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Abstract. As one part of the advanced driver assistance systems (ADAS), adaptive cruise control 
(ACC) is introduced to reduce the possibility of traffic accidents by controlling the throttle and the 
pressure on the brakes to maintain a safe distance from the vehicle in front. Generally, linearized 
model-based controllers are used in the ACC. In this paper, a new approach to ACC’s inner loop is 
developed by designing the controller using neural network predictive control (NNPC) which 
integrates the capability of artificial neural networks (ANN) to imitate vehicle characteristics and 
model predictive control (MPC) to obtain the minimized quadratic error between future reference 
trajectories and predicted outputs. Two separate control loops will be used: an outer loop based on 
a decision algorithm, and the PI controller, which will give the inner loop a speed reference to 
maintain the safe distance from the vehicle in front. NNPC is used in the inner loop to manipulate 
throttle and brake pressure on the brakes in order to control the speed of the following vehicle. 
Simulations will be carried out using software-in-the-loop (SIL) between CarSim and Simulink.  The 
ANN model is identified and verified to mimic the nonlinearity behavior of the vehicle model using 
the mean square error (MSE) parameter. The results of this study are that the ANN model is able to 
imitate the vehicle dynamic with MSE equal to 0.0095, and the controller can maintain a safe 
distance while having a smooth response. 
  
Keywords: Adaptive cruise control; Artificial neural network; Dynamic vehicle model; Neural 

network predictive control 

 
1. Introduction 

In recent years, trends in improving driving safety have become an important concern 
for the automotive industry because traffic accidents are major concerns faced by drivers. 
These problems can be avoided by introducing some forms of driver assistance to prevent 
accidents. In fact, 50% of accidents that occur are rear-end collisions. That’s why advanced 
driver assistance systems (ADAS) are developed by automobile manufacturers to make 
driving safer. The National Transportation Safety Board said that active safety systems are 
50% more effective in reducing death rates in accidents compared to passive safety systems 
such as airbags (ACEA, 2018). As part of the ADAS system, active cruise control (ACC) was 
developed in early 1990. The ACC system is capable of adjusting vehicle speed while 
maintaining a safe distance from the vehicle in front. This system modulates the throttle 
valve  and  brake  pressure to  reduce  or  accelerate the  vehicle to   the desired   speed and 
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distance. Radar, laser, and other sensory devices are used to measure the distance from 
vehicles in front, so the ACC system can choose a proper driving mode. 

Several methods for the ACC system have been developed in four-wheeled vehicles. 
Classical methods such as PID and fuzzy have been developed since a few decades ago. Rout 
and his colleagues utilized a PID controller that was optimized with genetic algorithm (GA) 
to produce optimal PID tuning (Rout et al., 2016). Shakouri developed the ACC system with 
the gain-scheduling method using PI and LQ controllers to manipulate throttle valve and 
brake pressure (Shakouri et al., 2011), and Pananurak and his colleagues used fuzzy logic 
algorithms for ACC systems (Pananurak et al., 2009). Some predictive methods began to be 
developed because they resulted in better control of vehicle dynamics. Shakouri also 
developed the two-loop ACC system by utilizing the model predictive control (MPC) for 
throttle and brake control as inner loop control and PI as a speed controller for outer-loop 
control (Shakouri and Ordys, 2014). After that, Naus and his colleagues utilized implicit 
MPC and multi-parametric quadratic programs for online identification of ACC systems 
(Naus et al., 2010). Miftakhudin and colleagues developed a multistage MPC system with 
constraints for the ACC controller to achieve a smooth response (Miftakhudin et al., 2019). 
On problem shared by all the research mentioned above, is that the controller uses the 
linearization method in modeling the longitudinal motion of four-wheeled vehicles. These 
methods limit the controller’s ability to work only in a specified range and are difficult to 
obtain for a large working range. 

