Again, as the number of batches  must 
be an integer, if it is not an integer, then 𝑛 𝑐⁄  must be rounded up. The number of resulting 
batches will be maximum if the batch size is minimum, 𝑁 = 𝑛 1⁄ . The number of resulting 
batches cannot exceed the total demand (n).  
 Theorem: The scheduling period has N batches, and the batch sizes equal 𝑄𝑖  (i = 1, 2, …, 
N). The batches are to be processed in a flow shop with m BPMs (k = 1, 2, …, m), 𝐵𝑃𝑀1 −
𝐵𝑃𝑀2 − ⋯ − 𝐵𝑃𝑀𝑚 in this machine order. The setup time required before processing equals 
s, and the processing time on each BPM are 𝑡1, 𝑡2,..., 𝑡𝑚  where 𝑡1 ≠ 𝑡2 ≠ ⋯ ≠ 𝑡𝑚. The highest 
processing time is 𝑡𝑧  corresponding to 𝐵𝑃𝑀𝑧 (k = z). The completed parts should be sent on a 
due date, d. With backward scheduling, 𝐹𝑎 is minimized if and only if the batches are arranged 
in a non-increasing order of batch sizes, ranging from the position closest to the due date, d: 

𝑄1 ≥ 𝑄2 ≥ 𝑄3 ≥ ⋯ ≥ 𝑄𝑁  
 
Proof: 
 Equation (2) can be rewritten as Equation (12). 
 
𝐹𝑎 = ∑ 𝑡𝑘

𝑚
𝑘=1 ∑ 𝑄𝑖

𝑁
𝑖=1 + (𝑠𝑧 + 𝑡𝑧) ∑ (𝑖 − 1)𝑄𝑖

𝑁
𝑖=2  (12) 

Equation (12) shows that 𝐹𝑎 will be minimum if ∑ 𝑡𝑘
𝑚
𝑘=1 ∑ 𝑄𝑖

𝑁
𝑖=1  and (𝑠𝑧 + 𝑡𝑧) ∑ (𝑖 −𝑁

𝑖=2

1)𝑄𝑖 are minimum. The values of parameter setup time (𝑠𝑘and 𝑠𝑧) and the processing time 
(𝑡𝑘  and 𝑡𝑧) are fixed and known. The variable decision is the size of each batch, 𝑄𝑖 , and it is 
clear that the batch arrangement does not affect the value of ∑ 𝑄𝑖

𝑁
𝑖=1 . Increasing the value 

of i will increase the value of (i-1). It is clear that ∑ (𝑖 − 1)𝑄𝑖
𝑁
𝑖=2  will be the minimum only if 

𝑄𝑖  decreases. This means that the batch sizes must be in a non-increasing order. Thus, a 
minimum 𝐹𝑎  can be obtained if the batch size, 𝑄𝑖  decreases with increasing i. In other 
words, the batch that must be placed at the position closest to the due date (i=1) is the most 
giant batch, and the size continues to decrease until the last position (i=N). Thus, the 
following order is obtained: 

𝑄1 ≥ 𝑄2 ≥ 𝑄3 ≥ ⋯ ≥ 𝑄𝑁  

If the number of batches and the size of each batch are determined, the remaining 
problem is deciding the schedule for processing the resulting batches in the flow shop. This 
study differs from the classical flow shop studies in that we choose TAF as the objective and 
adopt the backward-scheduling approach. The next step is to generate a schedule, i.e., to 
determine the starting and completion times of each batch on each BPM based on the 
backward-scheduling approach, provisions of the flow shop, and highest operating time. In 
backward scheduling, the schedule determination starts from batch 𝑏𝑚(1) , i.e., the 

completion time of the first operation (i = 1) on the last machine (k = m) must coincide with 
the due date. Thus, the batch schedule𝑏𝑚(1) is obtained, i.e., 𝐶𝑚(1) = 𝑑 and 𝐵𝑚(1) = 𝐶𝑚(1) −

𝑡𝑚 .  
Then, the first operating schedule for the previous BPM is determined from k = (m-1) 

until k = 1, referring to the flow shop provisions based on backward scheduling: 𝐶𝑘(1) =

