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Abstract. The aerospace industry is considered strategic for economic and national security 
reasons because it generates short- and long-term benefits for countries, such as new investments, 
technology transfers, and spillover. Therefore, this research aimed to identify the necessary and 
sufficient conditions for guaranteeing the high performance of design and engineering firms (DEFs) 
in Mexico’s aerospace industry. Taking a resource-based perspective enhanced by absorptive 
capacity and entrepreneurship approaches, this study contributes to understanding the causal 
ambiguity and social complexity characterizing the relationship between firms’ performance and 
resource allocation. Additionally, this research used a fuzzy-set qualitative comparative analysis 
(fsQCA) method to gain insight into the configurations (i.e., sets of resources) that lead firms to 
achieve high performance levels (HPLs) in Mexico’s aerospace industry. The results demonstrated 
that absorptive capacity, innovation capacity, entrepreneurial capacity, research and development 
activities, and specialized human resources are necessary conditions for achieving HPLs. 
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1. Introduction 

France, Germany, the United Kingdom, and the United States are global leaders in the 
aerospace industry. Nevertheless, new players (including research, production, and 
manufacturing centers) have recently emerged in Brazil, China, India, Mexico, and 
Singapore, lowering production costs for aircraft components and other mechanical and 
electronic systems through intercompany collaboration (Bédier et al., 2008; Casalet, 2013). 
Emerging economies aim to pursue innovation and disseminate new knowledge to reduce 
the technological gap between themselves and industrialized economies (Fu et al., 2011). 
Overall, the aerospace industry in emerging economies has focused on developing joint 
venture projects between foreign and local investors and other stakeholders to fulfill 
original equipment manufacturers’ (OEMs’) requirements (Bédier et al., 2008; Casalet, 
2013; Deloitte, 2019). 

In this regard, Mexico has engaged in successful collaboration and implemented 
strategic actions, such as export promotion and research and development (R&D) efforts, 
to develop joint ventures, which, combined with the government’s promotion of technology 
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transfer, have led to the growth of the country’s aerospace industry (Goldstein, 2002; 
Goldstein, 2006; Flores and Villareal, 2017). In fact, Mexico is considered one of the most 
important investment locations in the aerospace industry and an example of a consolidated 
aerospace industry that aims to boost innovation (ProMéxico, 2016; Flores and Villareal, 
2017). Typically, design and engineering firms (DEFs) have driven the aerospace industry 
in Mexico, and their performance relies heavily on creating and disseminating new 
knowledge and venturing into different innovative areas within firms to expand their client 
portfolios with new products, services, and technologies (FEMIA, 2015). 

From a theoretical perspective, the resource-based view considers causal ambiguity 
and social complexity as two essential features for understanding and explaining firms’ 
performance (Barney and Clark, 2007). Qualitative comparative analysis (QCA) deals with 
causal complexity by analyzing configurations (i.e., sets of resources) resulting from 
combinations of different conditions (i.e., resource allocations; Ragin, 2008; Mello, 2021). 
This paper argues that the causal ambiguity and social complexity considered by the 
resource-based view can be analyzed using QCA methods to investigate complex causal 
processes (Wagemann, 2012; Parente and Federo, 2019; Gerrits and Pagliarin, 2020). QCA 
approaches explain how the presence or absence of different conditions in alternative 
configurations can result in similar outputs (Ragin, 2008). The set-theoretic relations in 
QCA employ the concepts of equifinal, conjunctural, and asymmetric causation as 
explanations for causal complexity (Wagemann, 2012), which in this research related to 
Mexico’s aerospace industry. The research question underpinning this study was as 
follows: What are the necessary and sufficient conditions that lead DEFs in Mexico’s 
aerospace industry to achieve high performance levels (HPLs)? 

The results suggest that five conditions are necessary for DEFs in Mexico’s aerospace 
industry to achieve HPLs: R&D activities, entrepreneurial capacity (EC), absorptive capacity 
(AC), innovation capacity (IC), and specialized human resources (SHR). The results also 
suggest that R&D and EC are crucial for achieving HPLs, while AC, IC, and SHR are peripheral 
to the desired outcome. Finally, this study identified some configurations leading to HPLs 
in DEFs in Mexico’s aerospace industry. In this country, small- and medium-sized 
companies share risk through alliances and joint research projects, mainly supported by 
the National Council for Science and Technology (CONACYT). The results suggest that DEFs 
can develop firm-level strategies for managing the resources and processes underpinning 
the R&D activities, entrepreneurship, and innovation that will lead to high-performing DEFs 
in Mexico’s aerospace industry. 

