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Abstract. Biofouling is known as one of the main problems in the maritime sector because it can 
increase the surface roughness of the ship’s hull, which will increase the hull’s frictional resistance 
(𝜟𝑪𝑭) and consequently, the ship’s fuel consumption and emissions. It is thus important to reduce 
the impact of biofouling by predicting the value of 𝜟𝑪𝑭. Such prediction using existing empirical 
methods is still a challenge today, however. Granville’s similarity law scaling method can predict 
accurately because it can be adjusted for all types of roughness using the roughness function 
𝜟𝑼+(𝒌+) variable as the input, but it requires iterative calculations using a computer, which is 
difficult for untrained people. Other empirical methods are more practical to use but are less flexible 

because they use only one 𝜟𝑼+(𝒌+) input. The variance of 𝜟𝑼+(𝒌+) is very important to represent 
the biofouling roughness that grew randomly. This paper proposes an alternative formula for 
predicting the value of 𝜟𝑪𝑭 that is more practical and flexible using the modern statistical method, 
the Design of Experiments (DOE), particularly two-level full factorial design. For each factor, the 
code translation method using nonlinear regression combined with optimization of constants was 
utilized. The alternative formula was successfully created and subjected to a validation test. Its 
error, calculated against the result of the Granville method, had a coefficient of determination 𝑹𝟐= 
0.9988 and an error rate of ±7%, which can even become ±5% based on 93.9% of 1,000 random 
calculations. 
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1. Introduction 

The impact of fouling or biofouling on ship performance is important (Molland et al., 
2014). Biofouling makes the hull’s surface rough, and hence, increases its frictional 
resistance (𝛥𝐶𝐹), which becomes a drag penalty that increases fuel consumption. As a result 
of biofouling, the fuel consumption could increase by up to 20% (Hakim et al., 2019); in fact, 
in one year, total losses from fuel waste due to biofouling reached up to $56 million (Schultz 
et al., 2011). By increasing fuel consumption, biofouling also contributes to increasing CO2 
emissions and global warming. Moreover, biofouling mediates the distribution of invasive 
species that can damage the water ecosystem structure (Ulman et al., 2019). To prevent 
these unwanted problems due to biofouling, a more efficient hull may be designed 
(Sulistyawati and Suranto, 2020) or a more efficient propeller   (Abar and Utama, 2019),  or 
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a device may be installed (Suastika et al., 2017), but the easiest solution is to predict the 
impact of biofouling.  

When the fluid passes through the rough surface, the turbulence boundary layer 
structure will be shifted downward. Mathematically, the value of the downward shift can 
be estimated using what is called a roughness function [𝛥𝑈+(𝑘+)], which is a function of the 
roughness length scale (𝑘+). The form of the roughness function varies widely, depending 
on the type of roughness, including the pattern, density, geometry, and other aspects of the 
roughness (Chung et al., 2021). To find out accurately the form of the roughness function, 
the roughness must be tested first (Speranza et al., 2019) by conducting an experiment 
(Monty et al., 2016), a numerical simulation (Jelly and Busse, 2018; Suastika et al., 2021), 
or in-situ measurement (Utama et al., 2018). Then, the results of many tests can be 
synthesized into formulas or diagrams that can be used as an empirical method. As we 
know, the empirical method is the easiest, fastest, and cheapest method to use as an initial 
predictive tool. 

Each of the existing empirical methods is challenging to use. While the similarity law 
scaling boundary layer method of Granville (1958, 1987) yields accurate results because it 
can accommodate all types of roughness by entering the 𝛥𝑈+(𝑘+) and 𝑘  of the desired 
roughness, it requires iterative calculations on a computer, which makes it difficult for 
untrained people to use. The formula of Bowden and Davison (1974), and the formula of 
Townsin et al. (1982) and Townsin (2003), calculate 𝛥𝐶𝐹 easily, but they are applicable to 
only one type of roughness function [𝛥𝑈+(𝑘+) ]. Besides, for the roughness height 
parameter, only a single parameter—the average hull roughness (AHR)—is used, whereas 
in biofouling, the roughness is very random, (especially biofouling), such that the density, 
shape, and pattern must also be considered to achieve an accurate prediction result (Chung 
et al., 2021). Finally, the method of reading the diagrams introduced by Demirel et al. (2019) 
is very easy to use, but if the value being determined is unavailable, it still needs to be 
interpolated or extrapolated. Moreover, the diagrams accommodate only one type of 
roughness function, that of Schultz and Flack (2007), when several types of roughness 
functions are most often used, namely, those of Colebrook (1939), Nikuradse (1933), and 
their derivatives (Grigson, 1992; Cebeci and Bradshaw, 1977; Schultz and Flack, 2007; 
Demirel et al., 2017a). 

