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Abstract. A vehicle routing problem (VRP) can be defined as a problem finding the optimal route to 
minimize the travel distance, time, and cost used in a distribution process. A VRP with time 
windows, also known as a Time Window Priority Model (TWPM), prioritizes time windows using 
mathematical modeling so that vehicles would not be delayed at any point during the distribution 
process. Scant literature exists discussing TWPMs subject to load carrying capacity. They only 
consider the vehicle container volume and the volume of items being carried, arbitrarily assigning 
90% of the vehicle’s capacity, which leads to a large, unused capacity. The utilization of capacity, 
defined as the ratio of the actual weight of the items being transported to the maximum weight of 
the total items with full capacity, is an important factor for efficient transportation. We believe that 
the vehicle’s capacity can be increased when considering the actual dimensions of goods (i.e., their 
lengths, widths, and heights), as well as the dimensions of the vehicle’s containers. This study 
considers a three-dimensional loading constraint—length, width, and height—of both items and 
vehicles. Based on the study results, it can be concluded that taking into account the actual 
dimensions of items and containers in the capacity constraint increases the utilization of vehicles. 
Moreover, in some cases, the total travel distance and the total number of routes can be reduced. 

 
Keywords:  Capacity loading constraint; Three-dimensional loading constraint; Time window 
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1. Introduction 

 One of the core elements of supply chain management is managing the transportation 
process (Hugos, 2003; Young and Sook, 2000). Transportation or distribution can be 
optimized by implementing a vehicle routing problem (VRP), which is described as a 
problem designing an optimal delivery or collection routes from one or several depots to a 
number of geographically scattered cities or customers, subject to side constraints 
(Laporte, 1992; Cordeau et al., 2007). The main scope of the problem involves finding a set 
of vehicle routes (usually not fixed) that optimally visit a specific number of clients or nodes, 
concerning several constraints (Trachanatzi et al., 2020). 

 Some previous studies have been carried out to solve VRPs considering time window 
constraints. Wang and Wen (2020) developed an LC-2EHVRP model with a mixed 
timewindow, simultaneously considering economic cost, environmental issues (carbon 
emissions), and customer satisfaction for 3PL in cold-chain logistics and obtained an 
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optimal solution to deal with it. Comert et al. (2017) proposed a hierarchical approach to 
solving Vehicle Routing Problem with Time Windows (VRPTW) that consists of two stages: 
clustering and routing. In the clustering stage, customers are assigned to vehicles using 
three different clustering algorithms: K-means, K-medoids, and DBSCAN, with the 
controlling capacity of each cluster. In the routing stage, a traveling salesmen problem 
(TSP) is solved based on a Mixed-Integer Liner Programming (MILP) model that aims to 
minimize total waiting and travel times. 
 Kong et al. (2013) developed a VRP mathematical model called the Time Window 
Priority Model (TWPM). The model includes time window constraints (i.e., clients' opening 
and closing hours) to ensure that vehicles arrive within specific intervals during the 
distribution process. The model also includes another constraint on carrying capacities. The 
vehicle capacity constraint only considers the volume of transported items and the vehicle 
container volumes, arbitrarily assigning 90% of the vehicle capacity, which causes a large 
number of unused capacities. As such, it is necessary to consider the dimensions of both the 
transported items and vehicle’s containers in order to define the capacity constraint, 
thereby increasing the container’s capacity utilization. To do so, we developed a VRP with 
time windows subject to capacity constraints, taking into account the actual dimensions of 
both items and vehicles. We assumed that the problem is static and deterministic. It was 
also assumed that vehicles were homogeneous and the container shapes were identical. The 
orientation of transported items was fixed, and the vehicle routing was dedicated to a pick-
up service. The remainder of the paper is as follows: Section 2 discusses the methods and 
solution approaches to the problems. The results and discussion are presented in Section 
3, with the conclusions and further research being discussed in Section 4. 
 
