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Abstract. Thepurpose of this study was to determine the link between induction voltages from 
various electrical loads. We used a residual current device (RCD) circuit that operates with a 
capacitor as a DC voltage reading tool. The circuit reads the value of the leakage current generated 
by the sensing coil from the RCD. It also uses the Blynk framework as an online monitoring system 
and a WeMos D1-R2 microcontroller to connect to the server using Wi-Fi. Using this system, the 
dataset was collected in a Python server and utilized with a machine learning technique to draw a 
correlation between the load power and reading voltage. This will help improve the mistakes of a 
common RCD cut-off point, which is usually defined only at a specific induced voltage. For the 
different types, an LED lamp and typical electric fan were used as loads in the experiment. 
Meanwhile, for a similar type of load, three different LED lamps were characterized using machine 
learning to show the correlation. From the comparison, a threshold voltage of around 1V and three 
different gradients with increases of more than 10% are found for LED lamps with loads of 3W, 5W, 
and 9W.The results show that the relationship depends on the type of its power supply. 
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1. Introduction 

In our modern daily activities, it is undeniable that we depend on electronic devices. 
With the technological advances that are rapidly being developed, it is easy to use electrical 
utilities. It may start with a refrigerator for food storage and a rice cooker as a cooking 
helper; we may then add an air conditioner as a room temperature controller, and finally, a 
digital television (TV) for entertainment. There are many other common devices that may 
be included in the long list of our electrical utilities. However, there may be leakage currents 
from those electrical loads that we are unaware of. The current could flow in the 
unarranged path of our electrical wiring, for example, through poor electrical insulation or 
ungrounded chassis (Lee and Lin, 2005). This may be due to the changed value of 
capacitance against the alternating voltage or the lifespan of the installation. 

The measurement of electrical devices could be useful in determining the possible 
danger of household electricity. This measurement can be conducted using technologies, 
such as the Internet of Things (IoT) and machine learning, as in concentrations
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measurement (Chong et al., 2016). The concept of a system includes three main elements. 
Specifically, physical objects are integrated with a sensor module, internet connection, 

and data center using a server to store information from the measurement (Muhammad 
Asraf et al., 2018). In this case, the measured object is the leakage current, which is measured 
using a capacitor as a filter circuit (Sutanto et al., 2019). The connectivity through the 
internet uses a common Blynk IoT framework, as in Sutanto et al. (2020). Finally, the server 
as data storage is based on Python, which will also be useful for analysis of the data, for 
example, using TensorFlow (Piponi et al., 2020). 

Machine learning could be seen as a tool in computers that allows them to learn without 
requiring an explanation or being explicitly programmed, as they are in normal software 
development. Thus, in this study, machine learning is used to learn the leakage current 
behavior from the residual current device (RCD). This could help us develop a system 
capable of identifying the possible function in responding to the leakage current using only 
the induction voltage. Meanwhile, the model training requires datasets before giving out a 
prediction model that best fits the system. This kind of application is usually applicable in a 
specific domain and cannot be applied to all possibilities (Shukla, 2018). Similarly, the 
results of this work will be used only to identify leakage currents from specific electrical 
loads.  

In this work, the approach is applied to Light-Emitting Diode (LED) based lamps in 
comparison with Compact Fluorescent Lamp(CFL), as done in Latief et al. (2019), because of 
the low cost of these lamps. We start by describing a filter design for the RCD before outlining 
our monitoring system with the discussed IoT system and Python server. The system is 
evaluated with different kinds of loads by comparing the LED lamp and electric fan. It is also 
tested with different loads using three different wattages of LED lamps. 
 
2. Methods 

 The main characteristic of the measurement comes from the filter as signal processing 
block. Thus, we need to analyze the filter design in relation to the possible filter designs, 
such as a specific band pass filter (Zulkifli, 2014; Wibisono, 2014). Then, it is the target 
system that is used for comparing the leakage currents from various power loads. The 
system consists of hardware and software with IoT module as hardware part and machine 
learning as in software part. 

