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Abstract. The bi-orthogonal codes for embedding Side-Information (SI) in data-based blind SLM 
(BSLM) proposed in Joo et al. (2012) produce better bit error rate (BER) and SI error rate (SIER) 
performance compared to binary codes. However, the authors do not provide details for code 
generation; instead, they list some codes with a length of 𝑼/𝟐 and a minimum Hamming distance of 
𝑼/𝟒. The suggested bi-orthogonal code does not work for any value of the maximum iteration 
number 𝑼 other than 𝑼 = 𝟒⌈𝑼/𝟒⌉. Therefore, this paper proposes two algorithms for generating 𝑼 
codes for any value of 𝑼 . The proposed methods maintain the normalized minimum Hamming 
distance between generated codes to 𝟎. 𝟓. However, the second proposed algorithm, which works 
in the case of 𝑼 < ⌊𝐥𝐨𝐠𝟐𝑼⌋, is also able to only consider codes with a maximum Hamming distance, 
allowing it to improve SIER performance. Thus, the second proposed algorithm improves SIER 
performance by up to 1 dB at Eb/No=3dB. Furthermore, the proposed algorithms are able to 
generate a multiple set of 𝑼 codes that deliver same performance. 
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1. Introduction 

Orthogonal frequency division multiplexing (OFDM) is a transmission technique with 
a high data-transmission rate and can cope with severe channel conditions. Moreover, 
unlike other techniques that utilize parallelism for increasing transmission speed, the 
orthogonal nature of OFDM uses bandwidth more efficiently. OFDM has been adopted by 
many standards for its advantages over other techniques, such as single carrier or 
frequency division multiplexing (FDM). Examples of well-known standards include DSL, 
802.11a, WiFi-Max, and LTE (Han and Lee, 2005; Jiang and Wu, 2008; Rahmatallah and 
Mohan, 2013).  

Thanks to advances in digital signal processing (DSP) technology, OFDM has become 
more widely applicable and popular. However, OFDM suffers from the major problem of 
having high signal peaks. The high peaks problem, often called the high peak-to-average 
power ratio (PAPR) problem, is a result of the summation of multiple subcarrier signals due 
to the existence of a parallelism concept in transmission. The high peaks of an OFDM signal 
cannot be amplified linearly using a normal power amplifier (PA); doing so corrupts the 
signal, as there are high peaks in the non-linear region of PA. Thus, as using normal PA with 
OFDM introduces in-band and out-band radiation, OFDM requires a very complex PA design
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to maintain linearity. Mathematically, PAPR is calculated as follows:  

 
𝑃𝐴𝑃𝑅(𝑥[𝑛]) =

max⁡(|𝑥[𝑛]|2)

𝐸(|𝑥[𝑛]|2)
 (1) 

where 𝑥[𝑛] is the 𝑛th sample of OFDM time domain signal 𝑥, and 𝐸 denotes expectation. 
Many methods have been proposed to alleviate the high PAPR problem; each one has 

advantages and disadvantages. Examples of PAPR reduction techniques found in the 
literature are clipping (Juwono et al., 2013), partial transmit sequence (PTS) (Müller et al., 
1997; Müller and Huber, 1997), selected mapping (SLM) (Müller et al., 1997; Sa'd and 
Wahab, 2019), tone injection (TI) (Wattanasuwakull and Benjapolakul, 2005), tone 
reservation (TR) (Park et al., 2003), interleaving (Rahmatallah and Mohan, 2013), and 
hybrid (Jones et al., 1994; Wang and Chen, 2014; Sa’d et al., 2016; Wahab and Sa’d, 2017; 
Liang et al., 2019). 