From many control methods that have been developed, artificial neural network (ANN) 
has not been widely applied in automotive controllers, especially in ACC systems, even 
though ANN is widely known for its ability to capture nonlinear phenomena. For that 
reason, the main contribution of this work is to make a controller that integrates the ability 
of ANN to capture nonlinear dynamics of moving vehicles and the predictive ability of MPC 
to control ACC systems. This method, called neural network predictive control (NNPC), 
began development 1996 when Soloway started working on neural generalized predictive 
control that combines ANN for model identification and generalized predictive control 
(GPC) for the controller (Soloway and Haley, 1996). These methods created a new problem 
for minimization of the cost function in GPC. Newton-Raphson was used to compute 
optimization problems numerically to obtain optimal control sequences for the controller. 
This paper used a slightly modified method, quasi-Newton, to compute the control 
sequence for the controller and Broyden Fletcher Goldfarb Shanno (BFGS) algorithm to 
solve inverse Hessian matrices that appear in Newton-based optimization. In this research, 
simulation will be carried out in software-in-the-loop (SIL) between MATLAB and CarSim. 
 
2. Methods 

 In this research, a combination of ANN and MPC will be used to control the speed and 
distance of a vehicle. A dynamic vehicle is used, and CarSim will provide its model and 
behavior similar to the real-life movement of a vehicle. NNPC will then be induced to the 
system as ACC. The dynamics of a vehicle model and NNPC are described in the following 
section. 

2.1. Dynamic Vehicle Model 
 The model used in this research has one degree of freedom by taking the center of 
gravity in the center of the vehicle. There will be two vehicles: the one that follows (the 
follower) as the vehicle being controlled and the one in front (the leader) as disturbance and 
the speed reference of the vehicle that follows. The dynamic model of the vehicle used is 
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based on Newton's second law by considering various external factors from the environment 
as follows: 

𝑚�̇� =  
1

𝑟
[𝑅𝑡𝑟𝑅𝑓𝐶𝑡𝑟 (

𝑁𝑒

𝐾𝑡𝑐
)
2

+ 𝑇𝑏] −
1

2
𝜌𝐴𝐶𝑑𝑣

2 − 𝐶𝑟𝑚𝑔𝑐𝑜𝑠(𝜃) + 𝑚𝑔𝑠𝑖𝑛(𝜃)               (1)         

where 𝑚  denotes vehicle’s speed, �̇�  denotes acceleration, 𝑟  is wheel radius, 𝑅𝑡𝑟  and 𝑅𝑓 

indicate gear ratio and the final gear ratio respectively, 𝐶𝑡𝑟  is torque ratio, 𝑁𝑒  denotes 
engine speed, 𝑘𝑡𝑐  is a capacity factor, 𝑇𝑏 is brake torque, 𝜌 is the air density, 𝐴 is the front 
cross-sectional area of the vehicle, 𝐶𝑑  is the drag coefficient, 𝐶𝑟  is the rolling resistance 
coefficient, 𝑔 is gravity, and 𝜃 indicates the slope of the road. 
 The first equation of the function above is the torque function sent to the wheels (𝑇𝑤), 
the second equation shows the aerodynamic function of the vehicle, the third function 
shows the vehicle’s rolling resistance force, and the fourth equation shows the function due 
to gravity. In this study, the gravitational force in the fourth equation is not taken into 
account because the scenario used does not experience elevation changes. In the first 
equation, a further equation can be explained as follows: 

𝑇𝑤 =  𝑅𝑓𝑅𝑡𝑟𝐶𝑡𝑟(𝑇𝑒(𝑢𝑡, 𝑁𝑒) −  𝐼𝑒𝑖�̇�𝑒         (2) 

where 𝑇𝑒 is the torque produced by the engine, 𝑢𝑡 indicates throttle valve percentage and 
𝐼𝑒𝑖  is the summation of the engine and impeller moment of inertia. From this equation, there 
is another nonlinear function in terms of torque produced by the engine where the function 
is in the form of an engine map. This engine map is hard to formulate in a mathematical 
equation. Therefore, ANN is used to identify vehicle longitudinal motion. The desired safe 
distance used in this research is based on constant-time headway policy as follows (van den 
Bleek, 2007): 