Therefore, this paper proposes an alternative formula for predicting the value of 𝛥𝐶𝐹 
that is easy to use and flexible because it can accommodate several types of 𝛥𝑈+(𝑘+). This 
formula was established with the help of the Design of Experiments (DOE) method, which 
is a branch of modern statistics. The DOE is known to be useful for modeling with small 
amounts of data and even with many parameters (factors) (Lye, 2002). The type of DOE 
used in this study was the two-level factorial design with four factors, followed by factor 
code translations using the nonlinear regression and optimization method. To our 
knowledge, factor code translations are rarely used. Some statistical software that we often 
encounter also do not do factor code translations but stop at the result of a formula whose 
input factor is still a code (-1 or +1), which is not the actual value of the factor. Islam and 
Lye (2009) predicted the value of the hydrodynamic performance of the propeller without 
translating the factor code to the actual value, so their resulting formula became difficult to 
use. Therefore, in this study, we developed a different formula for predicting the impact of 
biofouling. We tested the result of the formula against the result of the similarity law scaling 
method of Granville (1958), which was used with iterative calculations. The error rate was 
calculated from all the error results of 1,000 random calculations. 
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2. Methods 

2.1.  Granville’s Boundary Layer Similarity Law Scaling 
Using the similarity law scaling method of Granville (1958), the boundary layer was 

extrapolated based on the desired inputs. This method is illustrated in Figure 1. With this 
method, the value of 𝛥𝐶𝐹 was calculated using Equations 1–3 by determining the values of 
𝐿  (the ship length), 𝑉  (the ship speed), and 𝑘  (the roughness height), and the type of 
𝛥𝑈+(𝑘+), where 𝐶𝐹𝑅  is the coefficient of frictional resistance in a rough condition; 𝐶𝐹𝑆  is the 

coefficient of frictional resistance in a smooth condition taken from the approximated 
Kármán-Schoenherr formula (Schoenherr, 1932); Re is the Reynolds number, which is a 
function of the 𝐿 and 𝑉 of the ship and is calculated as 𝜌𝑉𝐿 𝜇⁄ ; 𝜌 is the fluid density; 𝜇 is 
dynamic viscosity; 𝐶𝐹𝑆

′  is the coefficient of frictional resistance for the new Re  that is 

shifted by 𝛥𝑈+𝜅[ln (10)]−1, 𝜅 is the von Kármán constant; 𝑘+  is the roughness Reynolds 

number; 𝜈  is the kinematic viscosity; 𝑈𝜏  is the friction velocity defined as √𝜏𝑤 𝜌⁄  or 

approached by 𝑈∞(𝐶𝐹 2⁄ )1 2⁄ ; 𝜏𝑤  is the shear stress magnitude; and 𝑈∞ is the freestream 
velocity or is equal to 𝑉. To calculate 𝑈𝜏, the value of 𝐶𝐹 is needed, which is equal to the 
value of 𝐶𝐹𝑅 . Although 𝐶𝐹𝑅  is what we are calculating, the iteration must be calculated to 

complete it. 

𝛥𝐶𝐹 = 𝐶𝐹𝑅 − 𝐶𝐹𝑆 = 𝐶𝐹𝑅 −
0.0795

(Log10Re − 1.729)
2

 
(1) 

 

𝐶𝐹𝑅 = 𝐶𝐹𝑆
′ =

0.0795

(𝐿𝑜𝑔10(Re − (𝛥𝑈
+𝜅[ln (10)]−1)) − 1.729)

2 
(2) 

 

𝛥𝑈+ = 𝑓(𝑘+) = 𝑓 (
𝑘𝑈𝜏
𝜈
) (3) 

 

 

Figure 1 Granville’s similarity law scaling method 

 

 
Figure 2 Comparison of some types of roughness functions [𝛥𝑈+(𝑘+)] with the roughness function 
used in the proposed alternative formula 
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2.2.  Roughness Functions 
Each type of roughness has its characteristic roughness function [𝛥𝑈+(𝑘+)]. Generally, 

there are two groups of roughness functions (Andersson et al., 2020): the Colebrook-type 
(Grigson, 1992) single-expression function (‘single regime’; see Equation 4) and the regime 
with three functions. These three functions are the Cebeci and Bradshaw (1977) roughness 
function, given as 𝑘𝑠𝑠𝑚𝑜𝑜𝑡ℎ