2.1.  Induction Voltage Filter 
 The design of the measurement circuit accommodates the leakage current 
measurement into a digital microcontroller. From there, the decision to cut off the 
electricity is no longer made by the RCD circuit but depends on the embedded logic inside 
the microcontroller. To realize this, the leakage current detection system uses a kind of 
filter (Sutanto et al., 2019). The RCD core intercepts the electricity power line using two 
coils. Then, a sensing coil that will read the magnetic induction is connected to the filter. 
The filter is designed to rectify the signal into a DC signal. This is useful for overcoming the 
irregular waveform that will be read by the sensing coil. This design starts with a rectifier 
circuit using a diode bridge to be first converted as a full wave rectifier. It then stabilizes 
the voltage using a capacitor. Finally, a Zener diode is used as a voltage limiter before being 
connected to WeMos D1-R2 with 3.3V as the maximum input voltage (Bohora et al., 2016). 
The complete circuit is shown in Figure 1. 

The signal coming out of the diode bridge is a positive full waveform. It is formed by 
following the characteristics of the capacitor as described in Gupta and Sharma (2019). 
Using Laplace transform, the signal can be written as in Equation 1. 
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Figure 1 Filter design 
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where Vmeasured is the formed induction voltage in responding to the capacitor, Xc is the 
capacitive reactance from the circuit, and I1 is the current flow in the C1. In addition, s is the 
parameter for the s-domain. Finally, C1 is the capacitor value. The other parameters are 
common symbols, such as π for a constant value of 3.14 and f for the frequency of the AC 
signal. Overall, this formed signal over the circuit is based on the frequency of the changing 
value of Ileakage. How the capacitor stabilizes the AC signalis observed using an oscilloscope, 
as described below. Meanwhile, V1 is the induction voltage coming out of the RCD: 
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Equation 2 is the physics formula that defines the induction voltage. Here, φB is the 
magnetic flux, which is strengthened inside the RCD core. Moreover, A is the width of the 
RCD core, µr is the relative permeability material of the core, N is the number of windings 
along the RCD, and Ileakage is the leakage current. With this equation, we can see that there 
is a relationship between the induction voltage and the leakage current that can be 
measured. 

2.2.  Leakage Current Monitoring 
 By incorporating the IoT module as a connection, there is a possibility of monitoring 
leakage current of the electrical system. The system can monitor more than one electrical 
utility. It keeps a list of leakage currents from all the devices in real time. Figure 2 shows a 
possible application of the system. 
 

 

Figure 2 System design 
 
 The figure gives an example of an application where the system is used in hospital. In 
the hospital context, it could be used to monitor common medical devices, such as X-ray 
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equipment, infant incubators, electrocardiograph (ECG) machines, and magnetic resonance 
imaging (MRI) equipment. In general, if a piece of equipment uses electricity, then its 
electricity use may need to be measured. However, if we look at this issue in detail, these 
devices have differences in their power consumptions. Each of them should have electrical 
specifications. These specifications are normally attached to the back side of the device 
using a plate or eye-catching sticker. Usually, the specifications will include the allowed 
range of electrical input. This can comprise the voltage; type of current, AC or DC; and the 
possible maximum current drawn from the device (Roy Chowdhury et al., 2019). 
Sometimes, they will also include the device’s power consumption. There may be 
differences in outlining the specifications among devices, which can be due to the possibility 
of obtaining one value such as power from other values like current by following Ohm’s 
Law, which is as follows: 
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With I as the current flow to the device and Rload as the load resistance of the device, it is 
possible to obtain Pload as the power consumption. Alternatively, if we know the value of V 
as voltage input and R, it is possible to calculate the power. These electrical parameters can 
be used as indicators of the load. However, we use power as the main indicator of these 
loads.  
 The leakage current cannot be identified using the electrical specifications described 
above. This may depend on how the electricity is used as the power supply inside the device. 
For example, we may not see too many electronic circuits involved in common electric fans, 
as they just use coil winding in the motors. However, for a laptop or PC, we may see the kind 
of transformers that step down the main outlet, which is usually at 220V AC, to the device’s 
working voltage, for example, at 24V DC. Along with transformers, there is also a possibility 
of a switched-mode power supply. This different type of power supply may change the 
behavior of the induction voltage, which will be measured using RCD, as in Figure 3. 
 