𝑑𝑑𝑒𝑠 = 𝑙 + 𝑑𝑠 + 𝑇ℎ𝑣ℎ𝑜𝑠𝑡                    (3)               

where 𝑑𝑑𝑒𝑠  is the desired safe distance, 𝑙 is the length of the vehicle, 𝑑𝑠  is the additional 
distance between vehicles, 𝑣ℎ𝑜𝑠𝑡  is the user's vehicle speed, and 𝑇ℎ  is the constant-time 
headway obtained from the estimate of the human reaction time (Martinez and Canudas-
de-Wit, 2007). 

2.2. NN-Based Nonlinear Identification 
 To identify vehicle longitudinal motion using ANN, a neural network auto regressive 
with exogenous (NNARX) model can be used. The one-step-ahead predictions are given as 
follows: 

�̂�(𝑡) = 𝑔(𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛),𝑢(𝑡 − 1),… , 𝑢(𝑡 −𝑚)) (4) 

where 𝑔  is a non-linear function of the system modeled by a neural network, 𝑛  is the 
number of past outputs used, 𝑚 is the number of past inputs used, and 𝑘 is the time of each 
step. For the learning process, we need input and output data for ANN. Random vehicle 
control signals will be sent to the vehicle model in CarSim as input data, and vehicle speed 
due to the control signals will be saved as output data. All the data gathered from CarSim 
will be used to train the ANN model in a MATLAB environment. In the training process, 
Figure 1a can be used to train the ANN model. 
 An ANN model with a three-time delay for each input-output, seven hidden-layer units, 
and a single output will be used in this research. The structure of ANN used to identify the 
vehicle model can be seen in Figure 1b. 
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2.3. Controller Structure 
 In this paper, the ACC based on NNPC was developed to regulate the distance and speed 
between host and lead vehicles by calculating the optimal predicted control signal through 
the receding horizon. The control structure consists of an inner loop and an outer loop, as 
shown in Figure 2, with vrel = vfol–vlead. The outer loop uses a PI controller and was developed 
in order to calculate the desired velocity. This set point will be tracked by NNPC by 
manipulating the engine torque and the brake torque. 
 

 
Figure 1 Training process: (a) Block diagram for the training process; (b) ANN structure used in 
the training process 
 

 

Figure 2 Block diagram for ACC system with NNPC 
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 NNPC is basically an MPC that uses an ANN model to compute plant output predictions; 
hence, it has the same cost function as conventional MPC, but has different approaches to 
find output predictions and cost function minimization. The cost function used in NNPC can 
be calculated by the following equation: 

𝐽 = ∑[𝑟(𝑡 + 𝑖) − �̂�(𝑡 + 𝑖)]2 + 𝜌∑∆𝑢(𝑡 + 𝑖 − 1)2

𝑁𝑢

𝑖=1

𝑁2

𝑖=𝑁1

 (5) 

where 𝐽 indicates the value of the minimization function, 𝑁1 is the minimum cost horizon, 
𝑁2  is the prediction or maximum cost horizon, 𝑁𝑢  is the control horizon, 𝑟(𝑡)  is the 
reference signal, �̂�(𝑡) is the predicted result of the output, 𝜌 is the weighting factor, which 
provides a penalty function for changing the control signal.  
 The output of the NN model is given by the following equation: 

�̂�(𝑡) =∑𝑤𝑗𝑓𝑗

𝑛ℎ

𝑗=1

(𝜃𝑗(𝑡)) + 𝑏 
 

(6) 

where nh is the number of nodes in the hidden layer, and: 

𝜃(𝑡) =∑𝑤𝑗,𝑖𝑢

𝑚

𝑗=1

(𝑡 − 𝑖) +∑𝑤𝑗,𝑚+1+𝑖𝑦

𝑛

𝑗=1

(𝑡 − 𝑖) + 𝑏𝑗 (7) 