+ = 2.25; the Nikuradse roughness function (see Equation 5); and 

the Schultz and Flack (2007) roughness function,  that both follow the traditional Nikuradse 
(1933) roughness function . For the second group of 𝛥𝑈+(𝑘+), they can be distinguished by 
the value of the constants described in Equation 5, 𝑘𝑠𝑟𝑜𝑢𝑔ℎ

+ = 90, and 𝐶𝑠 = 0.253 (for the) or 

0.5; Schultz and Flack (2007) roughness function was fitted by Demirel et al. (2017) with 
𝑘𝑠𝑠𝑚𝑜𝑜𝑡ℎ
+ = 3, 𝑘𝑠𝑟𝑜𝑢𝑔ℎ

+ = 15, and 𝐶𝑠 = 0.26. All these types of roughness functions are plotted 

in Figure 2. 

𝛥𝑈+ =
1

𝜅
ln(1 + 𝑘+) (4) 

 

𝛥𝑈+ =

{
 
 

 
 

0 → 𝑘+ ≤ 𝑘𝑠𝑚𝑜𝑜𝑡ℎ
+

1

𝜅
ln(𝐶𝑠𝑘

+) sin (
𝜋

2

ln(𝑘+ 𝑘𝑠𝑚𝑜𝑜𝑡ℎ
+ )⁄

ln(𝑘𝑟𝑜𝑢𝑔ℎ
+ 𝑘𝑠𝑚𝑜𝑜𝑡ℎ

+ )⁄
) → 𝑘𝑠𝑚𝑜𝑜𝑡ℎ

+ ≤ 𝑘+ ≤ 𝑘𝑟𝑜𝑢𝑔ℎ
+

1

𝜅
ln(𝐶𝑠𝑘

+) → 𝑘+ > 𝑘𝑟𝑜𝑢𝑔ℎ
+

 

(5) 
 

The Colebrook/Grigson-type roughness function has been used in various studies, such 
as by Yeginbayeva and Atlar (2018) to examine the roughness of some marine coatings with 
mimicked hull roughness ranges, by Schultz (2004) to analyze Fouled and unfouled 
coatings, and by Demirel et al. (2017b) to investigate the artificial barnacle. The roughness 
function of Cebeci and Bradshaw (1977), with 𝐶𝑠  = 0.253 and 0.5, corresponds to the 
roughness of the paints studied by Atencio and Chernoray (2019). The roughness 
conditions of the typical AF coating and some of the fouling levels were described by the 
roughness function of Schultz (2007), which corresponds to the roughness functions of 
Schultz and Flack (2007) and Demirel et al. (2017). 

To simplify this study’s development of an alternative formula for the roughness 
function that can accommodate some roughness functions at once, attempts were made to 
represent some of those roughness functions with similar equations. First, the 
Colebrook/Grigson-type roughness function (Equation 4) was assumed to have a variable 
𝐶𝑠 whose value was 1. Then, Equation 4 could be represented by Equation 6, with 𝐶𝑠 = 1. 
Second, the Nikuradse-type roughness function (Equation 5) was used only for the fully 
rough regime. Therefore, Equation 5 could be approximated only by Equation 6, while 
keeping 𝐶𝑠 , i.e., 0.253, 0.26, and 0.5, variable. As a result, the alternative formula to be 
proposed will have boundary conditions and error rates especially in fully smooth and 
transition regimes, as illustrated in Figure 2. The author tolerates this reasoning because 
the fully rough regime has the greatest impact and thus, needs greater attention than the 
other regimes. This reason is also reinforced by the Colebrook-type roughness function, 
which uses only a single regime. 

𝛥𝑈+ =
1

𝜅
ln(1 + 𝐶𝑠𝑘

+) (6) 

2.3.  Two-level Full Factorial Design 
The two-level full factorial design was used to build the alternative formula. Four 

factors were used, so the number of runs (the data required) was 24 = 16 (Hinkelmann, 
2012). The four factors are described in Table 1, with the lowest and highest values 
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assigned to “Low, 𝑋 = -1” and “High, 𝑋 = +1”, respectively. The lowest and highest values 
were selected based on the author’s reasonable assumptions of the range of the ship length 
(𝐿) and the ship speed (𝑉). The 𝑘 value range was selected based on the fouling condition 
range in Schultz (2007), and the range of the 𝐶𝑠 values was chosen to cover some of the 
roughness functions described in Subsection 2.2. Regarding the selection range of the 𝐶𝑠 
values from 0.2 to 1, the author deliberately set the minimum value at 0.2 so as not to be 
too rigid. Although the smallest value from the review in Subsection 2.2 is 0.253, the author 
believes that the value of 𝐶𝑠 0.2 can still accommodate the 𝐶𝑠 value of 0.253 and 0.26 with 
good results. However, it is possible to find a certain roughness pattern that matches the 
roughness function with a 𝐶𝑠  value of less than 0.253 or about 0.2. Thus, the alternative 
formula will be formed as in Equation 7. 