Besides this introduction, the paper is organized into four sections. Section 2 presents 
the literature review that supported the study. Section 3 discusses the fuzzy-set qualitative 
comparative analysis (fsQCA) model employed in the research for data collection, case 
selection, and analysis. Section 4 evaluates and discusses the empirical results, and Section 
5 presents concluding remarks. 
 
2. Literature Review 

2.1. Firms’ Performance and Strategic Management 
 The resource-based view uses the concepts of causal ambiguity and social complexity 
to explain why some firms outperform others. The approach is based on two fundamental 
assumptions (Barney and Clark, 2007; Barca, 2017): First, resources are heterogeneously 
distributed among firms, and second, resources are imperfectly mobile between firms and 
industries. Thus, resources are seen as valuable, rare, non-imitable, and non-substitutable, 
resulting in quantity and quality differences across resource allocations but essential for 
developing and sustaining competitive advantage (Barney and Clark, 2007; Newbert, 2007; 
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Barca, 2017). 
 Additionally, the AC model explains how firms can achieve superior performance by 
applying and assimilating new knowledge through a learning process (Cohen and Levinthal, 
1989; 1990). In this model, AC’s intangible, idiosyncratic, and cumulative nature makes it 
difficult to imitate, since converting knowledge is the basis for superior performance 
(Moon, 1999). In this research, IC and R&D were necessary conditions for DEFs to achieve 
superior performance (i.e., HPLs) in Mexico’s aerospace industry since innovation is a 
fundamental source of success and survival for firms in a complex environment. Indeed, 
R&D influences IC, given that both activities feed a firm’s internal innovation process and 
competitive advantage (Fosfuri and Tribó, 2008). 
 Finally, entrepreneurship is another condition that leads firms to achieve superior 
performance through the process of discovering and creating business opportunities. In 
this study, EC allowed for the identification and creation of profitable opportunities for 
firms requiring access to information and knowledge and the ability to recognize, perceive, 
and develop economically viable projects (Heru, 2016; Koroleva et al., 2020). The 
entrepreneurial approach highlights the importance of knowledge, technical ability, 
experience, and continuous training as sources of the valuable, rare, non-imitable, and non-
substitutable SHR necessary for developing superior performance. 

2.2. The Aerospace Industry in Mexico 
Aerospace research, production, and manufacturing centers have arisen in several 

emerging economies in recent decades, leading to these economies being positioned in a 
competitive way in the global aerospace industry for several reasons. In the case of Mexico, 
although this industry only started developing a few decades ago, it achieved significant 
importance in 2004 since specialized foreign direct investment in the aerospace industry 
arrived in this country (ProMéxico, 2013). Since then, Mexico has introduced actions and 
strategies to help it succeed, such as supporting the relations between OEMs and 
indigenous firms, creating public research centers, promoting production and co-
production agreements, establishing joint ventures and alliances, and creating links 
between multinational corporations and small- and medium-sized local enterprises (Flores 
and Villareal, 2017). Accordingly, Mexico has become one of the most important global 
centers for assembling aircraft parts and a key investment location in the aerospace 
industry (FAI, 2014; Flores and Villareal, 2017). 

The literature on the aerospace industry in Mexico is limited. To our knowledge, no 
analysis of Mexico’s aerospace industry has been conducted from a QCA perspective, 
although Solleiro et al. (2020) examined the innovation policy supporting foreign direct 
investment, firms’ certification in production processes, and human resources training. 
Hernández and Carrillo (2018) showed that the aerospace industry in Mexico has been 
enhanced mainly by foreign companies contributing to the development of capabilities and 
certifications, whereas Muñoz et al. (2019) analyzed the structure of the aerospace 
industry, focusing on its stakeholders and their interrelationships. 