SLM is a well-known distortion-less PAPR reduction technique; however, it requires 
sending side information (SI) for the receiver to be able to retrieve the original signal. To 
solve this problem, many blind SLM (BSLM) schemes have been proposed in the literature 
(Jayalath and Tellambura, 2002; Pezeshk and Khalaj, 2002; Baxley and Zhou, 2005; Jayalath 
and Tellambura, 2005; Han et al., 2006; Chen and Zhou, 2006;Alsusa and Yang, 2008; Han 
et al., 2008; Joo et al., 2009; Le Goff et al., 2009; Hong et al., 2010; Park et al., 2011;Li et al., 
2011; Badran and El-Helw, 2011;Eom et al., 2012; Joo et al., 2012; El-Helw et al., 2012; Hong 
et al., 2013; Ji and Ren, 2013; Elhelw and Badran, 2015; Ji et al., 2015; Yoon et al., 2018; Goel 
and Sidhu, 2020). BSLM, in general, embeds SI in an OFDM signal by utilizing noise margins 
instead of dedicated subcarriers to eliminate data rate waste due to SI. While there are 
different types of BSLM, the data-based BSLM proposed in Joo et al. (2012) can maintain a 
similar PAPR and an almost similar BER as conventional SLM without manipulating or 
imposing restrictions on channel estimation methods, providing that the number of 
subcarriers of OFDM is not very small. SI is embedded onto the phase of data subcarriers 
by making a unique and distinguished phase disparity between all the possible iterations 
of data manipulation, and this is done over all data subcarriers. To improve SI error rate 
(SIER) performance, phase disparity forms are constructed using a biorthogonal vector 
with a code length of 𝐿 = 𝑈/2 . However, the work in Joo et al. (2012) lacks the 
generalization of constructing biorthogonal codes for any 𝑈 value. Therefore, in this paper, 
we propose a systematic way of generating 𝑈 SI embedding-codes that fulfill the general 
and important condition of having a normalized minimum Hamming distance of at least 0.5. 

This paper is organized as follows. Section 2 explains the data-based BSLM in Joo et al. 
(2012). Section 3 discusses SI embedding-code generation and explains the proposed 
maximal Hamming distance code generation method. Finally, a conclusion is drawn in 
Section 4. 

 
2. Data-based BSLM 

Let us assume the OFDM modulated input sequence 𝑋 = [⁡𝑋1, 𝑋2, … , 𝑋𝑁], 𝑋 ∈ 𝒬, where 
𝒬 denotes the modulation’s constellation points; to reduce the PAPR value of the OFDM 
signal, BSLM iterates 𝑈 different phase rotation operations on the input signal and selects 
the one with the lowest PAPR for transmission. This is done by multiplying the sequence 𝑋 
with different phase rotation sequences as follows: 

 𝑆(𝑢) = 𝑋. 𝑃(𝑢) (2) 

where  𝑢 ∈ {0, 1, … , 𝑈 − 1} denotes the iteration index,  𝑃(𝑢) ∈ {±1,±𝑗} denotes the 𝑢th 

phase rotation sequence, and 𝑆(𝑢) ∈ 𝒬. Then, unlike SLM, BSLM embeds SI into the phase 
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sequence of the OFDM data sequence so that the form of phase disparity in 𝑆(𝑢) is unique 
and corresponds to the value of 𝑢. The phase disparity is formed by moving specific and 

particular subcarriers’ symbols of the sequence 𝑆(𝑢) from one constellation diagram 𝒬 into 
another one 𝒬𝜃, rotated by 𝜃,  which is given by 

 𝒬𝜃 = 𝒬. 𝑒𝑗𝜃 (3) 
where 𝒬𝜃 is the rotated version of the original constellation diagram 𝒬, and 𝜃 denotes the 
rotation phase. Through an exhaustive search, the optimum rotation phase 𝜃 that delivers 
the maximum Euclidean distance between 𝒬  and 𝒬𝜃  is found to be 𝜋/4 . Therefore, 
Equation 3 can be rewritten as  

 𝒬𝜋

4
= 𝒬. 𝑒𝑗

𝜋

4  (4) 

The impact of phase rotation on constellation points is depicted in Figure 1 for both QPSK 
and 16-QAM modulations to illustrate the minimum distance between the points of both 𝒬 
and 𝒬𝜋/4  under a no-noise condition. To combat the reduced noise margin per symbol, 

phase disparity is implemented over all OFDM data symbols rather than just some of the 

symbols. The phase disparity between all 𝑈 possible 𝑆(𝑢) symbols is controlled using the 
phase disparity vectors Ψ as follows: 

 𝐒(𝑢) = 𝑆(𝑢). Ψ(𝑢) 