 The NNPC predicts the future output for a determined prediction horizon N2 at each 
instant t, based on the known values of past inputs and outputs and on the future control 
signals, described as: 

�̂�(𝑡 + 𝑘) =∑𝑤𝑗𝑓𝑗

𝑛ℎ

𝑗=1

(𝜃𝑗(𝑡 + 𝑘)) + 𝑏 (8) 

where: 

𝜃(𝑡) =

{
 
 

 
 ∑𝑤𝑗,𝑖𝑢

𝑚

𝑗=1

(𝑡 − 𝑖)𝑢(𝑡 + 𝑘 − 𝑖) + 𝜗𝑗 +𝜑𝑗 + 𝑏𝑗 , 𝑘 − 𝑁𝑢 < 𝑖

∑𝑤𝑗,𝑖𝑢

𝑚

𝑗=1

(𝑡 − 𝑖)𝑢(𝑡 + 𝑁𝑢) + 𝜗𝑗 +𝜑𝑗 + 𝑏𝑗 , 𝑘 − 𝑁𝑢 ≥ 𝑖

 
(9) 

and: 

𝜗𝑗 = ∑ 𝑤𝑗,𝑚+1+𝑖𝑦

min (𝑘,𝑛)

𝑖=1

(𝑡 + 𝑘 − 𝑖)

𝜑𝑗 = ∑ 𝑤𝑗,𝑚+1+𝑖𝑦

𝑛

𝑗=𝑘+1

(𝑡 + 𝑘 − 𝑖)

 (10) 

 The minimization of cost function J is performed at each time step to produce a 
sequence of future control signals U = [u(t) u(t+1) … u(t+Nu-1]T. From this sequence, only 
the first control signal 𝐮(𝑡) is given to the system. In order to find the optimal control signal 
at each iteration, the quasi-Newton algorithm will be used, as in Sørensen et al. (1999). The 
iterative method is used to find the optimal control signal in the following equation: 

𝐔(𝑖+1) = 𝐔(𝑖) + 𝜇(𝑖)𝐅(𝑖) (11) 
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where 𝐔(𝑖) indicates the current iteration of the sequence of future control inputs, 𝜇(𝑖)  is 
step size, and 𝐅(𝑖)  is the search direction. The search direction used in Equation 11 is 
calculated by: 

𝐅(𝑖) = −𝐁(𝑖)𝐆(𝐔(𝑖)(𝑡)) (12) 

where 𝐁(𝑖)  specifies the approximating inverse Hessian according to the BFGS 
algorithm (Chong and Zak, 2013): 

𝐁(𝑖+1) = 𝐁(𝑖) + (1 +
∆𝐆(𝑖)𝑇𝐁(𝑖)∆𝐆(𝑖)

∆𝐆(𝑖)𝑇∆𝐔(𝑖)
)
∆𝐔(𝑖)∆𝐔(𝑖)𝑇

∆𝐔(𝑖)𝑇∆𝐆(𝑖)

−
𝐁(𝑖)∆𝐆(𝑖)∆𝐔(𝑖)𝑇 + (𝐁(𝑖)∆𝐆(𝑖)∆𝐔(𝑖)𝑇)

𝑇

∆𝐆(𝑖)𝑇𝐔(𝑖)

 (13) 

with G(i) = G(i+1) - G(i), U(i) = U(i+1) - U(i), and 𝐆(𝐔(𝑖)(𝑡)) indicates the gradient of the 

cost function or Jacobian with respect to the control inputs. By differentiating the predicted 
output in Equation 8 with respect to u(t+h), the hth elements of the Jacobian can be obtained 
as follows: 

𝜕𝑦(𝑡 + 𝑘)

𝜕𝑢(𝑡 + ℎ)
=∑𝑤𝑗

𝜕𝑓(𝜃𝑗(𝑡 + 𝑘))