From a different perspective, Flores et al. (2017) analyzed the spatial patterns of co-
located firms and establishments in Mexico’s aerospace industry. In their paper, Gomis and 
Carrillo (2016) investigated multinational aerospace firms’ productive and organizational 
capabilities in the global value chain, while Luna et al. (2017) assessed the aerospace 
manufacturing industry in Mexico from a Porter’s cluster perspective. 

Finally, from an econometric perspective, Chamonica and Gómez (2017) developed a 
panel data model, highlighting the positive influence of R&D and foreign direct investment 
on technology transfer in Mexico’s aerospace industry. Sandoval et al. (2019) applied graph 
theory to define the scope of Mexico’s aerospace industry in the global value chain, while 
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Villarreal et al. (2016) applied quotient placement statistics to detect spatial placement 
patterns in agglomerations in this industry. 
 
3. Methods 

3.1. The QCA Approach 
 The QCA approach tests hypotheses based on Boolean algebra and set-theoretic 
relations, focusing on determining sufficient and necessary conditions for yielding a desired 
outcome (Ragin, 2008; Wagemann, 2012). Causal complexity is a core feature of set-
theoretic analysis guided by three principles (Parente and Federo, 2019; Mello, 2021): 
conjunction, equifinality, and asymmetry. Conjunctural causation considers that a single 
condition is frequently insufficient and must be combined with another to achieve the 
desired outcome. Equifinality considers more than one sufficient (but not necessary) 
condition producing an outcome. Asymmetric causation means that knowing the causes of 
an outcome does not necessarily imply that the opposite outcome is equally known 
(Braumoeller, 2003; Morlino, 2005; Wagemann, 2012). 
 The QCA approach uses two parameters to measure the necessary and sufficient 
conditions for achieving a desired outcome (Roig-Tierno et al., 2017; Parente and Federo, 
2019; Mello, 2021): consistency and coverage. Consistency measures the extent to which 
the terms of a solution are a subset of the result (i.e., a measure of fit among different 
conditions comprising a configuration yielding an outcome), and coverage indicates the 
proportion of cases that take a particular path to obtain a specific outcome (i.e., the 
empirical relevance of the configuration; Ragin, 2008; Parente and Federo, 2019; Mello, 
2021). 
 Some variants of QCA methods are crisp-set QCA (csQCA), fsQCA, and multi-value QCA 
(mvQCA; Ragin, 2008). This research adopted the fsQCA approach as a research method to 
examine various membership set levels: a score of 1 indicated total membership, a score 
closes to 1 (0.8 or 0.9) indicated partial membership, a score below 0.5 but above 0 (0.2 or 
0.3) indicated further out than inside the set, and a score of 0 indicated total exclusion 
(Ragin, 2009). Overall, fsQCA is adequate for describing conditions because it allows the 
results to be examined according to partial degrees of membership rather than total 
membership in a specific set (Ragin, 2008). 

3.2. fsQCA and Hypothesis 
The QCA approach allows for the representation of a firm’s performance using certain 

conditions in various configurations (Ragin, 2008; 2009), thus revealing the presence (or 
absence) of conditions that generate a desired outcome. Each configuration has a causally 
complex structure since the conditions underpinning it cannot be exhaustively examined 
due to the complex circumstances involved in their origin (Wagemann, 2012). This 
approach was appropriate for understanding the causal complexity characterizing DEFs’ 
operations in Mexico’s aerospace industry. 

Typically, fsQCA research is developed in four steps (Ragin, 2008; Fiss, 2011), which 
this research followed: First, conventional scale measures were transformed into fuzzy 
membership (i.e., calibration). Second, a truth table was developed to visualize all logically 
possible configurations. Third, cases with desired outcomes were identified (i.e., 
consistency analysis). Finally, causal configurations were minimized using computed 
solutions and model analysis. 

Computed solutions may be complex, parsimonious, or intermediate. Intermediate 
solutions are suitable for interpreting results (Ragin, 2008), but the configurations of 
complex solutions are more significant than those of parsimonious solutions, and the 
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configurations of intermediate solutions provide no logical reminder or patterns of 
combinations of conditions not observed empirically in counterfactual analysis (Ragin, 
2008; Rihoux and Ragin, 2009; Schneider and Wagemann, 2010). The hypothesis guiding 
this research was as follows: 

AC, IC, EC, SHR, and R&D activities are necessary and sufficient conditions 
for DEFs to achieve HPLs in Mexico’s aerospace industry. 