𝐵𝑘+1(1)  and 𝐵𝑘(1) = 𝐶𝑘(1) − 𝑡𝑘  for k = 1, 2,..., (m-1). Subsequently, the schedule on 𝐵𝑃𝑀𝑧 , 

which is the machine with the highest processing time, is determined. For 𝐵𝑃𝑀𝑧, there will 
be no waiting time and idle time. Hence, 𝐶𝑘𝑖 = 𝐵𝑘(𝑖−1) − 𝑠 and 𝐵𝑘𝑖 = 𝐶𝑘𝑖 − 𝑡𝑘 , for k = z and i 

= 2, 3,..., N. Schedules on other BPM will refer to 𝐵𝑃𝑀𝑧 schedule.  
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Algorithm for the FsCdd model:  
Step: 
0. Set n, c, m, s, and d. 
 For k = 1, 2, 3, …, m, set 𝑡𝑘  

1. Calculate 𝑁′ =
𝑛

𝑐
 go to 2 

2. If N’ is an integer, then N = N’, go to 3. Otherwise, N= rounding up of N’ batches, then 
go to 3 

3. Arrange N batches according to Theorem, and 𝑄1 ≥ 𝑄2 ≥ ⋯ ≥ 𝑄𝑁 . Go to 4. 
4. Set k = m, i = 1, and 𝐶𝑘𝑖 = 𝑑. Calculate 𝐵𝑘𝑖 = 𝐶𝑘𝑖 − 𝑡𝑘, and go to 5. 
5. Set k=k-1 and 𝐶𝑘𝑖 = 𝐵(𝑘+1)𝑖 , calculate 𝐵𝑘𝑖 = 𝐶𝑘𝑖 − 𝑡𝑘 , go to 6. 

6. If k=1, then go to 7. Otherwise, go to 5. 
7. If 𝑡𝑘  is the highest processing time, then set z =k, and go to 9. Otherwise, go to 8. 
8. Set k=k+1, and go to 7. 
9. Set i=i+1; calculate 𝐶𝑘𝑖 = 𝐵𝑘(𝑖−1) − 𝑠 and 𝐵𝑘𝑖 = 𝐶𝑘𝑖 − 𝑡𝑘, and go to 10. 

10. If i=N, then go to 11; otherwise, go to 9. 
11. If z=1, then set k=1 and go to 12. Otherwise, go to 15. 
12. Set 𝐶𝑘𝑖 = 𝐵(𝑘+1)𝑖 , calculate 𝐶(𝑘+1)𝑖 = 𝐵(𝑘+1)𝑖 + 𝑡(𝑘+1), and go to 13. 

13.  If i=2, then go to 14, otherwise set i=i-1, and go to 12. 
14.  If k=(m-1), then go to 25, otherwise set k=k+1; i=N, and go to 12. 
15.  If z=m, then set k=m, go to 16. Otherwise, go to 19. 
16. Set 𝐵𝑘𝑖 = 𝐶(𝑘−1)𝑖; compute 𝐵(𝑘−1)𝑖 = 𝐶(𝑘−1)𝑖 − 𝑡(𝑘−1), and go to 17. 

17.  If i=2, then go to 18, otherwise set i=i-1, and go to 16. 
18.  If k=2, then go to 25. Otherwise, set k=k-1; i=N, and go to 16. 
19.  Set 𝐶𝑘𝑖 = 𝐵(𝑘+1)𝑖; calculate 𝐶(𝑘+1)𝑖 = 𝐵(𝑘+1)𝑖 + 𝑡(𝑘+1), go to 20. 

20.  If i=2, then go to 21. Otherwise, set i=i-1, and go to 19. 
21.  If k=(m-1), then set k=z and i=N, go to 22. Otherwise, set k=k+1 and i=N, and go to 19. 
22.  Set 𝐵𝑘𝑖 = 𝐶(𝑘−1)𝑖; calculate 𝐵(𝑘−1)𝑖 = 𝐶(𝑘−1)𝑖 − 𝑡(𝑘−1), and go to 23. 

23.  If i=2, then go to 24. Otherwise, set i=i-1, and go to 22. 
24.  If k=2, then go to 25. Otherwise, set k=k-1; i=N, and go to 22. 
25.  Calculate 𝐹𝑎 , and STOP. 

 
3.b. Numerical Examples 

Let there be 70 parts of a single item to be processed on  𝐵𝑃𝑀1 , 𝐵𝑃𝑀2 , 𝐵𝑃𝑀3 , and 
𝐵𝑃𝑀4 in this machine order. The capacity of each BPM is 20 parts, the setup time on each 
BPM is equal to 1, and the due date equals 200. Herein, we present three numerical 
examples that differ in the processing times on a BPM (Table 1).  