 

Figure 3 RCD core 
 
 As discussed above, one concern is that the RCD used as a sensor in this system might 
have its own characteristic in reading the leakage current in comparison with power meter. 
Since it will only obtain the induction voltage of the power line, this component may affect 
the relationship of the leakage with the power. It might have a nonlinear function 
corresponding to its induction voltage function, as shown in Equation 2. 
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Equation 4 can be used to calculate the increasing power of the loads. It is trying to have a 
larger gap between one load and another.It will be useful later on in order to draw the 
relationship between the leakage current and power. 
 To test the circuit, three LED lamps with known power specifications are used. The 
lamps represent one kind from various types of loads, for example, electric fans, TV, and 
laptops. To bring about the leakage condition, we use a switch to bypass one of the RCD 
coils (Sutanto et al., 2019). A testing device is employed to test the load over normal and 
leakage current conditions. It is also identified via a gap of the induction voltage value at 
the sensing coil. 
 LED lamps are compared with CFL lamps in Latief et al. (2019),based onits DC 
characteristic, LED has been chosen in this experiment. The filter design for the RCD is 
initially described before giving an overview of our monitoring system with the discussed 
IoT system and Python server. The system is then evaluated with different kinds of loads 
by comparing the LED lamp as DC load and electric fan as an AC type. It is also tested with 
different loads using three different wattages of LED lamps. The results of these three loads 
would give us hint at the possibility of a higher range of load power, as thedesigned test in 
this system was only with real devices of 2–4W gap in load’s difference. 
 
3. Results and Discussion 

Using the system, it is possible to conduct a complete analysis starting from the 
hardware. This is continued with the leakage current from three LED lamps and tested over 
various loads to see the difference. Finally, the results from using machine learning with a 
binary classification of LED lamps are described. 

3.1.  Hardware Analysis 
 The IoT-based monitoring system described here can monitor a utility’s leakage 
current via a smartphone using the Blynk application. The platform also sends the recorded 
data to the server. The hardware consists of a series of RCDs that can sense the leakage 
current from any device. The leakage current condition is simulated using a toggle switch. 
With this switch, it is possible to simulate normal and leakage currentcondition as the 
switch will bypassing the secondary coil in order to have maximum leakage current 
(Sutanto et al., 2019). 
 

 
(a) Hardware 

 
(b) Connection 

Figure 4 IoT system hardware and connection 
  
 Figure 4 shows the hardware used in this experiment. It consists of three main parts—
the WeMos D1-R2, RCD, and power supply. These parts are basically needed to make the 
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IoT work. The WeMos D1-R2 is responsible for connecting to Wi-Fi and taking data from 
the RCD. Inside the RCD module, there is a filter module, as discussed above. This module 
converts the original AC signal to DC voltage to make sure it can be read by the WeMos. 
Finally, there is the power supply. This part provides electrical power consumption for the 
WeMos D1-R2. The proposed system with the Blynk framework has been tested in Sutanto 
et al. (2020). The connection between the hardware and the server is shown in the block 
diagram in Figure 4b. The data are collected at the server through the IoT system. Finally, 
the data analysis is carried out at the server by utilizing Python language. Python is 
supported by many libraries, making it useful for us to analyze the distribution of data. 

3.2.  Leakage Currents from Three LED Lamps 
 Three LED lamps were tested under normal and leakage current conditions, which may 
result in two different leakage current values. The tests used lamps with power loads of 3W, 
5W, and 9W. Considering Equation 4, we can see that the loads increased by 66.67% and 
80%. The test was carried out practically by following the procedure of the described 
system. The first step was connecting the Blynk application with available Wi-Fi. Then, the 
two available conditions (normal and leakage current) were applied to each of lamps. 
Finally, we could use the generated data from the IoT platform for analysis. The values of 
one of the analyses from this leakage current monitoring tool were observed. 
 

 
(a) Transition signal 

 
(b) Leakage trend line 

Figure 5 Comparison of 3W, 5W, and 9W loads 
 

Figure 5a shows the transition of each lamp from normal conditions to leakage current 
conditions. It shows how the values changed in these two conditions with a big gap. From 
the lamp with a 3W load, the Blynk application recorded a stable value for induction voltage 
with values around 0.010–0.013V with a gap of only about 3mV and an average value of 
0.012V. After the state was changed to the leakage current, it recorded induction voltages 
at 2.119–2.184V, with a gap value of 65V and average value of 2.150V. Similarly, for the 5W 
load under normal conditions, the induction voltage was around 0.026V. Once converted 
into a leakage current state, the value increased a few times before staying at an average 
value of 3.019V, with a gap of around 13mV. The range of steady values was 3.010–3.023V. 
At a load of 9W, a stable voltage was recorded at 0.039V under normal conditions. 
Meanwhile, under leakage current conditions, the value also increased a few times before 
reaching a steady value at an average voltage of 3.157V, with change in gap of 15mV, or 
values changing between 3.145V and 3.161V. Overall, as shown in Figure 5a, we could 
observe that the normal condition had a more stable and very small value. The value in the 
current measurement could be less than 1mA. Then, during leakage current conditions, the 
3W LED lamp had the most data variation. 