 
3.3. Cases and Data Collection 

Cases and conditions are crucial for a set-theoretic comparative analysis (Ragin, 2009). 
The cases must have a certain degree of heterogeneity to facilitate a comparison of their 
characteristics and define the expected result. Cases must also be sufficiently parallel to 
allow comparisons between specific dimensions that share similar background 
characteristics. In short, selected cases must present both success and failure 
characteristics. In this research, 17 DEFs met the validity criterion for choosing cases, which 
is based on firm´s annual sales identifying successful and unsuccessful cases according to 
the methodology applied. 
 Two instruments were used to collect data and information in this research: a survey 
and semi-structured interviews. The survey and interviews were conducted from April–
May 2018 across 17 out of 40 DEFs operating in Mexico’s aerospace industry. The 
questionnaire and interviews enquired about R&D, entrepreneurial, and innovation 
activities, selected AC, and SHR. When the data were collected, the model was computed 
according to the set-theoretic relations defined in the hypothesis using COMPASS 3.0 
software. 
 
4. Results and Discussion 

4.1. Sufficiency and Necessity Analysis 
 A direct method was applied to calibrate the data in this research (Ragin, 2008). The 
five condition thresholds were 0 (total exclusion), 2 (point of indifference), and 4 (total 
membership), while the desired outcome thresholds were 20 (total exclusion), 500 (point 
of indifference), and 1,000 (full membership). The DEFs’ average annual sales were used as 
the criterion for establishing the desired outcome (i.e., an HPL). Table 1 shows the 
membership values of the data in this model. 

Table 1 Membership values of fuzzy sets 

AC IC EC SHR R&D HPL 

0.92 0.92 0.95 0.82 0.92 0.97 
0.92 0.86 0.92 0.95 0.82 0.96 
0.71 0.65 0.82 0.82 0.89 0.94 
0.57 0.86 0.86 0.77 0.77 0.85 
0.54 0.82 0.77 0.82 0.86 0.84 
0.90 0.57 0.86 0.82 0.94 0.82 
0.57 0.89 0.86 0.77 0.65 0.81 
0.43 0.92 0.82 0.94 0.35 0.5 
0.43 0.82 0.88 0.89 0.92 0.43 
0.43 0.86 0.86 0.82 0.71 0.34 
0.57 0.77 0.88 0.86 0.35 0.24 
0.43 0.71 0.57 0.43 0.65 0.16 
0.57 0.29 0.03 0.65 0.03 0.09 
0.23 0.54 0.08 0.14 0.54 0.06 
0.57 0.18 0.03 0.65 0.03 0.05 
0.18 0.18 0.57 0.57 0.03 0.05 
0.14 0.57 0.05 0.54 0.05 0.05 
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Table 2 (i.e., the truth table) shows the configurations that might explain an HPL. 
Consistency analysis determines which configurations are consistent with the desired 
outcome (Ragin, 2008). Values below 0.80 in the RAW Consistency column indicated 
substantial inconsistency; hence, the first four configurations were considered sufficient for 
achieving an HPL. The complex solution did not consider the logical residuals, the 
intermediate solution considered only the empirically possible logical residuals, and the 
parsimonious solution considered any logical residual that contributed to generating the 
desired result (Ragin, 2008). However, parsimonious and intermediate solutions were also 
considered to identify central and peripheral causal conditions (Fiss, 2011). Notably, the 
parsimonious and intermediate solutions were used to explain the high performance values 
in this research. 