Table 1 Processing time on a BPM (𝑡𝑘) 

Case 

No. 

𝑘 The highest 

processing 
time 

1 2 3 4 

1. 20 10 15 5 𝑡1 = 20 

2. 5 20 10 15 𝑡2 = 20 

3. 15 10 20 5 𝑡3 = 20 

 



Halim et al.   823 

For the proposed algorithm, there are four batches where the batch sizes are 𝑄1 =
𝑄2 = 𝑄3 = 20 and 𝑄4 = 10, respectively. Table 2 lists the starting and completion times of 
batches on each BPM. Figure 4 shows the Gantt chart for Case 3.  

Table 2 Results of the calculation using the proposed algorithm for the FsCdd model  

Case-1: 𝑡1 = 20; 𝑡2 = 10; 𝑡3 = 15; 𝑡4 = 5; 𝑑 = 200, 𝑛 = 70, 𝑐 = 20 and 𝑠 = 1 

𝐶41 = 200; 𝐵41 = 195 𝐶31 = 195; 𝐵31 = 180 𝐶21 = 180; 𝐵21 = 170 𝐶11 = 170; 𝐵11 = 150 

𝐶42 = 179; 𝐵42 = 174 𝐶32 = 174; 𝐵32 = 159 𝐶22 = 159; 𝐵22 = 149 𝐶12 = 149; 𝐵12 = 129 

𝐶43 = 158; 𝐵43 = 153 𝐶33 = 153; 𝐵33 = 138 𝐶23 = 138; 𝐵23 = 128 𝐶13 = 128; 𝐵13 = 108 

𝐶44 = 137; 𝐵44 = 132 𝐶34 = 132; 𝐵34 = 117 𝐶24 = 117; 𝐵24 = 107 𝐶14 = 107; 𝐵14 = 87 

𝐹𝑎 = ∑(𝑑 − 𝐵1𝑖)

4

𝑖=1

𝑄𝑖 = (200 − 150)20 + (200 − 129)20 + (200 − 108)20 + (200 − 87)10 = 5.390 

Case-2: 𝑡1 = 5; 𝑡2 = 20; 𝑡3 = 10; 𝑡4 = 15; 𝑑 = 200, 𝑛 = 70, 𝑐 = 20 and 𝑠 = 1 

𝐶41 = 200; 𝐵41 = 185  𝐶31 = 185; 𝐵31 = 175 𝐶21 = 175; 𝐵21 = 155 𝐶11 = 155; 𝐵11 = 150 

𝐶42 = 179; 𝐵42 = 164 𝐶32 = 164; 𝐵32 = 154 𝐶22 = 154; 𝐵22 = 134 𝐶12 = 134; 𝐵12 = 129 

𝐶43 = 158; 𝐵43 = 143 𝐶33 = 143; 𝐵33 = 133 𝐶23 = 133; 𝐵23 = 113 𝐶13 = 113; 𝐵13 = 108 

𝐶44 = 137; 𝐵44 = 122 𝐶34 = 122; 𝐵34 = 112 𝐶24 = 112; 𝐵24 = 92 𝐶14 = 92; 𝐵14 = 87 

𝐹𝑎 = ∑(𝑑 − 𝐵1𝑖)

4

𝑖=1

𝑄𝑖 = (200 − 150)20 + (200 − 129)20 + (200 − 108)20 + (200 − 87)10 = 5.390 

Case-3: 𝑡1 = 15; 𝑡2 = 10; 𝑡3 = 20; 𝑡4 = 5;  𝑑 = 200, 𝑛 = 70, 𝑐 = 20 and 𝑠 = 1 

𝐶41 = 200; 𝐵41 = 195  𝐶31 = 195; 𝐵31 = 175 𝐶21 = 175; 𝐵21 = 165 𝐶11 = 165; 𝐵11 = 150 

𝐶42 = 179; 𝐵42 = 174 𝐶32 = 174; 𝐵32 = 154 𝐶22 = 154; 𝐵22 = 144 𝐶12 = 144; 𝐵12 = 129 

𝐶43 = 158; 𝐵43 = 153 𝐶33 = 153; 𝐵33 = 133 𝐶23 = 133; 𝐵23 = 123 𝐶13 = 123; 𝐵13 = 108 

𝐶44 = 137; 𝐵44 = 132 𝐶34 = 132; 𝐵34 = 112 𝐶24 = 112; 𝐵24 = 102 𝐶14 = 102; 𝐵14 = 87 

𝐹𝑎 = ∑(𝑑 − 𝐵1𝑖)