Sutanto et al. 407 

 The trend line with the best fit to the changes between the induction voltage versus 
power of our three LED lamps under the leakage current condition can be seen in Figure 
5b. The one-degree logarithmic equation could be fitted with R2 = 0.888 at y = 1.017 ln(x) + 
1.077. This brings us to the reality of a non-linearity of that relationship because R2 is the 
statistical parameter for measuring the closeness of the data to the regression line. To prove 
this, it is necessary to bring up more loads with a higher wattage. 

3.3.  Testing of Various Loads 
 As discussed above, it is necessary to continue this experiment using several other 
loads, such as those of mobile laptop, laptops, fans, and TVs. With this test, we included 
other types of loads. For example, a mobile laptop and laptop may have a power supply in 
DC type. In conducting this test, it might also be possible to determine the maximum power 
load that could be used in this IoT-based application. 

Table 1 Test of various loads 

Load (Brand) Power Condition Induction 

Mobile Laptop (Acer) 40W Turn On 2.87V 

  Speed 1 1.97V 

Fan (Cosmos) 50W Speed 2 2.02V 

  Speed 3 2.04V 

Laptop (HP) 65W Turn On 2.97V 

TV (Polytron) 80W Turn On 3.15V 

 
 Table 1 shows several types of loads with random brands of products. The only 
connection between these loads is that there is an increase in power. However, the power 
was intentionally left unmeasured. The power levels were only taken from the specification 
plates behind the devices. The average induced voltage during leakage current conditions 
was measured using Blynk. Here, the largest load was from the TV, with a rated power of 
80W. This can still be read by our system with the average induced voltage generated by 
the RCD of 3.15V. However, not all values showed correlations with one another. For 
example, the notebook, with a power of 40W, showed a higher induction voltage of 2.87V 
compared with the electric fan, which was only 2.04V at most. Nevertheless, an increase in 
the induction value emerged when the comparison was run using typical loads, such as 
between the notebook at 40W and laptop at 65W, which were 2.87V and 2.97V, and among 
the electric fan values at different speeds, which were in the range of 1.97–2.04V. This result 
was similar to the results for the three LED lamps, which had values of 2.150V, 3.019V, and 
3.157V for 3W, 5W, and 9W, respectively. To investigate the reason for this, it is necessary 
to look at the waveform. This could explain why there was inconsistency from the data 
where the increasing power was not followed by increased induction voltage, as given in 
Table 1. 

 
(a) LED lamp 

 
(b) Electric fan 

Figure 6 Signal waveform before filter 
  
 Although the results at Table 1 showed that it could still successfully read a maximum 
power load of 80W, there was still a pattern which we needed to determine. Thus, we used 
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an oscilloscope for observation by looking into one which had a range of values. They were 
LED lamps and electric fans, which had three different speeds. Figure 6 shows the induction 
voltage from RCD, which we can find as V1 if we looked back at Figure 1. From the figure, it 
can be seen that the waveforms of the lamp and electric fan were different. Unexpectedly, 
the lamp with a load of 5W had a higher peak compared with the electric fan, which should 
have a peak of 50W. The only similarity was that both of them had a similar frequency, 
following the electricity main outlet, of 50 Hz:  

  (5) 

The original power line waveform had been changed from its common sinus function 
with a frequency of 50 Hz, as expressed in Equation 5. Understanding the physics from 
Equation 2 and the differences at the load’s power consumption, we can write this as 
Equation 6 by following the signal convolution, as in Roddy and McEwen (2020): 

 

            (6) 
 
With hLoad as the load’s function, we were able to obtain a different Ileakage from each 

load circuit as its convolution with fps. This may be why we could only see the power line 
frequency at a glance from every induction load. There had been a transformation of the 
original power line signal to this leakage current at Equation 6 before obtaining the 
induction voltage using Equation 2, as shown in Figure 6. 
 