Table 2 Estimated truth table 

AC IC EC SHR R&D Cases HPL 
RAW   

Consistency 
PRI    

Consistency 
SYM 

Consistency 

1 1 1 1 1 7 1 0.927407 0.883886 0.883886 
0 1 1 1 1 2 1 0.823394 0.596859 0.596859 
0 1 1 0 1 1 1 0.815451 0.426667 0.426667 
0 1 1 1 0 1 1 0.808917 0.387755 0.387755 
1 1 1 1 0 1 0 0.793210 0.417391 0.417391 
0 0 1 1 0 1 0 0.708696 0.172840 0.172840 
0 1 0 0 1 1 0 0.684874 0.184783 0.184783 
0 1 0 1 0 1 0 0.582192 0.0827067 0.0827067 
1 0 0 1 0 2 0 0.523333 0.0714285 0.0714285 

 Table 3 summarizes two of the three solutions typically computed in fsQCA models. 
However, parsimonious and intermediate solutions are critical to analyze the results. The 
parsimonious solution had a consistency value of 0.7997 and a coverage value of 0.9203, 
while the intermediate solution had a consistency value of 0.8167 and a coverage value of 
0.9203. 

Table 3 Sufficiency analysis 

Parsimonious Solution 

Causal Configuration Raw Coverage Unique Coverage Consistency 

~ AC* IC*EC  0.460784 0.0208334  0.759596 
AC*R&D  0.817402 0 0.902571 
EC*R&D  0.893382 0 0.838895 

SHR*R&D  0.887255 0.00612748 0.848769 
Solution coverage, 0.920343; solution consistency, 0.799787. 

Intermediate Solution 

Causal Configuration Row Coverage Unique Coverage Consistency 

IC* EC*R&D 0.841912 0.401961 0.840881 
~ AC* IC* EC*SHR 0.460784 0.0208333 0.781705 

Solution coverage, 0.862745; solution consistency, 0.816705. 

Four configurations were present in the parsimonious solution that explained how 
DEFs in Mexico’s aerospace industry could achieve HPLs. Configuration 1 showed that, even 
in the absence of AC, the joint presence of IC and EC were sufficient conditions for DEFs to 
achieve the desired outcome: 

~AC * IC * EC → HPL          (1) 

Configuration 2 showed that AC and R&D activities, if jointly present, were sufficient 
conditions for DEFs in Mexico’s aerospace industry to achieve HPLs: 

 AC * R&D → HPL          (2) 
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 Configuration 3 indicated that EC and R&D activities, if jointly present, were sufficient 
conditions for DEFs in Mexico’s aerospace industry to achieve HPLs. Notably, Configuration 
3 had the highest coverage value (0.8933) with acceptable consistency (0.8388; see Table 
3): 

EC * R&D → HPL          (3) 

Finally, Configuration 4 showed that SHR and R&D activities, if jointly present, led to 
DEFs achieving HPLs in Mexico’s aerospace industry: 

SHR * R&D → HPL          (4) 

 Nevertheless, the intermediate solution indicated that two other configurations could 
enable DEFs in Mexico’s aerospace industry to achieve HPLs. Configuration 5, for example, 
showed that IC, EC, and R&D activities, if jointly present, were sufficient conditions for 
achieving an HPL. Indeed, this configuration characterized a significant number of cases 
(84.19%), which might explain this result, since the configuration considers a result subset 
consistency of 0.8408 (Table 3): 

IC * EC * R&D → HPL          (5) 

 Configuration 6 showed that, even if AC was absent (~AC), the expected result could be 
achieved when IC, EC, and SHR were jointly present: 

~AC * IC * EC * SHR → HPL         (6) 

 The results for the parsimonious and intermediate solutions implied that several 
configurations would allow leading firms to achieve an HPL, as the equifinality principle 
suggests. Finally, the necessity analysis presented in Table 4 determined the necessary 
conditions, producing consistency and coverage scores for individual and specified 
substitutable conditions. Consistency indicates the degree to which the causal condition 
supersets the result, while coverage indicates the empirical relevance of a consistent 
superset (Ragin et al., 2007); thus, the minimum consistency value of 0.80 revealed that all 
conditions were necessary for DEFs in Mexico’s aerospace industry to achieve HPLs. 