2. Methods 

The model is developed by considering the dimensions of transported items and the 
dimensions of the vehicle’s containers. The dimension of transported items and the 
dimensions of vehicle containers are used to calculate the actual total capacity. In this study, 
we call this model the Time Window Priority Model with three-dimensional loading 
constraints (TWPM with 3D loading constraints). 

2.1.   TWPM with Three-Dimensional Loading Constraints 
In the TWPM developed by Kong et al. (2013), the calculation of used capacity only 

considers the volume of transported items and the volume of vehicle containers by which 
the total volume of all transported items cannot exceed the volume of vehicle containers 
whose value is the result of arbitrary multiplying the volume of vehicle containers with 0.9. 
This certainly does not provide a total value for the maximum use of vehicle container 
capacity. Therefore, we need a constraint that considers the dimensions of transported 
items in calculating the actual total capacity used. The capacity constraints are developed 
from the Three-Dimensional Bin Packing Problem (3D-BPP) mathematical models 
(Martello et al., 2000). The other 3D-BPP model development was done by Hifi et al. (2010), 
then solved using Linear Programming. The parameters of the mathematical model for 
TWPM with 3D loading constraints can be seen in Table 1. 

The decision variables of the TWPM mathematical model with 3D loading constraints 
can be seen in Table 2. The first decision variable x = 1 means that if the total vendor served 
by the 𝑘 -th vehicle (𝑛𝑘) is more than or equal to 1, then x = 1 and 0 means otherwise. The 
second decision variable means that if the total waiting time for the 𝑖-th vendor (𝑡𝑢𝑖) plus 
the vehicle travel time from the 𝑖-th vendor to the 𝑗-th vendor (𝑡𝑖𝑗) multiplied by 0.25 is less 

than the required time that the vehicle travels back and forth from the distribution center, 
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then y = 1, which indicates that the vehicle must wait until the 𝑖-th vendor opens or starts 
the window time service (𝑎𝑖) or 0, which means otherwise. 

 
Table 1 Parameters of TWPM with 3D loading constraints 

Parameters Explanation 

𝐾 Maximum number of vehicles 
𝐿 Maximum number of vendors 
𝑘 Index of vehicle (𝑘 = 1, 2, … , 𝐾) 

𝑖, 𝑗 Index of vendor (𝑖 = 1, 2, … , 𝐿; 𝑗 = 1, 2, … , 𝐿) 
𝑛𝑘 Maximum number of vendors whose items can be picked up by the 𝑘-th vehicle 

𝑝𝑖 , 𝑙𝑖 , 𝑡𝑖 Length, width, and height of the 𝑖-th vendor items 
𝑃, 𝐿, 𝑇 Length, width, and height of the vehicle container 

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 The coordinate of the 𝑖-th vendor items in vehicle container 
[𝑎𝑖 , 𝑏𝑖] The time window of the 𝑖-th vendor 

𝑑𝑖𝑗 The distance from the 𝑖-th vendor to the 𝑗-th vendor (kilometer) 
𝑑0𝑖  The distance from the distribution center to the 𝑖-th vendor (kilometer) 
𝑠𝑘𝑖 The time of the 𝑘-th vehicle arriving at the 𝑖-th vendor 
𝑡𝑢𝑖 The waiting time of the vehicle at the 𝑖-th vendor (minute) 
𝑡𝑖𝑗 The traveling time from the 𝑖-th vendor to the 𝑗-th vendor (minute)  
𝑡𝑏𝑖  The loading time of the vehicle at the 𝑖-th vendor (minute) 
𝑅𝑘  The set of the 𝑘-th route 

𝑟𝑘𝑖 
The 𝑅𝑘  element, which indicates the order of vendors; 𝑟𝑘𝑖 = 0 indicates the 
distribution center 

𝑆0 
The time that the vehicle departures from the distribution center to the first vendor 
is 0  

𝑣 The speeds of the vehicle (kilometer/hour) 

 
Table 2 Decision variables of the TWPM mathematical model with 3D loading constraints 