Table 1 The factors with their code (𝑋(𝑖)) ranges (the low and high values) 

 Factors Label, (𝑖) Unit Low, 𝑋(𝑖) = -1 High, 𝑋(𝑖) = +1 

𝑎 Length of ship 𝐿 m 20 400 
𝑏 Ship speed 𝑉 m/s 2 20 
𝑐 Fouling condition 𝑘 µm 100 10,000 
𝑑 Roughness constant 𝐶𝑠 - 0.2 1 

 

 
𝛥𝐶𝐹 = 𝑓(𝐿, 𝑉, 𝑘, 𝐶𝑠) (7) 

 
Since this was a 24  factorial, the 𝛥𝐶𝐹  data from 16 combinations of the four factors 

were required. The value of 𝛥𝐶𝐹 , as 𝑌(𝑖) , was calculated and iterated using the Granville 

method, as described in Section 2.1. The 16 data and the DOE calculations are arranged in 
Table 2. The combination column explains what factor values were selected as the highest 
(𝑋(𝑖)  = +1) or the lowest (𝑋(𝑖)  = -1). For example, the combination “𝑎” means that the 

selected input factor for 𝐿 was +1 or 400 m (see Table 1), while the others were -1. In the 
next example, the combination “𝑎𝑐𝑑”, where the letter “𝑏” is not mentioned, the factor 𝑉 
that was chosen was -1 or 2 m/s (see Table 1), while the other factors were +1. The 𝛥𝐶𝐹  
data were calculated based on the input of each combination. For the effect values, 𝛽(0) is 

the grand mean of all 𝑌(𝑖), while 𝛽(𝑖) is the average product when 𝑌(𝑖) is multiplied by 𝑋(𝑖), 

which is explained by the sample calculation in Table 3. 
After all the effect values were calculated, the initial formula in Equation 9 was created, 

which was arranged based on Equation 8. The effect is the value of the factor's influence on 
the result or response, 𝑌 or 𝛥𝐶𝐹 . A positive 𝛽(𝑖) indicates that the higher the factor or the 

interaction of the factors is, the higher the response (𝛥𝐶𝐹) is; while a negative 𝛽(𝑖) means 

that the higher the factor or the interaction of the factors is, the lower the response (𝛥𝐶𝐹) 
is. 

The Pareto chart was needed to determine which factors or interactions of factors were 
dominant (see Figure 3). The chart was made based on the absolute value of the effect 𝛽(𝑖), 

after which the percentage was calculated. From the chart, it was known that the 𝑘 factor 
was the most dominant, with a 1.983 effect, or 30.1%. 

Equation 9 is the initial formula that resulted from the two-level full factorial design, 
which was not final yet, because the factor value that was inputted into the formula was still 
in the form of a code or 𝑋(𝑖). Thus, for example, to input the factor 𝐿 = 20 m, 𝑋(𝐿) = −1; and 

if 𝐿 = 400 m, 𝑋(𝐿) = +1. However, it would not be easy to input the value of 𝐿 ≠ 20 m or 

𝐿 ≠ 400 m. For example, if 𝐿 = 100 m, what is the value of 𝑋(𝐿)? This problem also occurred  
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Table 2 The two-level full factorial design matrix and calculation 

Combi-
nation 

Label, 
(𝑖) 

𝑋(𝑖) value 𝑌(𝑖) Effect 

𝑋(𝐿) 𝑋(𝑉) 𝑋(𝑘) 𝑋(𝐶𝑠) 𝑋(𝐿𝑉) … 𝑋(𝐿𝑉𝑘𝐶𝑠) 
𝛥𝐶𝐹
× 103 

𝛽(𝑖) 