𝜕𝑢(𝑡 + ℎ)

𝑛ℎ

𝑗=1

 (14) 

 The chain rule is applied to the partial differentiation of function in the hidden layer 
with respect to the hth elements of the Jacobian, resulting in 

𝜕𝑓(𝜃𝑗(𝑡 + 𝑘))

𝜕𝑢(𝑡 + ℎ)
=
𝜕𝑓(𝜃𝑗(𝑡 + 𝑘))

𝜕𝜃𝑗(𝑡 + 𝑘)

𝜕𝜃𝑗(𝑡 + 𝑘)

𝜕𝑢(𝑡 + ℎ)
 (15) 

where, the first term 𝜕𝑓(𝜃𝑗(𝑡 + 𝑘))/𝜕𝜃𝑗(𝑡 + 𝑘) is the output function’s derivative, and the 

second term is defined by 

𝜕𝜃𝑗(𝑡 + 𝑘)

𝜕𝑢(𝑡 + ℎ)
=

{
  
 

  
 
∑𝑤𝑗,𝑖+1𝛿

𝑚

𝑗=1

(𝑘 − 𝑖, ℎ) + ∑ 𝑤𝑗,𝑛+1+𝑖
𝜕𝑦(𝑡 + 𝑘 − 𝑖)

𝜕𝑢(𝑡 + ℎ)
𝛿

min (𝑘,𝑛)

𝑗=1

(𝑘 − 𝑖 − 1) , 𝑘 − 𝑁𝑢 < 𝑖

∑𝑤𝑗,𝑖+1𝛿

𝑚

𝑗=1

(𝑁𝑢 , ℎ) + ∑ 𝑤𝑗,𝑛+1+𝑖
𝜕𝑦(𝑡 + 𝑘 − 𝑖)

𝜕𝑢(𝑡 + ℎ)
𝛿

𝑛min (𝑘,𝑛)

𝑗=1

(𝑘 − 𝑖 − 1) , 𝑘 − 𝑁𝑢 ≥ 𝑖

 (16) 

where (h,j) is the Kronecker Delta function and 1 is the step function. 

 For this research, the ACC system with NNPC will have two separate controllers, upper-
level and lower-level (Subiantoro et al., 2018). The upper-level part will determine the 
driving mode used and the reference speed. The lower level will control the amount of the 
gas valve and the pressure on the brakes so that the vehicle has a speed in accordance with 
the reference given by the upper level. The block diagram of the ACC controller with NNPC 
can be seen in the following figure. 

Decision Algorithm 
 In the switching algorithm, the ACC system will select between two driving modes. 
When there are no obstacles or cars in front, the car's speed will change according to the 
value set by the driver when activating the ACC system; this mode is called cruise mode. If 
there is a car in front whose speed is lower than the car being driven, the driving mode will 
change and the ACC system will make the car's speed equal to that of the vehicle in front 
and maintain a safe distance. This mode is called follow mode. Data from the environment 
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taken by vehicle sensors, such as distance between vehicles and speed of both vehicles, is 
used in calculation to determine the driving mode. The switching algorithm used in this 
paper refers to a simplified version of Gao’s work (Gao et al., 2016) and can be seen in the 
following figure. 
 

 

Figure 3 Switching strategy for determining cruise mode and follow mode 

 

 

Figure 4 Switching strategy with 3 zones 

  
In the ACC system, when there is an obstacle in the form of a vehicle with a lower speed, 

