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Abstract. Inter-urban roads in Indonesia are characterized mainly by distinct road geometry and 
heterogeneous traffic features. The accident database from the Republic of Indonesia National 
Traffic Police recorded a substantial number of fatal accidents and fatalities along inter-urban 
roads. This study aimed to analyze the effects of traffic heterogeneity and road geometry features 
on fatal accidents along inter-urban roads in South Sulawesi, Indonesia. Segment-based accident 
analysis was adopted to minimize bias due to the large standard deviations of road lengths. 
Vehicle-specific speeds, speed standard deviations, and volumes of six vehicle categories, road 
surface condition, and road geometry were the classified predicting factors. A machine learning 
technique was adopted to produce predictions of the classification problem. A total of 1,068 road 
segment observations from 2013–2016 were used to build and validate the model. Model 
generalization was carried out using the out-of-sample 2019 data. With 26 potential predictors, 
three machine learning techniques based on the ensembles of regression trees were used to avoid 
removing potential predictors altogether. The results indicate that road-related features show the 
greatest importance in predicting the number of fatal accidents. Among the speed features, the 
average speed of angkots and speed standard deviation of motorcycles showed the greatest 
importance. The average daily traffic (ADT) of pickups had the greatest importance among other 
vehicle-specific ADTs. 
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1. Introduction 

Traffic accidents on inter-urban roads in Indonesia are still considered a serious 
problem, with high rates of fatalities. As an illustration, the fatality rates on Bantaeng–
Bulukumba, Jeneponto–Bantaeng, and Bulukumba–Tondong in South Sulawesi were 23.6, 
6.5, and 5.1 deaths per 100 million vehicle-km in 2015 (Australia–Indonesia Partnership, 
2017) and were 7.03, 3.35, and 8.19 deaths per 100 million vehicle-km in 2019, based on 
the present study. 

Various factors related to traffic safety have been studied using different approaches. 
Studies on speed variations have revealed that both the standard deviation (SD) of speed 
and the coefficient of speed variation (CSV) were significantly related to traffic collisions 
(Choudhary et al., 2018; Wang et al., 2018). The effects of road geometry on traffic safety 
were studied by Chen et al. (2019) and Papadimitriou et al. (2019), and the effects on 
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pedestrian safety were studied by Siregar et al. (2019). In these studies, the traffic factors 
were considered homogeneous, and vehicle-specific traffic speeds and volumes were not 
considered. The heterogeneity of traffic in speeds and volumes was adopted in the study 
on fatality rates and accident rates (Siregar et al., 2020) on inter-urban roads. Similarly, 
various approaches have been applied to analyze traffic safety indices. Some of the most 
widely used regression analyses include the Poisson regression (Mitra et al., 2017) and 
negative binomial regression (Poisson-gamma; Tjahjono, 2010; Gitelman et al., 2017). An 
artificial neural network was also used in a study by Alkheder et al. (2017). 

Because the distribution of accidents is substantially zero inflated and most road 
segments under study (86% in 2013–2016 data) did not have fatal accidents, the 
distribution is instrumental in predicting fatal accidents on a segment base that can be 
applied to fatal accident preventive measures. Therefore, the present study aimed to 
analyze the segment-based effects of traffic and road factors on predicting the number of 
fatal accidents on inter-urban roads by considering the heterogeneity of traffic. These 
factors, referred to as “features” in machine learning, include the average daily traffic, 
average speeds, and speed standard deviations of the different categories of vehicles, road 
geometry, road surface condition, and road section length. Machine learning was adopted 
for the analysis, given that the technique can overcome the nonlinear relationship 
problem between fatal accidents and predictive features. Combinations of the different 
features that are hypothesized to determine the number of accidents were explored. The 
findings can be expected to contribute to the development of traffic safety improvement 
programs. 
 