0 0 -1 -1 -1 -1 +1 … +1 0.1000 2.583 
𝑎 𝐿 +1 -1 -1 -1 -1 … -1 0.0120 -1.144 
𝑏 𝑉 -1 +1 -1 -1 -1 … -1 0.7283 0.2465 
𝑐 𝑘 -1 -1 +1 -1 +1 … -1 4.1033 1.983 
𝑑 𝐶𝑠 -1 -1 -1 +1 +1 … -1 0.8985 0.8657 
𝑎𝑏 𝐿𝑉 +1 +1 -1 -1 +1 … +1 0.3698 -0.0676 
𝑎𝑐 𝐿𝑘 +1 -1 +1 -1 -1 … +1 1.6663 -0.9297 
𝑎𝑑 𝐿𝐶𝑠 +1 -1 -1 +1 -1 … +1 0.4003 -0.445 
𝑏𝑐 𝑉𝑘 -1 +1 +1 -1 -1 … +1 4.7316 0 
𝑏𝑑 𝑉𝐶𝑠 -1 +1 -1 +1 -1 … +1 1.5268 0 
𝑐𝑑 𝑘𝐶𝑠 -1 -1 +1 +1 +1 … +1 8.5477 0.569 
𝑎𝑏𝑐 𝐿𝑉𝑘 +1 +1 +1 -1 +1 … -1 2.0242 0 
𝑎𝑏𝑑 𝐿𝑉𝐶𝑠 +1 +1 -1 +1 +1 … -1 0.7581 0 
𝑎𝑐𝑑 𝐿𝑘𝐶𝑠 +1 -1 +1 +1 -1 … -1 2.9609 -0.3425 
𝑏𝑐𝑑 𝑉𝑘𝐶𝑠 -1 +1 +1 +1 -1 … -1 9.1760 0 
𝑎𝑏𝑐𝑑 𝐿𝑉𝑘𝐶𝑠 +1 +1 +1 +1 +1 … +1 3.3187 0 

 

 
Table 3 A sample calculation of the effect, 𝛽(𝐿𝑘𝐶𝑠) 

Label, (𝑖) 

1 2 3 4 
(1×2×3) 

5 6 
(4×5) 

𝑋(𝐿) 𝑋(𝑘) 𝑋(𝐶𝑠) 𝑋(𝐿𝑘𝐶𝑠) 𝑌(𝑖) 𝑋(𝐿𝑘𝐶𝑠) × 𝑌(𝑖) 

0 -1 -1 -1 -1 0.1000 -0.1000 
𝐿 +1 -1 -1 +1 0.0120 0.0120 
𝑉 -1 -1 -1 -1 0.7283 -0.7283 
… … … … … … … 
𝐿𝑘𝐶𝑠 +1 +1 +1 +1 2.9609 2.9609 
𝑉𝑘𝐶𝑠 -1 +1 +1 -1 9.1760 -9.1760 
𝐿𝑉𝑘𝐶𝑠 +1 +1 +1 +1 3.3187 3.3187 

𝛽(𝐿𝒌𝑪𝒔) is the average of the values in column 6 = -0.3425 

 
𝑌 = 𝛽(0) + 𝛽(𝐿)𝑋(𝐿) + 𝛽(𝑉)𝑋(𝑉) +⋯+ 𝛽(𝐿𝑉)𝑋(𝐿𝑉) +⋯+ 𝛽(𝐿𝑉𝑘𝐶𝑠)𝑋(𝐿𝑉𝑘𝐶𝑠) (8) 

 
∆𝐶𝐹 × 10

3 = 2.583 − 1.144𝑋(𝐿) + 0.2465𝑋(𝑉) + 1.983𝑋(𝑘) + 0.8657𝑋(𝐶𝑠)
− 0.0676𝑋(𝐿𝑉) − 0.9297𝑋(𝐿𝑘) − 0.445𝑋(𝐿𝐶𝑠) + 0.569𝑋(𝑘𝐶𝑠)
− 0.3425𝑋(𝐿𝑘𝐶𝑠) (9) 

 

 
Figure 3 Pareto chart to determine the dominant factor or the interaction of factors 
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with the other factors. Therefore, the value of 𝑋(𝐿) (as a code) was translated into an actual 

𝐿 (un-code). This process is described in Section 2.4. 

2.4.  Translating the Factor Codes 
The next stage was translating the code of factors by knowing the model function of 

each factor. By knowing the medium value (or midpoint) position, the nonlinearity of each 
factor was established. The medium values were determined and are shown in Table 4. 

The nonlinearity of each factor was discovered by varying the factor and fixing the 
other factors. For example, the value of 𝐿 was varied from 20 to 400 m, and the values of 𝑉, 
𝑘, and 𝐶𝑠 were made fixed. Based on these combinations, the value 𝛥𝐶𝐹 was calculated again 
using the Granville method. After the value of 𝛥𝐶𝐹 was obtained, it was related to the values 
of 𝑋  shown in Table 5 using the iteration method until the best fit between 𝛥𝐶𝐹  and 𝑋 
values was found. This iteration was assisted by the optimization method, so it was easy to 
determine the best value with the minimum error. The optimization tool used was a solver 
prepared in Microsoft Excel based on the Generalized Reduced Gradient (GRG) code 
(Lasdon et al., 1978). Then, the values of 𝛥𝐶𝐹 were plotted together with 𝑋 and 𝐿, as shown 
in Figure 4 (left). 