⁡= 𝑋. 𝑃(𝑢). Ψ(𝑢) 
(5) 

where 𝑆(𝑢) = 𝑋. 𝑃(𝑢) ∈ 𝒬 , 𝐒(𝑢) ∈ {𝒬,⁡⁡⁡𝒬𝜋

4
}, and Ψ(𝑢) ∈ {𝑒𝑗0 = 1, 𝑒𝑗𝜋/4}. It is clear that the 

constellation diagram of the 𝑛th subcarrier’s symbol of the 𝑢th iteration 𝐒𝑛
(𝑢)

 is decided by 

Ψ𝑛
(𝑢) as follows: 

 

𝐒𝑛
(𝑢) ∈ {

𝒬, Ψ𝑛
(𝑢) = 1

𝒬𝜋

4
, Ψ𝑛

(𝑢) = 𝑒𝑗
𝜋

4
 (6) 

 

Figure 1 Signal constellations 𝒬 and 𝒬π

4
: (a) QPSK; and (b) 16-QAM (Joo et al., 2012) 

In general, the phase disparity control vector Ψ𝑛
(𝑢) ∈ {𝑒𝑗

𝜋

4
⁡𝜌}  where 𝜌 ∈ {0, 1} . 

Therefore, the vector Ψ(𝑢)  can be constructed using any binary code with length 𝐿 . For 

instance, assume 𝐶 = [𝐶(0), 𝐶(1), … , 𝐶(𝑈−1)] is the binary code of the iteration indices 𝑢 

and the length of 𝐶(𝑢) = [𝐶1
(𝑢), 𝐶2

(𝑢), … , 𝐶𝐿
(𝑢)] is 𝐿 ≥ ⌈𝑙𝑜𝑔2(𝑈)⌉. Then, the phase disparity 

control vector is given by 

Ψ(𝑢) = {Ψ𝑛
(𝑢) = 𝑒𝑗𝜙𝐶ℓ

(𝑢)

|𝑛 = 1,2, … , 𝑁} ,⁡⁡⁡ℓ = ⌈
𝑛

𝑁/𝐿
⌉ (7) 
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where ℓ = [1, 2, … , 𝐿] denotes the sub-block’s index, and 𝐶ℓ
(𝑢) represent the corresponding 

ℓth bit of the SI embedding codeword 𝐶(𝑢) ∈ 𝐶 for the iteration index 𝑢.  
It can be seen that Equation 7 divides the disparity control vectors Ψ into sub-blocks 

of two values only (𝑒𝑗𝜃𝜌, 𝜌 ∈ {0, 1}), where the elements in the same sub-block are equal. 
As a result, the phase disparity control vectors also divide OFDM sub-symbols in Equation 5 

into sub-blocks but of two constellation diagrams (i.e. 𝐒(𝑢) ∈ {𝒬,⁡⁡⁡𝒬𝜃}). Table 1 and Table 2 
show an example of Ψ construction and an example of its influence on OFDM symbols in 
Equation 5, respectively, for 𝑈 = 2 and 𝑁 = 256. 

Finally, only one out of 𝑈 𝐒(𝑢) signals will be transmitted, and the index of the selected 
signal for transmission is found as follows: 

 �̌� = arg min
0≤𝑢<𝑈

max (⁡IFFT⁡(𝑆(𝑢)))⁡ (8) 

 
Table 1 Phase disparity control vectors for 𝑈 = 4 and 𝑁 = 256 

𝑢 
𝐶(𝑢) Ψ(𝑢) is divided into 𝐿 = 2 sub-blocks 

𝐶1
(𝑢) 𝐶2

(𝑢) 1,2,3, … .128 129,130, … .256 

0 0 0 1,1,1, … . ,1 1,1,1, … . ,1 

1 0 1 1,1,1, … . ,1 𝑒𝑗𝜃 , 𝑒𝑗𝜃 , … , 𝑒𝑗𝜃 

2 1 0 𝑒𝑗𝜃 , 𝑒𝑗𝜃 , … , 𝑒𝑗𝜃 1,1,1, … . ,1 

3 1 1 𝑒𝑗𝜃 , 𝑒𝑗𝜃 , … , 𝑒𝑗𝜃 𝑒𝑗𝜃 , 𝑒𝑗𝜃 , … , 𝑒𝑗𝜃 

 
Table 2 Impact of phase disparity control vectors on OFDM symbols for 𝑈 = 4 and 𝑁 = 256 