Table 4 Analysis of necessity 

Condition Tested Consistency Coverage 

AC 0.851716 0.762898 
IC 0.912990 0.652936 
EC 0.959559 0.724329 

R&D 0.910539 0.781283 
SHR 0.948529 0.631321 

 The parsimonious and intermediate solutions explained how the central and 
peripheral conditions could contribute to achieving the desired outcome. Central 
conditions indicated a strong relationship with the outcome, while peripheral conditions 
indicated only a causal or weak relationship (Fiss, 2011); for example, the intermediate 
solution had a configuration with EC as a central condition and AC, IC, and SHR as peripheral 
conditions. 
 These results suggest that DEFs should constantly develop projects by investing in R&D 
to outperform their competitors in the aerospace market. Furthermore, these companies 
should collaborate with universities, research centers, and other stakeholders to 
continuously develop innovation. Interestingly, the consolidation of high-tech industries in 
several emerging economies can be explained by significant government intervention 
(Flores and Villareal, 2017). In Mexico’s aerospace industry, adequate science, technology, 
and innovation policies must be implemented to support DEFs (e.g., by providing financial 
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incentives to stimulate innovation, the development of human resources, and the design 
and development of education and training programs involving firms and universities, 
among others). 
 Mexico has strengthened its aerospace industry by developing and promoting R&D 
activities and identifying and exploiting business opportunities. However, economic 
incentives, training, knowledge exchanges with universities and research centers, and the 
development of an entrepreneurial culture should be at the core of support policies for 
DEFs. 

In emerging economies, the consolidation of high-tech industries depends largely on 
government policies targeting science, technology, innovation, industry, higher education, 
and trade (Vertesy, 2012; Flores and Villareal, 2017). Consequently, DEFs in Mexico’s 
aerospace industry should invest in R&D to survive and be successful in the global market. 
However, according to data provided by our interviewees, despite Mexico being 
strengthened by policies promoting R&D and the detection and exploitation of business 
opportunities, these companies typically invest in R&D activities no more than 3% of their 
profits. Although this percentage is small, the strategy has positively influenced patenting 
activity in this industry, thus generating intellectual property relating to the design and 
manufacture of aircraft interiors, software for real-time assistance with aircraft 
operational problems, advanced manufacturing technology, computer simulation, 
treatment processes, and metal alloys. Patents in Mexico’s aerospace industry have 
supported Mexican companies’ science and technology development. Indeed, since R&D is 
an essential condition for developing companies in this industry, the government should 
introduce policies that stimulate the creation of new companies and support research 
projects to improve firms’ performance through collaboration with universities and 
research centers. The creation of new companies, supported by financial incentives, has 
been a viable path for promoting the development of the aerospace industry. Also, the 
government should implement education and training programs to develop qualified 
human resources, thus contributing to the development of innovative projects and 
products (Boselie et al., 2005; Berawi, 2018; Hanid et al., 2019). In the case of Mexico, the 
interviewees recognized the need for economic incentives, training for employees, and 
knowledge exchanges with universities to promote an entrepreneurship culture suitable 
for developing new technologies. 
 
5. Conclusions 

 Highly innovative industries require resources to innovate and constantly outperform 
their competitors, and DEFs in Mexico’s aerospace industry likewise require continual 
innovation. In this research, AC, IC, EC, SHR, and R&D activities were all necessary 
conditions for achieving HPLs; however, they did not necessarily have to be present 
simultaneously to achieve the desired outcome. The causal complexity principle explains 
that DEFs in this industry may develop a sustained competitive advantage. The conditions 
evaluated in this study may explain the performance of firms in other countries resembling 
Mexico, but they may differ from the conditions in industrialized countries with different 
characteristics for highly innovative industries. 
 Nevertheless, the parsimonious and intermediate solutions suggest that R&D activities 
and EC are central conditions, while AC, IC, and SHR are peripheral conditions. The analysis 
of central and peripheral conditions allows conclusions to be drawn regarding the causal 
essentiality of specific combinations of causal conditions. Central conditions are critical to 
the survival of DEFs in Mexico’s aerospace industry, and the causal complexity in this 
analysis revealed how DEFs can develop a sustained competitive advantage in the global 
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aerospace industry. The results indicate that R&D activities and EC are central conditions 
in this process, and DEFs must constantly invest in R&D efforts to promote innovation and 
improve AC. Certainly, R&D activities and SHR are critical for exploiting profitable projects 
in Mexico’s aerospace industry. 
 Finally, further research should consider other causal conditions in the analysis of 
HPLs, such as the financial strategies of DEFs in Mexico’s aerospace industry that support 
innovation development. Indeed, the aerospace industry is high risk, requiring firms to 
carefully manage their financial conditions. 
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