No Decision Variables 

1 𝑥 = {
1, 𝑛𝑘 ≥ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

2 𝑦 = {
1, ( 𝑡𝑢𝑖 + 𝑡𝑖𝑗)0,25 < 2𝑡𝑖0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

3 𝑎𝛼𝛽 = {
1, 𝑖𝑓 𝛼 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝛽 𝑡ℎ 𝑖𝑡𝑒𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

4 𝑏𝛼𝛽 = {
1, 𝑖𝑓 𝛼 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝛽 𝑡ℎ 𝑖𝑡𝑒𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

5 𝑐𝛼𝛽 = {
1, 𝑖𝑓 𝛼 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑓𝑟𝑜𝑛𝑡 𝑜𝑓 𝛽 𝑡ℎ 𝑖𝑡𝑒𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

6 𝑑𝛼𝛽 = {
1, 𝑖𝑓 𝛼 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑏𝑒ℎ𝑖𝑛𝑑 𝛽 𝑡ℎ 𝑖𝑡𝑒𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

7 𝑒𝛼𝛽 = {
1, 𝑖𝑓 𝛼 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝛽 𝑡ℎ 𝑖𝑡𝑒𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

8 𝑓𝛼𝛽 = {
1, 𝑖𝑓 𝛼 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑜𝑛 𝑡𝑜𝑝 𝑜𝑓 𝛽 𝑡ℎ 𝑖𝑡𝑒𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

9 𝑝𝑥𝑖 , 𝑝𝑦𝑖 , 𝑝𝑧𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑝𝑎𝑟𝑒𝑙𝑙𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑥, 𝑦, 𝑧 𝑎𝑥𝑖𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

10 𝑙𝑥𝑖 , 𝑙𝑦𝑖 , 𝑙𝑧𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑖 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑝𝑎𝑟𝑒𝑙𝑙𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑥, 𝑦, 𝑧 𝑎𝑥𝑖𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

11 𝑡𝑥𝑖 , 𝑡𝑦𝑖 , 𝑡𝑧𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑝𝑎𝑟𝑒𝑙𝑙𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑥, 𝑦, 𝑧 𝑎𝑥𝑖𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The value 0.25 is the average tolerance value of the waiting time that is acceptable to 
all vendors. Decision variable no. 3 to no. 8 are used for determines the item position in the 
vehicle container. Decision variables no. 9 to no. 11 are decision variables of the 
components on the x, y, and z-axis, respectively. Based on the parameters and decision 
variables described earlier, the objective function of the mathematical model TWPM with 
3D loading constraints is as follows. 

𝑀𝑖𝑛 𝑧 = ∑ [∑ (𝑑𝑖𝑗 + 𝑑𝑛𝑘0)
𝑛𝑘
𝑖=1 𝑥 + 2 ∑ 𝑣𝑡𝑢𝑖

𝑛𝑘
𝑖=1 𝑦]𝐾

𝑘=1
 (1)

 

The objective function of the mathematical model is to minimize the mileage which can 
be obtained by adding up the total distance traveled by the 𝑘-th vehicle, distance from the 
previous vendor to the current vendor (𝑑𝑖𝑗) and from the last vendor to the distribution 

center (𝑑𝑛𝑘0); the waiting time is expressed by distances obtained by multiplying waiting 

time (𝑡𝑢𝑖) and vehicle speed (𝑣). Minimizing mileage is not only seen from the distance 
between vendors and vendors with the distribution center but also from the time window 
of each vendor. Vehicles must arrive within the range of these time windows (Beheshti et 
al., 2015). If the vehicle arrives before the time window starts, the vehicle has to wait. The 
time spent if the vehicle has to wait at a particular vendor will affect the vehicle's 
productivity in serving other vendors. Therefore, the waiting time is included in the 
calculation of the objective function as a penalty. The constraints of the TWPM 
mathematical model with 3D loading constraints can be seen in Table 3. 