2. Methods 

 The present study adopted machine learning to predict the dependent variables, as 
shown in Figure 1. As found by Lee et al. (2020), machine learning has become a preferred 
method for analyzing traffic accidents. A comparison between statistical techniques and 
machine learning that was conducted by Zhang et al. (2018) found that, despite the over-
fitting issues, machine learning outperformed the classical statistical techniques and 
showed better prediction accuracy. Machine learning algorithms are preferred when the 
goal is to predict the nonlinear relationship of a number of predictor variables with the 
predicted value (target variable). Machine learning also overcomes the complex 
interactions of variables. The number of potential predictors in this study was rather large 
at 26. Because it was necessary to preserve as much information contained in the 
predictors as possible and avoid removing any predictors completely, three machine 
learning techniques based on ensembles of regression trees were used: random forest 
(Krishnaveni and Hemalatha, 2011), gradient boosting machines (Pradhan and Sameen, 
2020), and bagging regression trees (Sutton, 2005). A number of combinations of 
predictors were created to see how the various combinations of predictors performed. 

 The steps of the methodology were as follows: 
1. The three machine learning models were trained on 2013–2015 data (786 

observations), and their predictive validity was compared using the data from 2016 
(262 observations). Mean absolute error (MAE) was used as the criterion for the 
comparison. 

                                                                       𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦̂𝑖 − 𝑦𝑖|𝑁

𝑖=1              (1) 

where 𝑦𝑖  is the measured value,  𝑦̂𝑖  is the predicted value, and N is the size of the 
training/test set. 

2. The best model in terms of the MAE was rebuilt on the entire 2013–2016 dataset. 
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3. Permutation-based feature importance measures (accumulated local effects) plots 
were used to assess the marginal effects of each variable on accident counts. 

4. The generalizability of the best model was assessed for identifying risky road 
segments (in terms of the probability of fatal accidents). The sorting quality was 
assessed using the area under the receiver operating characteristics (ROC) curve 
measure using out-of-sample data from 2019. 

 Being ensembles of trees, the three models repeatedly try various combinations of 
predictors when building each tree, making it possible to look at how well various 
combinations of predictors perform and thus allowing each predictor to enter the model 
in at least some of the individual trees. The process allows for the use of all information 
without any losses of variance and interpretability associated with traditional approaches 
to dimensionality reduction, such as principal component analysis. The number chosen 
for trees built was 5,000. The three techniques can be explained as follows: 
1) The random forest technique applies the bootstrap aggregation (bagging) approach to 

overcome the bias–variance trade-off. Bias and variance are the factors that 
constitute learning errors. When the bias is high, the forecasted results are not 
accurate compared to the actual results, and when the variance is high, the forecast 
fits very well for specific data sets but not for others, which indicates low levels of 
forecasting stability. 

2) Gradient boosting is a machine learning technique for regression and classification 
problems that produces a prediction model in an ensemble of weak prediction 
models, typically decision trees. It builds the model in a stage-wise fashion, as other 
boosting methods do, and it generalizes them by allowing for the optimization of an 
arbitrary differentiable loss function. 

3) Bagging maintains low levels of bias and reduces high levels of variance by randomly 
sampling observations and features in the training set. The random forest algorithm 
is the most popular one using the bagging approach; its accuracy (low bias) remains 
the average value of a decision tree, and the variance is reduced by the use of the 
central limit theorem. 

 
Figure 1 Machine learning phases 

 
2.1. Data Set 
 The data set used in the analysis comprises South Sulawesi provincial inter-urban 
roads obtained from the EINRIP Fifth Monitoring Survey (Australia–Indonesia 
Partnership, 2017). The accident data were accessed from the national traffic police 
accident record Integrated Road Safety Management System (IRSMS) for 2013–2016 and 
2019. The study was conducted on the following South Sulawesi roads: Jeneponto–
Bantaeng, Bantaeng–Bulukumba, Bulukumba–Tondong, and Tondong–Sinjai with the 
2013–2016 historical data. The 2019 data were used to check the generalizability of the 
model. 
 The traffic characteristics were represented by the average daily traffic (adt), the 
average speeds (as), and the speed standard deviations (sd) of six vehicle categories that 
represented the traffic: passenger cars, angkots, pickups, buses, trucks, and motorcycles. 
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Angkots were classified as a separate group of vehicles because these para-transits often 
operate without fixed routes and schedules that would normally result in specific speed 
behaviors. The road features included segment length, horizontal curve, road gradient, 
and international roughness index (iri). In this study, non-motorized vehicles were not 
considered. Road segments were defined based on changes in the road geometry and 
classified into curved and straight and negative or positive gradients as obtained from the 
detailed engineering design (DED) of roads (Australia–Indonesia Partnership, 2007). A 
typical DED of an alignment layout is shown in Figure 2. The road surface was represented 
by the international roughness index (IRI) values. There are 85 road segments along the 
Jeneponto–Bantaeng road, 105 road segments along the Bantaeng–Bulukumba road, 53 
road segments along the Bulukumba–Tondong road, and 19 road segments along the 
Tondong–Sinjai road, which resulted in a total of 1,068 observations. 