𝑢 
𝐶(𝑢) 

𝐒(𝑢) is divided into 𝐿 = 2 sub-blocks of 
values members of 𝒬 or 𝒬𝜃 

𝐶1
(𝑢) 𝐶2

(𝑢) 1,2,3, … .128 129,130, … .256 

0 0 0 𝒬, 𝒬, 𝒬, … . , 𝒬 𝒬, 𝒬, 𝒬, … . , 𝒬 

1 0 1 𝒬, 𝒬, 𝒬, … . , 𝒬 𝒬𝜃 , 𝒬𝜃 , … . , 𝒬𝜃  

2 1 0 𝒬𝜃 , 𝒬𝜃 , … . , 𝒬𝜃  𝒬, 𝒬, 𝒬, … . , 𝒬 

3 1 1 𝒬𝜃 , 𝒬𝜃 , … . , 𝒬𝜃  𝒬𝜃 , 𝒬𝜃 , … . , 𝒬𝜃  

 

2.1.  ML Decoding Algorithm 
At the receiver, BSLM adopts maximum likelihood (ML) decoding to estimate the SI, as 

shown in Figure 2. Mathematically, the received signal is denoted as 𝑅, and it is given by 

 𝑅 = 𝑋𝑃(𝑢)Ψ(u)𝐻 + 𝜂 (9) 

where 𝜂 denotes the white Gaussian noise and 𝐻 denotes the channel coefficients. Then, the 
BSLM receiver calculates the minimum distance between every received symbol 𝑅𝑛 ∈ 𝑅 to 
both constellation diagrams 𝒬  and 𝒬𝜃 ,  and then calculates the corresponding total 
minimum distance per sub-block ℓ = [1, 2, … , 𝐿].  
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Figure 2 BSLM receiver block diagram 
 
Mathematically, the total minimum distance per sub-block and constellation diagram can 
be calculated as follows: 

 

𝑑ℓ,𝑝 = ∑ min
𝑋𝑛
′∈𝒬

|𝑅𝑛𝑒
−𝑗𝜃𝑝 − 𝑋𝑛

′ �̂�𝑛|
2

⌊
𝑁ℓ

𝐿
⌋

𝑛=⌊
𝑁(ℓ−1)

𝐿
⌋+1

 (10) 

where 𝑝 ∈ {0,1}, 𝑑ℓ,𝑝 denotes the metric or the total minimum distance per sub-block ℓ and 

the constellation diagram 𝒬𝑒𝑗𝜃𝑝 , and �̂�𝑛  represents the estimated channel response. 
Finally, the iteration index is estimated as follows: 

 
�̂� = min

0≤𝑢<𝑈
∑𝑑

ℓ,𝑐ℓ
(𝑢)

𝐿

ℓ=1

 (11) 

 
3. BSLM SI Embedding Codes 

The simplest SI embedding codes are the straight binary representation of the iteration 
indices. However, binary codes with code length 𝐿 = ⌈𝑙𝑜𝑔2(𝑈)⌉ have poor SIER compared 
to other codes.  

 

Table 3 Biorthogonal vectors for embedding SI for 𝑼 = 𝟒 and 𝑼 = 𝟖, as proposed in Joo et al. 
(2012) 

Iteration 
Index 𝑢 

SI Embedding Codes 

𝑈 = 4 𝑈 = 8 

𝐶1
(𝑢) 𝐶2

(𝑢) 𝐶1
(𝑢) 𝐶2

(𝑢) 𝐶3
(𝑢) 𝐶4

(𝑢) 