Table 2 Before filtering  

Load Min. (V) Max. (V) RMS (V) 
FrEquation 

(Hz) 

LED Lamp -5.18 4.86 0.65 1,167.00 

Electric Fan -2.67 2.82 0.47 49.97 

     

From the oscilloscope data, we could gather the statistical data shown in Table 2 with 
its Root Mean Square (RMS) values. From this table, we can see that the LED lamp had a 
swing voltage, with an amplitude of around 5V. Meanwhile, the electric fan’s amplitude was 
only around 2.7V. However, the oscilloscope could only see a frequency close to the power 
line frequency for the electric fan. The LED lamp was overcome with a high-frequency 
signal, which can be seen in Figure 6 as a horizontal bar of low voltage along the signal. 

 
Table 3 After filtering 

Load Min. (V) Max. (V) RMS (V) Vpp (V) 

LED Lamp 3.01 3.02 3.02 0.09 

Electric Fan 1.49 1.55 1.52 0.06 

     

If we continued with the capacitor filter, we could see a rectifying effect. The signals 
became steady DC signals, although they could have a ripple voltage as the Vpp, as shown 
in Table 3. The most ripples could be seen in the LED lamps, whereas the electric fan signal 
was more rectified. This again changed the voltage being read by the system, as discussed 
above in relation to Equation 1. The signal’s peak to peak voltage was no longer an 
amplitude, as shown in Figure 7. 
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(a) LED lamp 

 
(b) Electric fan 

Figure 7 Signal waveform after filtering 
 

Figure 7 shows the signal after passing through the capacitor filter. This is the value 
that will be read by the microcontroller. By looking at these steps, it can be understood that 
the correlation of power to the induction voltage was not really close. It might be possible 
to see it as a leakage current signal. The leakage current might respond more to the residual 
power consumption over the load’s circuit rather than the rated power consumption. 

 
3.4.  Relationship based on Machine Learning 

Data gathered at the server via the Blynk application could be used as a dataset for 
machine learning. The data were employed for analysis of normal and leakage current 
conditions. Since we could obtain data from this IoT-based electric leakage current 
application, we would like to determine the difference between the cut offs of the various 
loads. To achieve this, training via a machine learning model was necessary. Determination 
of each condition was reevaluated by the server, which means that the limit to determine 
the conditions of normal and leakage currents could be adjusted. There might not be a 
specific limit, such as 1V, because the limit was determined by machine learning from time 
to time. This was possible because machine learning provides the ability to learn the data 
according to the adjusted behavior. 

 

 

Figure 8 Transfer function 

 
 Figure 8 is a graph of the prediction of leakage current conditions from three LED lamps 
over the measured induction voltage. With a value of 1 representing leakage current 
condition and 0 representing normal conditions, predictions based on the induction 
voltages of 3W, 5W, and 9W lamps shifted slightly to higher range values. Using Equation 4, 
it was found that the loads showed increases of 67% and 80%; however, the induction 
voltages were only 19% and 16% with this machine learning model prediction. Overall, we 
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could see that the transition values were around 1V. In a practical sense, it could be 
observed that there is a possibility to determine the medical equipment’s leakage current 
in hospitals with this system because the induction voltage change exhibited a more than 
10% increase. An improvement in the machine learning model will definitely also increase 
the gap. 
 
4. Conclusions 

Using a filtered RCD circuit, an IoT-based electric machine leakage learning 
application was developed to detect the leakage current in a new way. The output 
sensing coil was rectified using a capacitor circuit to be read by the WeMos D1-R2 
module in a DC value. By utilizing the Blynk application, it was possible to monitor the 
induction’s voltage from various loads. 

The leakage current of various components only seems to have a relationship with 
the power consumption if used with similar types of loads. Thus, the correlation might 
be missed if the leakage current is compared with different kinds of loads. This issue was 
seen between the LED lamp and electric fan loads, and it was explained according to the 
waveforms of induction voltage signals. 

We were able to use the gathered data for machine learning. With the employed 
technology, we could define the adjusted threshold voltage for the best transition from 
the normal condition over the leakage current condition. The demonstration was given 
by similar kinds of LED lamps with increasing loads of 3W, 5 W and 9 W. The results 
indicated that there should be a change in the cut-off point for each different load. 
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