 
Source: Australia–Indonesia Partnership (2007) 

Figure 2 Alignment layout of a section of Sengkang-Impa-Impa–Tarumpake Road 
 
2.2. Data Statistics 
 The combined total data trained resulted in 1,048 observations and were used as 
input in the analysis. The statistics are presented in Table 1. The number of accidents was 
highly skewed: zero in most of the road segment/year combinations, with 1–5 accidents 
for most other cases and only a few cases when the number of accidents was higher 
(Figure 3). The number of accidents for each road segment was a count variable that can 
be modeled with a particular class of regression models for count data. 
  

 
Figure 3 Histogram of the distribution of the annual total number of accidents across road 
segments 
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Table 1 Summary of statistics 

Statistic N Mean St. dev. Min 25%ile 75%ile Max 

segment_length (m) 1,048 298.43 220.57 60.28 160.13 369.14 1,402.24 
geometry_curve (curve = 

0, straight =1) 
1,048 0.41 0.50 0 0 1 1 

gradient_positive (positive 
= 0, negative = 1) 

1,048 0.56 0.50 0 0 1 1 

IRI (m/km) 1,048 2.79 0.38 2 2.5 3 4 
sd_motorcycle (kph) 1,048 10.85 0.77 9.30 10.30 11.20 12.40 
sd_passenger_car (kph) 1,048 11.72 0.93 9 11.20 12.30 13 
sd_angkot (kph) 1,048 10.46 1.25 8.50 9.90 11.10 12.80 
sd_pickup (kph) 1,048 11.934 1.06 10.00 11.00 12.45 14.20 
sd_bus (kph) 1,048 5.51 4.74 0 0 9 25 
sd_truck (kph) 1,048 10.08 0.87 8.30 9.60 10.50 11.70 
as_motorcycle (kph) 1,048 46.13 19.97 9.70 44.03 57.80 63.00 
as_passenger_car (kph) 1,048 60.23 3.19 54.20 58.40 61.80 65.70 
as_angkot (kph) 1,048 53.57 3.01 48.40 50.90 55.70 60.20 
as_pickup (kph) 1,048 55.62 2.73 50 53.3 58 60 
as_bus (kph) 1,048 44.51 19.20 0.00 46.30 53.03 62.80 
as_truck (kph) 1,048 50.37 2.53 44.30 48.10 52.40 53.80 
adt_motorcycle (vehs) 1,048 6,380.32 2,504.21 4,307 4,878 7,649 14,040 
adt_passenger_car (vehs) 1,048 2,282.45 631.80 1,485 1,785 2,657 5,309 
adt_angkot (vehs) 1,048 1,597.38 822.20 398 1,205.5 1,644 4,799 
adt_pickup (vehs) 1,048 998.93 358.94 696 752 942 2,139 
adt_bus (vehs) 1,048 80.23 123.32 30 35 75 606 
adt_truck (vehs) 1,048 823.30 679.46 465 497 689 2,821 
accidents_fatal 1,048 0.16 0.48 0 0 0 4 

 
3. Results and Discussion  

A classification and regression (CART) tree was created to explain the interaction 
effects and how the values of an outcome were predicted based on other values. The CART 
tree was a fully data-driven algorithm. Each node of the tree shows the average number of 
accidents and the size of the node (% of the total sample size). According to the tree in 
Figure 4, the average number of accidents across all years, roads, and road segments was 
0.93, but there were combinations of factors that were associated with, on average, as few 
as 0.21 accidents (segment length > 389, sd_angkot ≥ 8.6, sd_truck < 10, adt_truck ≥ 593) 
or as many as 6.5 accidents (segment length > 389, sd_angkot < 8.6). Despite offering a 
number of insights into high- and low-risk combinations of road characteristics that 
would otherwise be hard to detect in a large volume of data, a single tree is capable of 
accounting for only some of the significant predictors. 