0 0 0 0 0 0 0 
1 0 1 0 0 1 1 
2 1 0 0 1 1 0 
3 1 1 0 1 0 1 
4   1 1 0 0 
5   1 0 1 0 
6   1 0 0 1 
7   1 1 1 1 
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Therefore, Joo et al. (2012) suggest constructing SI embedding codes using biorthogonal 
vectors with the codeword length 𝐿 = 𝑈/2. However, the work in Joo et al. (2012) does not 
clearly explain code construction; instead, the authors provide an example for 𝑈 = 4 and 8, 
as shown in Table 3. Thus, the following section of this paper proposes generalized 
algorithms for constructing 𝑈  codewords that possess the main feature of biorthogonal 
vectors (i.e. the minimum Hamming distance of 𝐿/2). The proposed algorithms generate 𝑈 
codes for any value of 𝑈(i.e. 𝑈 doesn’t necessarily need to be multiple of 2). 

3.1.  Proposed Maximal Hamming Distance Codes 
In the proposed algorithm for generating maximal Hamming distance codes, the 

generated codes need to fulfill one key feature: the normalized minimum Hamming 
distance 𝑑𝑚𝑖𝑛/𝐿  between all generated codewords should equal 0.5,  where 𝑑𝑚𝑖𝑛 
represents the minimum Hamming distance between all generated codewords. The 
generation of such code is possible for codeword lengths (the number of sub-blocks) of⁡𝐿 =
(𝑈/2) ⁡∈ ⁡ℕ. However, this is not true for every value of 𝑈. Therefore, generally speaking, 
for any value of 𝑈, codeword length 𝐿 can be obtained and determined as follows: 

 𝐿 = 2⌈𝑙𝑜𝑔2(𝑈)⌉+𝑘/2,⁡⁡⁡𝑘 ∈ ℕ (12) 

and, for simplicity, we can set 𝑘 = 0 from now on. Therefore, Equation 12 changes to 

 𝐿 = 2⌈𝑙𝑜𝑔2(𝑈)⌉/2 (13) 

Then, a generalized method for constructing a binary code with 𝐿 given in Equation 13 
can be employed by conducting a simple computer search using the following algorithm: 

 
Algorithm 1: SI embedding code generation algorithm.  

1- Set 𝐿 = 2⌈𝑙𝑜𝑔2(𝑈)⌉/2, 𝑋 = [0,1, … , 2𝐿 − 1], and 𝑢 = 0. 

2- Set 𝐶(𝑢) = 𝑋1 

3- Recalculate 𝑋 = {𝑋𝑛|𝑤(𝑋1⨁𝑋𝑛) ≥ 𝐿/2}  for all 𝑋𝑛  values in 𝑋  (𝑤(. )  denotes the 
weight, and ⨁ denotes XOR operation). Then, increase 𝑢 by 1. 

4- If 𝑢 < 𝑈, go to Step 2. Otherwise, Return. 

 
Table 4 SI embedding codes generated by Algorithm 1 for 𝑼 = 𝟖 

𝑢 
SI Embedding Codes Ψ 

Option 1 Option 2 

0 0 1 

1 3 2 

2 5 4 

3 6 7 

4 9 8 

5 10 11 

6 12 13 

7 15 14 
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It is worth noting that there are at least ⁡2𝐿−⌈𝑙𝑜𝑔2(𝑈)⌉  vectors of 𝑈  elements with 
𝑑𝑚𝑖𝑛/𝐿 = 0.5 . For instance, for 𝑈 = 4 and 𝐿 = 2, there is only one vector with 𝑑𝑚𝑖𝑛/𝐿 =
0.5. However, there are two vectors that fulfill the minimum distance requirement for 𝑈 =
8 and 𝐿 = 3, as shown in Table 4, and the number increases as the number of iterations 𝑈 
increases or, more precisely, as ⌈𝑙𝑜𝑔2(𝑈)⌉ increases.  