the system will change the driving mode through a switching algorithm. When this happens, 
there will be an area where the switching algorithm will change from cruise mode to follow 
mode and vice versa; this state is called the switching area. In the switching algorithm, there 
will be three zones that determine when the driving mode changes, as shown in Figure 4. 
Zone I is an area that has a negative relative distance and velocity. This indicates that the 
distance between the two vehicles is smaller than the desired safe distance, so the driving 
mode will change to follow mode to avoid collisions with the vehicle in front. 
 Zone II is the area between zones I and III. In areas that are closer to zone III, the driving 
mode will be more likely to be cruise mode, and in areas closer to zone I, the driving mode 
is more likely to be follow mode. Both driving modes can occur in zone II, making it difficult 
to determine the right driving mode in this zone when only looking at the two parameters 
used. Therefore, in this zone, an additional parameter will be considered in the form of 
acceleration carried out by the vehicle. This is done to smooth the switching process and 
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avoid large changes in reference speed between cruise mode and follow mode. If this 
parameter does not exist, there will be a lot of switching processes so that the speed of the 
vehicle will oscillate greatly and make passengers uncomfortable. 
 Zone III is an area where the distance between vehicles and relative speed is positive. 
This indicates that the distance between vehicles will get larger with the increasing speed 
of the vehicle in front. That way, the driving mode will become cruise mode, and the speed 
set by the driver will be the reference speed given to the NNPC controller. Shifting between 
cruise mode and follow mode can be illustrated in Table 1. 
 
Table 1 Driving mode selection 

Zone 
Relative Deviation 

(∆d = d - ddes) 
Relative Speed 
(vr = vfol - vlead) 

Acceleration Target (a) Driving Mode 

I ∆d ≤ doffset vr ≤ 0 - Follow Mode 

II 

∆d > 0 vr < 0 afollow ≤ acruise Follow Mode 
∆d > 0 vr < 0 afollow > acruise Cruise Mode 

∆d < doffset vr > 0 afollow ≤ acruise Follow Mode 
∆d < doffset vr > 0 afollow > acruise Cruise Mode 

III ∆d ≥ doffset vr ≥ 0 - Cruise Mode 

  
In the upper level controller, the PI controller will be used to determine acceleration of 

the follower vehicle, and then the vehicle’s speed will be calculated using an ordinary linear 
motion function. The function to calculate acceleration in driving mode can be seen in Table 
2. 
 
Table 2 Driving mode in the switching algorithm 

Mode Movement Acceleration 

Cruise 
Mode 

    

𝑎𝑑𝑒𝑠−𝑐𝑟𝑠 = 𝑘𝑝(𝑣𝑑𝑒𝑠 − 𝑣𝑓𝑜𝑙) + 𝑘𝑖∫(𝑣𝑑𝑒𝑠 − 𝑣𝑓𝑜𝑙)𝑑𝑡 

Follow 
Mode 

              

𝑎𝑑𝑒𝑠−𝑓𝑜𝑙 = 𝑘𝑣(𝑣𝑙𝑒𝑎𝑑 − 𝑣𝑓𝑜𝑙) + 𝑘𝑑(𝑑 − 𝑑𝑑𝑒𝑠) 

  

Variable 𝑎𝑑𝑒𝑠−𝑐𝑟𝑠 is the acceleration needed by the vehicle to reach the target set by the 
driver, 𝑘𝑝 is the proportional constant for the controller in cruise mode, 𝑣𝑑𝑒𝑠 is the target 

speed determined by the driver when activating the ACC system, 𝑣𝑓𝑜𝑙𝑙  is the speed of the 

vehicle using the system ACC, 𝑘𝑖  are integral constants in cruise mode, 𝑎𝑑𝑒𝑠−𝑓𝑜𝑙  is the 

acceleration needed by the vehicle when in follow mode, 𝑘𝑣  and 𝑘𝑑  are proportional 
constants to correct errors due to mismatching of the desired speed and distance. 𝑣𝑙𝑒𝑎𝑑  is 
the speed of the vehicle in front, 𝑑 is the actual distance obtained from the sensor, and 𝑑𝑑𝑒𝑠  
is the desired safe distance. 
 