4

𝑖=1

𝑄𝑖 = (200 − 150)20 + (200 − 129)20 + (200 − 108)20 + (200 − 87)10 = 5.390 
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Figure 4 Gantt chart of case-3  

From Table 2, we can see that the machine with the highest processing time (𝐵𝑃𝑀𝑧) 
will require the most production time. Therefore, time is essential at 𝐵𝑃𝑀𝑧, as indicated by 
the absence of idle time at 𝐵𝑃𝑀𝑧. In all cases, every time 𝐵𝑃𝑀𝑧 finishes processing a batch, 
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𝐵𝑃𝑀𝑧 immediately sets up and processes the next batch. In contrast to other BPMs that 
experience idle time (e.g., 𝐵𝑃𝑀4 in case-3 experiences idle time of 15—the difference in 
processing time between 𝐵𝑃𝑀3 and 𝐵𝑃𝑀4, i.e., 𝑡3 − 𝑡4 =15). The idle time at 𝐵𝑃𝑀2 is 10, 
the difference in processing time 𝐵𝑃𝑀3 with 𝐵𝑃𝑀2, (𝑡3 − 𝑡2 =10). When the idle time at 
𝐵𝑃𝑀1 is 5, that is, the difference in processing time between 𝐵𝑃𝑀1 and 𝐵𝑃𝑀2 (𝑡1 − 𝑡2 = 5).  

In all cases, the waiting time appears only at 𝐵𝑃𝑀4 which carries out the last process 
in the flow shop sequence. Waiting time occurs in batches 𝑏42, 𝑏43, and 𝑏44 because 𝐶42, 𝐶43  
and 𝐶44 are not equal to d. At 𝐵𝑃𝑀1, 𝐵𝑃𝑀2 and 𝐵𝑃𝑀3, there is no waiting time because it is 
assumed that the batch arrivals at 𝐵𝑃𝑀1  can be arranged at the time when the parts 
perform the first operation on 𝐵𝑃𝑀1. Then, after finishing processing on 𝐵𝑃𝑀1, the second 
process on 𝐵𝑃𝑀2, 𝐶1𝑖 = 𝐵2𝑖 , is immediately performed, and so on until the last processing. 
This is possible because of the backward-scheduling approach. 

Although the processing time configuration of each BPM differs among cases, the value 
of 𝐹𝑎  in all cases is identical, i.e., 5,390. This happens because demand (n) and BPM (c) 
capacity in each case are equal. Hence, for the batching subproblem, we get the same batch 
number and the batch size. From Theorem, identical batching results yield identical batch 
arrangements in each case, namely, 𝑄1 = 𝑄2 = 𝑄3 = 20 and 𝑄4 =10, and 𝐵1(𝑖) All cases are 

the same—𝐵1(1) =150, 𝐵1(2) =129, 𝐵1(3) =108, and 𝐵1(4) =87. Equation (2) shows that 

minimum 𝐹𝑎 is only determined by the decision variables 𝑄𝑖  and 𝐵1(𝑖). Equation (12) shows 

that the value 𝐹𝑎 is the sum of ∑ 𝑡𝑘
𝑚
𝑘=1 ∑ 𝑄𝑖

𝑁
𝑖=1  and (𝑠𝑧 + 𝑡𝑧) ∑ (𝑖 − 1)𝑄𝑖

𝑁
𝑖=2 . Thus, it is clear 

that 𝐹𝑎 is identical across the cases. 

3.c. Model Validation 
We tested the model using Lingo software, and we used several sets of data with 

arbitrary selection. This was done considering that some researchers have discussed BS 
problems for flow shops with BPMs. However, any previous work has not adopted the 
objective of minimizing the TAF and the backward-scheduling approach. From the test, in 
all cases, the number of formed batches is minimum as 𝑁 = 𝑛 𝑐⁄  and it is an integer. The 
number of batches must be an integer; hence, if it is not an integer, 𝑛 𝑐⁄  is rounded up. The 
batch arrangement satisfies Theorem and the value of 𝐹𝑎 is minimum, equals to Equation 
(12). Table 3 lists the results of the data calculation.  