 

Figure 4 CART tree of the annual total number of accidents 
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3.1.  Correlation Matrix 
Pearson correlations indicated the strength of linear correlations of road features 

with each of the dependent variables based on 1,048 observations from 2013–2016. 
Coefficients |r| > 0.06 were statistically significantly different from zero at the 5% 
significance level. The correlations are given in Table 2. 

Table 2 Correlation matrix 

Statistic All accidents Fatal accidents 

segment_length 0.346 0.148 
adt_pickup 0.190 0.105 
as_motorcycle 0.186 0.079 
sd_motorcycle 0.156 0.082 
sd_truck 0.108 0.074 
adt_motorcycle 0.097 0.045 
adt_angkot 0.091 0.054 
adt_bus 0.083 0.070 
sd_bus 0.048 0.056 
adt_passenger_car 0.013 −0.010 
sd_passenger_car 0.010 −0.007 
gradient_positive 0.009 −0.045 
as_passenger_car 0.003 0.011 
adt_truck −0.007 0.004 
as_truck −0.011 −0.022 
geometric_curve −0.029 −0.008 
as_pickup −0.055 −0.035 
as_bus −0.101 −0.016 
iri −0.107 −0.055 
sd_pickup −0.108 −0.071 
as_angkot −0.145 −0.055 
sd_angkot −0.155 −0.095 

 
Unlike the conventional statistical analysis for choosing predictive variables, machine 
learning utilizes the black-box mechanism, which can be viewed in terms of its inputs and 
outputs. The effects of correlations of the individual predictor variables and the 
interaction effects or how features influence the prediction of a machine learning model 
can be described by partial dependence (PD) or accumulated local effects (ALE) plots. In 
PD plots, the features have to be uncorrelated, while in ALE plots, the correlations among 
features can be ignored. ALE plots can correctly interpret model predictions on correlated 
variables. In this study, we used ALE because it allows for the visualization of the 
individual predictor variables and the low-order interaction effects. 

3.2.  Train/Test Split Testing of Algorithms 
Bagging regression trees outperformed the two other tree-based algorithms and 

resulted in very low MAEs on the testing sample (2016 data), with all accidents and fatal 
accidents as dependent variables. On average, the absolute errors were 0.24 for all 
accidents and 0.14 for fatal accidents, respectively, as shown in Table 3. 

Table 3 Comparison of machine learning methods by MAE on the testing sample (2016) 

Method 
Dependent variable 

All accidents Fatal accidents 

Random forest 1.51 0.35 
Gradient boosting machines 1.72 0.39 
Bagging regression trees 0.24 0.14 

 
3.3.  Variable Importance Analysis 

The most competitive of the three models—bagging regression trees—was estimated 
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using the complete 2013–2016 data set. The features importance in Table 4 was analyzed 
for the predictions by shuffling and measuring how much the performance dropped in 
terms of MAE. 

Table 4 Importance of road characteristics for explaining each of the dependent variables 
(top 10 features are bold) 

Variable All accidents Fatal accidents 

segment_length 3.46 2.69 
iri 1.36 1.42 
gradient_positive 1.35 1.31 
geometry_curve 1.31 1.28 
as_angkot 1.30 1.25 
adt_pickup 1.30 1.21 
adt_truck 1.24 1.16 
sd_motorcycle 1.23 1.15 
sd_bus 1.21 1.14 
sd_angkot 1.18 1.14 
as_motorcycle 1.16 1.11 
sd_pickup 1.14 1.11 
as_bus 1.12 1.10 
sd_truck 1.12 1.09 
adt_bus 1.10 1.09 
sd_passenger_car 1.10 1.06 
adt_angkot 1.07 1.05 
adt_passenger_car 1.06 1.05 
adt_motorcycle 1.05 1.05 
as_passenger_car 1.05 1.04 
as_pickup 1.03 1.04 
as_truck 1.02 1.01 

 
The importance was measured as the factor by which the model’s MAE increased 

when the feature was shuffled. By shuffling the feature values, the association between the 
outcome and the feature is destroyed. The greater the increase in prediction error, the 
more important the feature was (Molnar, 2020). Feature importance was remarkably 
consistent across dependent variables (all accidents and fatal accidents), as shown in 
Table 4. The road features of segment length, IRI, and gradient and the geometric factors 
demonstrated the greatest importance in explaining the change in all accidents and fatal 
accidents. This finding is in line with that of Siregar et al. (2015), which concluded that the 
road geometry of segments was the underlying cause of accidents involving heavy 
vehicles. 