Based on the plotting results for each factor, the form of each factor’s function was 
found using nonlinear regression with the help of the optimization method. To provide an 
example, the function form of the 𝐿  factor was obtained with the coefficient of 
determination 𝑅2 = 0.9945. See Figure 4 (left) and Equation 10. 

Table 4 The medium code (𝑋(𝑖)) values of the factors 

Factor 
Low 

(𝑋(𝑖) = -1) 
Medium (midpoints) 

(-1 < 𝑋(𝑖) < +1) 
High 

(𝑋(𝑖) = +1) 

𝐿 20 31.7; 43.7; 67.5; …; 352.5 400 
𝑉 2 4.2; 6.5; 8.7; …; 17.7 20 
𝑘 100 254.7; 718.8; …; 8762.5 10000 
𝐶𝑠 0.2 0.3; 0.4; 0.5; …; 0.9 1 

 

 
For the other factors, namely, 𝑉, 𝑘, and 𝐶𝑠, the same procedure as that done for the 𝐿 

factor was followed. Table 6, Figure 4 (right), and Equation 11 provide details of the 𝑉 
factor treatment. Table 7, Figure 5 (left), and Equation 12 show the details for the 𝑘 factor 
treatment. Table 8, Figure 5 (right), and Equation 13 show the details for the 𝐶𝑠  factor 
treatment. 

Table 5 Calculation of the midpoints of 𝑋(𝐿) 

𝐿 (m) 𝑉 (m/s) 𝑘 (µm) 𝐶𝑠 𝛥𝐶𝐹 × 10
3 𝑋(𝐿) value Position 

20 

11 5050 0.6 

5.4229 -1 Low  
31.875 4.6122 -0.49 

M
ed

iu
m

 

43.75 4.1559 -0.205 
… … … 

305 2.3763 0.91 
352.5 2.2895 0.96 

400 2.2172 1 High  
 

 
3. Results and Discussion 

The alternative formula is shown in Equation 14. It was obtained by combining the 
initial formula in Equation 9 with each factor’s function in Equations 10, 11, 12, and 13.  
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Table 6 Calculation of the midpoints of 𝑋(𝑉) 

𝐿 (m) 𝑉 (m/s) 𝑘 (µm) 𝐶𝑠 𝛥𝐶𝐹 × 10
3 𝑋(𝑉) value Position 

210 

2 

5050 

 2.3107 -1 Low 
4.25  2.4602 -0.25 

M
ed

iu
m

 

6.5  2.5359 0.12 
… 0.6 … … 

15.5  2.6743 0.81 
17.75  2.6940 0.91 

20  2.7111 1 High 
 

 

𝑋(𝐿) = 1.6577 − 10.426𝐿
−0.4564 (10) 

𝑋(𝑉) = 4.7874 − 6.5715𝑉
−0.1836 (11) 

𝑋(𝑘) = 0.1049𝑘
0.3429 − 1.499 (12) 

𝑋(𝐶𝑠) = 4.8445𝐶𝑠
0.3315 − 3.8482 (13) 

 
Table 7 Calculation of the midpoints of 𝑋(𝑘) 

𝐿 (m) 𝑉 (m/s) 𝑘 (µm) 𝐶𝑠 𝛥𝐶𝐹× 103 𝑋(𝑘) value Position 

50 11 

100  0.8688 -1 Low 
254.69  1.3102 -0.8 

M
ed

iu
m

 

718.75  1.9588 -0.5 
… 0.6 … … 

7525  4.6173 0.75 
8762.5  4.8898 0.88 
10000  5.1417 1 High 

 

 
Table 8 Calculation of the midpoints of 𝑋(𝐶𝑠) 

𝐿 (m) 𝑉 (m/s) 𝑘 (µm) 𝐶𝑠 𝛥𝐶𝐹× 103 𝑋(𝐶𝑠) value Position 

210 11 5050 

0.2 1.8248 -1 Low 
0.3 2.0877 -0.595 

M
ed

iu
m

 

0.4 2.2952 -0.27 
… … … 

0.8 2.8824 0.65 
0.9 2.9967 0.83 
1.0 3.1030 1 High 

 

 

  
Figure 4 The nonlinear function of 𝑋(𝐿) (left) and 𝑋(𝑉) (right) 
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Figure 5 The nonlinear function of 𝑋(𝑘) (left) and 𝑋(𝐶𝒔) (right) 

 
The units for each factor were meters (m) for 𝐿 , m/s  for 𝑉 , and µm  for 𝑘 . 𝐶𝑠  was 
nondimensional. 