Table 3 Calculation results of hypothetical data 

No 𝑡1 𝑡2 𝑡3 𝑡4 𝑠𝑘 n c N 𝑄𝑖  𝐹𝑎 

1. 8 19 15 16 4 76 15 6 𝑄𝑖 =15 for i=1,…, 5; 𝑄6 = 1 7,973 

2. 10 11 30 11 2 87 11 8 𝑄𝑖 =11 for i=1,…, 7; 𝑄8 = 10 15,026 

3. 22 21 15 10 3 79 17 5 𝑄𝑖 =17 for i=1,…, 4; 𝑄5 = 11   9,022  

4. 20 30 22 15 1 82 18 5 𝑄𝑖 =18 for i=1,…, 4; 𝑄5 = 10 11,722  

5. 23 27 28 26 4 88 18 5 𝑄𝑖 =18 for i=1,…, 4; 𝑄5 = 16 14,656 

6. 5 16 28 23 2 88 12 8 𝑄𝑖 =12 for i=1,…, 7; 𝑄8 = 4 14,736 

7. 14 6 24 15 3 74 10 8 𝑄𝑖 =10 for i=1,…, 7; 𝑄8 = 4 10,792 

8. 23 21 17 20 3 69 16 5 𝑄𝑖 =16 for i=1,…, 4; 𝑄5 = 5 8,605 

9. 30 12 19 24 4 75 10 8 𝑄𝑖 =10 for i=1,…, 7; 𝑄8 = 5 14,705 

10. 27 22 30 18 1 76 16 5 𝑄𝑖 =16 for i=1,…, 4; 𝑄5 = 12 11,836 
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4. Conclusions 

The BS problem for the m-BPM flow shop with the backward-scheduling approach was 
solved by dividing it into batching and scheduling subproblems. To attain 𝐹𝑎 minimum, the 
solutions of two subproblems must be minimal. In the batching subproblem, the number of 
resulted batches (N) is minimum when N equals the rounded-up value of 𝑛 𝑐⁄ . Rounding up 
is done if 𝑛 𝑐⁄  is not an integer so that there is one batch with size n- (N-1) c and (N-1) 
batches where the batch sizes are c. On the other hand, if 𝑛 𝑐⁄  is an integer, all batch sizes 
equal c. The solution in the scheduling subproblem will be minimum if the sequencing of N 
resulting batches follows the Theorem; i.e., 𝑄1 ≥ 𝑄2 ≥ ⋯ ≥ 𝑄𝑁 . The starting and 
completion times of each batch on each BPM are determined in three simple steps. First, 
the completion time of the last batch processed on the last machine (𝑏𝑚1) must be equal to 
the due date, 𝐶𝑚1 = 𝑑  and 𝐵𝑚1 = 𝐶𝑚1 − 𝑡𝑚 . Second, completion time batch 𝑏(𝑚−1)1 

processed on 𝐵𝑃𝑀(𝑚−1) must be determined. In the flow shop, the sequence determined 

using the backward-scheduling approach ensures that 𝐶(𝑚−1)1 = 𝐵𝑚1 and 𝐵(𝑚−1)1 =

𝐶(𝑚−1)1 − 𝑡(𝑚−1) and so on until 𝐶11 = 𝐵21 and 𝐵11 = 𝐶11 − 𝑡1. Third, the schedule at 𝐵𝑃𝑀𝑧 

which has the highest processing time, must be determined, and 𝐶𝑧2 = 𝐵𝑧1 − 𝑠 and 𝐵𝑧2 =
𝐶𝑧2 − 𝑡3, and so on are obtained until 𝐶𝑧𝑁 = 𝐵𝑧(𝑁−1) − 𝑠 and 𝐵𝑧𝑁 = 𝐶𝑧𝑁 − 𝑡𝑧. Finally, 𝐶𝑘𝑖  and 

𝐵𝑘𝑖  schedules for i = 2, 3,..., N for k = 1,2,..., m, are determined referring to the 𝐵𝑃𝑀𝑧 
schedule, flow shop provisions, and the backward-scheduling approach. These three steps 
were devised based on backward scheduling. The proposed model is limited to problems of 
single item parts with an common due date. Further research can be to cover the condition 
of multiple items demanded at multiple  due dates. 
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