Table 4 shows that for 𝑈 = 8, there are 2𝐿−⌈𝑙𝑜𝑔2(𝑈)⌉ = 2 SI embedding codes options, 
where the first one (option 1) is similar to, but in a different order than, the codes proposed 
in Joo et al. (2012) for 𝑈 = 8, as shown in Table 3. It is worth noting that alternative codes 
(e.g. for 𝑈 = 8, Option 2 in Table 4) can be found by applying Algorithm 1 to the vector 𝑋, 
excluding all previously found code, given as follows: 

 𝑋 = {𝑋𝑛|{0,1, … , 2𝐿 − 1} ∋ ⁡𝑋𝑛 ∉ 𝐂} (14) 

where 𝐂 denotes all previously found codes using the algorithm. Furthermore, in the case 
of 𝑈 < 2𝐿, Algorithm 1 should be modified to ensure that, for an even value of 𝑈, every 

𝐶(𝑢) ∈ 𝐶  and its invert 𝐶(𝑢)̅̅ ̅̅ ̅ belongs to the set 𝐶  composed of 𝑈 codes. This is important 
because, although the minimum Hamming distance for 𝐶  is 𝐿/2 , the Hamming distance 

between {𝐶(𝑢), 𝐶(𝑢)̅̅ ̅̅ ̅} ∈ 𝐶  is 𝐿 . Algorithm 2 illustrates how to construct 𝑈 < 2𝐿  SI 

embedding codes with 𝑑𝑚𝑖𝑛 = 𝐿/2. 
 
Algorithm 2: SI embedding code generation algorithm for 𝑈 < 2𝐿 

1- Set 𝐿 = 2⌈𝑙𝑜𝑔2(𝑈)⌉/2, 𝑋 = [0,1, … , 2𝐿−1 − 1], and 𝑢 = 0. 

2- Set 𝐶(𝑢) = 𝑋1. Then increase 𝑢 by 1. 

3- If 𝑢 < 𝑈, then set 𝐶(𝑢) = 𝑋1̅̅ ̅ = 2𝐿 − 1 − 𝑋1. Otherwise, Return. 

4- Recalculate 𝑋 = {𝑋𝑛|𝑤(𝑋1⨁𝑋𝑛) ≥ 𝐿/2}  for all 𝑋𝑛  values in 𝑋  (𝑤(. )  denotes the 
weight, and ⨁ denotes XOR operation). Then increase 𝑢 by 1. 

5- If 𝑢 < 𝑈, then go to Step 2. Otherwise, Return. 
 
Although both Algorithm 1 and Algorithm 2 are capable of generating 𝑈 codes with 

𝑑𝑚𝑖𝑛 = 𝐿/2 for the case of 𝑈 < 2𝐿, Algorithm 2 also ensures that almost all codewords in 𝐶 
have a maximum Hamming distance of 𝐿. For instance, in the case of 𝑈 = 5 < 2𝐿 and 𝐿 = 4, 
the SI embedding code generated by Algorithm 1 is 𝐶 = [0,3,5,6,9]; however, in Algorithm 
2, it is 𝐶 = [0,15,3,12,5]. We can see that both generated codes have 𝑑𝑚𝑖𝑛 = 𝐿/2; however, 
the codes generated by Algorithm 1 (𝐶 = [0,3,5,6,9]) have a maximum Hamming distance 
𝑑𝑚𝑎𝑥 = 𝐿  between {6,9}  only, while the codes generated by Algorithm 2 have 𝑑𝑚𝑎𝑥 = 𝐿 
between both {0,15}  and {3,12} . For this reason, Algorithm 2 produces better SIER 
performance, as shown in Figure 3.   
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Figure 3 SIER performance evaluation for data-based BSLM with 16-QAM modulation; 𝑁 = 256, 
𝑈 = 5, and three different SI embedding codes (simple binary representation of iteration indices 
(i.e. [0,1,2,3,4]) versus the two different maximal Hamming distance codes generated by Algorithm 
1 and Algorithm 2 proposed in this article) in the AWGN channel 

 
4. Conclusions 

Two new algorithms were proposed for generating maximal Hamming distance codes 
of 𝑑𝑚𝑖𝑛 = 𝐿/2 for embedding SI. The proposed algorithms generalize the construction of SI 
embedding codes for any value of 𝑈. The codes produced using the algorithms proposed 
here and the biorthogonal codes used in Joo et al. (2012) have similar SIER performance for 
𝑈 = 2𝐿, since they all have a normalized minimum distance of 𝑑𝑚𝑖𝑛/𝐿 = 0.5. However, for 
𝑈 < 2𝐿, Algorithm 2 proposed here produces better SIER performance. 
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