 

𝛥𝐶𝐹 × 10
3 = 0.1823 + 3.5167 ∙ 𝐿−0.4564 − 0.8834 ∙ 𝑉−0.1836 + 0.0458 ∙ 𝑘0.3429

+ 0.6112 ∙ 𝐶𝑠
0.3315 − 4.6323 ∙ 𝐿−0.4564 ∙ 𝑉−0.1836 − 0.4247 ∙ 𝐿−0.4564

∙ 𝑘0.3429 − 3.4552 ∙ 𝐿−0.4564 ∙ 𝐶𝑠
0.3315 + 0.0006 ∙ 𝑘0.3429 ∙ 𝐶𝑠

0.3315

+ 1.8147 ∙ 𝐿−0.4564 ∙ 𝑘0.3429 ∙ 𝐶𝑠
0.3315 (14) 

 

A validation test was performed for this alternative formula to compare the calculation 
results obtained using this formula with that using the Granville method. The calculation 
result consisted of 1,000 combinations of factors (𝐿 , 𝑉 , 𝑘 , and 𝐶𝑠 ) that were obtained 
randomly. From the random combination of factors, 𝛥𝐶𝐹 was calculated using the proposed 
formula and using the Granville method. The random factors and the calculation results are 
provided in the supplementary file. The results of the two calculations were compared by 
plotting them in Figure 6 with the help of linear regression. The test results showed that the 
coefficient of determination 𝑅2 = 0.9988  with 𝑦 = 0.9672𝑥 + 0.1115  (red solid line), 
where the perfect criterion is 𝑦 = 𝑥 + 0 (black solid line). 
 

  
Figure 6 The results of thealternative formula 
versus the results of the Granville method 

Figure 7 The error distribution of the 
alternative formula based on the Granville 
method 

 
The error of this alternative formula based on the Granville method was analyzed to 

illustrate the confidence level with respect to its accuracy. The error was calculated using 
Equation 15, after which the error values were arranged in the histogram in Figure 7. The 
error values were also plotted against the factors in Figures 8 and 9 to show the range of 
the percentage error risk of each factor value. 

 

-1,0

-0,5

0,0

0,5

1,0

0,9

1,7

2,6

3,4

4,3

5,1

0 2000 4000 6000 8000 10000

X
(k

)
v

al
u

e

Δ
C

F
×

1
0

3

k (µm)

ΔC_F

X_(k) Value

X(k) = 0.1049k0.3429 -1.499
R2 = 0.9919

-1,0

-0,5

0,0

0,5

1,0

1,8

2,1

2,3

2,6

2,8

3,1

0,2 0,4 0,6 0,8 1

X
(C

s)
v

al
u

e

Δ
C

F
×

1
0

3

Cs

ΔC_F

X_(Cs) Value

X(Cs) = 4.8445Cs
0.3315 -3.8482

R2 = 0.9984



838  Alternative Empirical Formula for Predicting the Frictional Drag Penalty due to Fouling on  
the Ship Hull using the Design of Experiments (DOE) Method  

  

Error (%) =
𝛥𝐶𝐹(formula) − 𝛥𝐶𝐹(Granville)

𝛥𝐶𝐹(Granville)
× 100% 

(15) 
 
The error distribution in the histogram (Figure 7) shows that the formula has an error 

risk of -7% to +5% with 1,000 data and a ±5% error risk if it uses only 93.9% of the 1,000 
data. The data distribution shows that the distribution is not symmetrical or is denser on 
the left (the negative side). This means that many errors occur in negative values (-), which 
indicates that most predictions using this formula produce values that are slightly smaller 
than that from the Granville method. However, it should be noted that these values will 
differ if the amount of data used also differs. In this analysis, it was ensured that the factor 
values that were used as inputs were varied by as many as 1,000 combinations that were 
truly randomly generated. 