3. Results and Discussion 

3.1.  Nonlinear Identification Results 
 The nonlinear identification and ACC performance are run under the CarSim simulator 
and MATLAB application with sampling time Ts = 0.01 seconds. Some parameters of the 
vehicle model are used during the simulation as follows: vehicle mass m = 1650 kg, time 
headway h = 2, additional distance between two vehicles ds = 1 m, and vehicle length l = 



Mahadika et al.   1459 

3.048 m. As a quantitative performance indicator of good fitting, a common parameter of 
mean square error MSE is used to verify the quality of the NNARX model. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑝 − 𝑦𝑚)

2

𝑁

𝑖=1

 

 In the first step of simulation, an NNARX model is derived by using an identification 
method based on data measurement. CarSim will produce 600,000 pairs of input-output 
data, in which only 300,000 data points (50% of output data) are used to estimate the 
parameter of the vehicle model, and the remaining 300,000 items (50% of output data) are 
used for validation. Figure 5 shows a qualitative comparison between the estimated NNARX 
model and the vehicle output. It is shown that the NNARX model is able to mimic the 
nonlinear behavior of vehicle dynamics with the value of mean square error MSE = 0.0095. 
The ability of the NN model as a general approximator is proved in imitating the nonlinear 
vehicle dynamic problem. The NN model can follow the vehicle response accurately in any 
situation. A small error only occurred when the vehicle speed changed suddenly.  
 

 
Figure 5 Comparison between NNARX model output and vehicle output 

3.2.  NNPC Results  
 Two different scenarios will be used as a testbed to determine controller performance. 
The first scenario is where the lead vehicle will go at a constant speed, then accelerate to 
high speed beyond the cruise mode set speed. Cruise mode speed is set at 60 km/h. For the 
second scenario, the lead vehicle will change in speed throughout the simulation, and cruise 
mode speed is set at 70 km/h. The tuning parameters of the predictive controller are 
determined as follows: minimum cost horizon N1=1, prediction horizon N2=7, control 
horizon Nu=2, and weighting for the control signal  = 0.003. 

3.2.1. Control performance I: constant speed and acceleration 
 Figure 6 shows the simulation results for ACC mode for the first scenario. In the first 4 
seconds of the simulation, the vehicle is in cruise mode with speed set to 60 km/h. Then, 
the distance between vehicles begins to shrink so that the speed of the follower vehicle 
starts to slow down to adjust to the specified safety distance and the vehicle leader's speed. 
At this point, ACC mode changes to follow mode until the lead vehicle starts to accelerate 
rapidly at the 30 second mark. The follower vehicle will adjust the speed to match the leader 
vehicle until it changes its drive mode to cruise mode at 60 km/h because the leader vehicle 
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speed exceeds the specified speed set in cruise mode. The ACC system can be seen as 
capable of keeping a distance from the vehicle in front of it, with error from the desired 
distance relatively small. The largest error in distance is around 45 cm from the desired 
safe distance. 

 
Figure 6 First scenario test 

3.2.2. Control performance II: varying speed 
 Figure 7 shows the simulation results for ACC mode for the second scenario. At first, 
the vehicle is in cruise mode with speed set to 70 km/h until the distance between vehicles 
begins to shrink. Then drive mode changes to follow mode to adjust the leader vehicle’s 
speed. From this point, the ACC system can keep the follower vehicle’s speed to match the 
leader vehicle’s speed within the safe distance desired. The biggest error in this scenario 
was around 80 cm, which happened at the 95-second mark when the leader vehicle started 
to decelerate. 

 
Figure 7 Second scenario test 
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4. Conclusions 

Based on the data and simulation implemented in CarSim and MATLAB, the ACC 
system with NNPC can track the leader vehicle’s speed and keep the safe distance desired 
with a relatively small error in distance. This research has limitations in acceleration of 
the leader vehicle. A rapid change in speed will need new training data sets for the ANN 
model. This method also has a drawback in the working range because the ANN model 
can only work accurately if there is sufficient data training, and is hard to implement in 
a wide working range. It would need vast data and take huge computational effort to 
train. For future work, another ANN model can be implemented to switch between a 
vehicle’s speed range and acceleration to be able to work in different scenarios. 
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