The relative importance shown in Table 4 describes how features influenced the 
prediction of a machine learning model on average and how much the features added to 
the model’s predictive power. The ADTs of pickups and trucks were more significant than 
the vehicles’ speeds and SDs. Among the SDs, that of motorcycles showed the greatest 
importance. Motorcycle contributions to fatal accidents was more significant through the 
speed SDs than through the average speed. This finding is strongly supported by da Costa 
et al. (2018), who showed that motorcycle accident risks are related to inappropriate 
speed choices. The average speed of angkots exhibited the greatest substantial effect 
among the average speeds. The effect might result from the speed behavior of angkots as a 
demand–response type of transport that picks up and drops passengers at irregular 
points, leading to accident occurrences. In line with Zuraida et al. (2017), the importance 
of speed-related features in fatal accidents may also be associated with drivers’ 
characteristics, leading to varying speed behaviors. Siregar et al. (2020) found that road 
geometry features showed indirect effects on fatality rates through speed and speed 
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deviations as the mediating factors. This discrepancy may be due to the accident data that 
were based not on segments but on road lengths. 

 

 
Figure 5 Accumulated local effects of each feature (horizontal axis) on the total number of fatal 
accidents (vertical axis; 0 corresponds to the mean number of accidents) 

 
An ALE plot that described the effects, on average, of the feature on the prediction of a 

machine learning model was created, as shown in Figure 5. Compared to pairwise 
correlations, these local effects reflected partial associations after adjusting for the rest of 
the factors. It can be seen that some of the major risk factors where there was substantial 
variation in the dependent variable as the predictor changed were section length, low 
average speed, and speed deviation of angkots, along with low-speed deviation of pickups. 
Straight segments and positive gradients proved to potentially increase the number of 
fatal accidents more than curves and negative gradients. An increase in IRI lowered the 
effects only until the IRI reached 2.4. The number of fatal accidents increased (positive 
local effect) when an angkot’s average speed was either too low (< 50 km/h) or too high 
(> 58 km/h). Angkots’ ADT increased the number of fatal accidents until the ADT reached 
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1,000 vehicles. Additional ADT of passenger cars tended to have no effect until the ADT 
reached around 3,300 passenger cars per day on the road segment. Then, the effect of 
every additional car increased as the ADT went up. Motorcycle traffic was a factor that 
increased the number of fatal accidents up until the motorcycle ADT reached about 5,200 
motorcycles per day, and then the effect of each additional motorcycle was close to zero. 

3.4. Best Model’s Generalizability 
The bagged regression tree model was used and built on the full data set from 2013–

2016 and applied to 2019 data on 53 segments of the Bulukumba–Tondong road. This 
validation data set was not used in model training and was thus completely independent. 

 
Figure 6 ROC curve (AUC = 0.92) for the bagged regression tree model applied to 2019 validation 
data on fatal accidents 

  
 The area under the receiver operating characteristic (ROC) curve in Figure 6 turned 
out to be 0.92, implying that a road segment where fatalities actually occurred was 
positioned above a random road segment where fatalities did not actually occur, with 
92% probability. Such a high area under the curve (AUC) corresponds to the very high 
diagnostic power of the model. 
 
4. Conclusions 

The results indicate that there are different factors determining the number of fatal 
accidents. ADT, speeds, and speed SDs are vehicle-specific variables with different levels 
of importance. The findings of the present study should also be intuitively interpreted, 
considering that there might be some underreporting of fatal accidents due to failure to 
change the status from severe to fatal. Because the high contributions of some vehicle 
variables in an accident do not necessarily indicate the involvement of the vehicles in the 
accidents, further analysis is required to give a more integrated and comprehensive view 
of the relationships between different categories of vehicles and accidents. Having the 
greatest importance in percentage among the speed features, the average speed of 
angkots and the ADT of passenger cars and motorcycles necessitate special treatment to 
reduce the effects on fatal accidents. The results of this study can help traffic safety 
agencies target specific features for improvement measures. 
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