Figures 8 and 9 show that each factor had its own error range, with the red solid line 
as the centre line value of each data distribution. This can describe the boundary conditions 
of the proposed formula, so it can predict the risk of calculation error for a certain range of 
factors. The 𝐿 factor seems to have had some positive errors (+) when 𝐿 was less than about 
70 m (short), and the most negative errors (-) when 𝐿 was more than about 70 m [see 
Figure 8 (left)]. The 𝑉 factor had a fairly stable error in all its ranges, with all negative errors 
[see Figure 8 (right)]. Based on Figure 9 (left), the 𝑘 factor had the largest error at its ranges 
below about 6,000 µm and even more so in the approximately 1,000µm range. The 𝑘 factor 
had less error at the higher values of around 6,000 µm and above. The 𝐶𝑆 factor also had 
less error in the higher value range (more than 0.9). 

  
Figure 8 Error distribution based on the 𝐿 factor range (left) and for the 𝑉 factor (right) 
 

  

Figure 9 Error distribution values of the 𝑘 factor range (left) and for the 𝐶𝑆 factor (right) 
 

The factors that were used as inputs to the calculation of the response 𝛥𝐶𝐹 were also 
analyzed and are shown in Figures 10 and 11. Figure 10 (left) means that ships with a 
shorter 𝐿 will be more at risk of experiencing a larger 𝛥𝐶𝐹 than ships with a longer 𝐿. This 
is consistent with the findings of Hakim et al. (2020). Figure 10 (right) shows that the value 
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of 𝛥𝐶𝐹 is not too affected by the speed factor (𝑉); but 𝐶𝐹𝑅  = 𝐶𝐹𝑆  + 𝛥𝐶𝐹 denotes, as expected, 

that faster ships will have greater resistance. That is, ships with any speed will have the 
same 𝛥𝐶𝐹 , but will still have different values of 𝐶𝐹𝑆 . The worse the fouling condition is, the 

higher 𝛥𝐶𝐹 is and vice versa, as shown in Figure 11 (left). According to Figure 11, the higher 
the roughness constant 𝐶𝑆 is , the higher the value of 𝛥𝐶𝐹  is and vice versa. All the 
characteristics of the factor effects in this data analysis are in accordance with the predicted 
effect of the DOE method, which is shown in the Pareto diagram in Figure 3. 

  
Figure 10 Effect characteristic of the 𝐿 factor (left) and the 𝑉 factor (right) to the response 𝛥𝐶𝐹 

 
Figure 11 Effect characteristic of the 𝑘 factor (left) and the 𝐶𝑆 factor (right) to the response 𝛥𝐶𝐹 
 
4. Conclusions 

This paper described the process of establishing an alternative formula for the 
prediction of the increased frictional resistance (𝛥𝐶𝐹) of a ship’s hull due to fouling. The 
design of experiments (DOE) method was used, followed by factor code translations via 
nonlinear regression and the optimization method. It was found that some factors and 
interactions of factors affected the response while others did not. The most influential 
factor was the roughness height 𝑘. Then, the formula was created while still inputting the 
code of the factor (Equation 9), after which the codes were translated into functions 
(Equations 10–13) that represented the actual value of each factor. The functions were 
substituted in Equation 9 to come up with the final alternative formula in Equation 14. 

The alternative formula was validated by comparing its calculation result with that of 
the Granville method and computing the error. The results were quite good, with values of 
𝑅2 = 0.9988 and 𝑦 = 0.9672𝑥 + 0.1115, as described in Figure 6. The error distribution is 
illustrated in Figure 7 and shows that 93.9% of the 1,000 data calculated had a ±5% error 
risk. The possible cause of this error is the less than perfect process of matching functions 
during the code translation (Figures 4–5). Of course, this equation can be refined further. 

We should be grateful for the DOE, followed by the translation of factors, for allowing 
the creation of a formula that can calculate a response with good accuracy using minimal 
initial data. The initial data were generally obtained from measurements in the field, 
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laboratory tests, or numerical simulations, all of which required resources. The resulting 
formula was also quite easy to use.  

Using this alternative formula, predicting the increased frictional resistance of ships 
due to fouling will be easier, faster, and cheaper. The formula’s error rate, which the author 
considers still quite good, makes the formula suitable as an initial tool for determining how 
much impact fouling has on ship performance. In addition, this formula has considerable 
flexibility in the type of roughness function it can be applied to because of its roughness 
constant variable 𝐶𝑆. The roughness constant is known to be needed because roughness 
(especially due to biofouling) is very diverse and even random, so it must be represented 
not only by the measuring height (𝑘) but also by other factors (such as the density, shape, 
and concavity). Although the values of 𝑘 and 𝐶𝑆 are not easy to determine in the field case, 
Chung et al. (2021) can provide insights on how to do it. By predicting the impact of 
biofouling, it is hoped that all parties involved in maritime activities can anticipate and 
address problems that arise from it. 
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