 
Table 3 Constraints of the TWPM mathematical model with 3D loading constraints 

No Constraint 

1 𝑥𝛼 + 𝑝𝛼𝑝𝑥𝛼 + 𝑙𝛼𝑙𝑥𝛼 + 𝑡𝛼𝑡𝑥𝛼 ≤ 𝑃 
2 𝑦𝛼 + 𝑝𝛼𝑝𝑦𝛼 + 𝑙𝛼𝑙𝑦𝛼 + 𝑡𝛼𝑡𝑦𝛼 ≤ 𝐿 
3 𝑧𝛼 + 𝑝𝛼𝑝𝑧𝛼 + 𝑙𝛼𝑙𝑧𝛼 + 𝑡𝛼𝑡𝑧𝛼 ≤ 𝑇 

4 𝑥𝛼 + 𝑝𝛼𝑝𝑥𝛼 + 𝑙𝛼𝑙𝑥𝛼 + 𝑡𝛼𝑡𝑥𝛼 ≤ 𝑥𝛽 + (1 − 𝑎𝛼𝛽)𝑀 

5 𝑥𝛽 + 𝑝𝛼𝑝𝑥𝛼 + 𝑙𝛼𝑙𝑥𝛼 + 𝑡𝛼𝑡𝑥𝛼 ≤ 𝑥𝛼 + (1 − 𝑏𝛼𝛽)𝑀 

6 𝑦𝛼 + 𝑝𝛼𝑝𝑦𝛼 + 𝑙𝛼𝑙𝑦𝛼 + 𝑡𝛼𝑡𝑦𝛼 ≤ 𝑦𝛽 + (1 − 𝑐𝛼𝛽)𝑀 

7 𝑦𝛽 + 𝑝𝛼𝑝𝑦𝛼 + 𝑙𝛼𝑙𝑦𝛼 + 𝑡𝛼𝑡𝑦𝛼 ≤ 𝑦𝛼 + (1 − 𝑑𝛼𝛽)𝑀 

8 𝑧𝛼 + 𝑝𝛼𝑝𝑧𝛼 + 𝑙𝛼𝑙𝑧𝛼 + 𝑡𝛼𝑡𝑧𝛼 ≤ 𝑧𝛽 + (1 − 𝑒𝛼𝛽)𝑀 

9 𝑧𝛽 + 𝑝𝛼𝑝𝑧𝛼 + 𝑙𝛼𝑙𝑧𝛼 + 𝑡𝛼𝑡𝑧𝛼 ≤ 𝑧𝛼 + (1 − 𝑓𝛼𝛽)𝑀 

10 𝑎𝛼𝛽 + 𝑏𝛼𝛽 + 𝑐𝛼𝛽 + 𝑑𝛼𝛽 + 𝑒𝛼𝛽 + 𝑓𝛼𝛽 ≥ 1 

11 0 ≤ 𝑛𝑘 ≤ 𝐿 

12 ∑ 𝑛𝑘

𝐾

𝑘=1

= 𝐿 

13 𝑅𝑘 = {𝑟𝑘𝑖|𝑟𝑘𝑖 ∈ {1,2, … , L}, 𝑖 = 1,2, … , 𝑛𝑘} 
14 𝑅𝑘1 ∩ 𝑅𝑘2 = φ, ∀𝑘1 ≠ ∀𝑘2 
15 𝑡𝑢𝑖 = 𝑚𝑎𝑥{𝑎𝑖 − 𝑠𝑖 , 0} 
16 𝑠𝑘𝑗 = 𝑠𝑘𝑖 + 𝑡𝑢𝑖 + 𝑡𝑏𝑖 . 𝑝𝑖 . 𝑙𝑖 . 𝑡𝑖 + 𝑡𝑖𝑗 

17 𝑎𝑖 ≤ 𝑠𝑘𝑖 ≤ 𝑏𝑖  

 

Constraints 1 to 3 are the constraints ensuring that the items fit in the vehicle container. 
Constraints 4 to 10 are the constraints ensuring that the items do not overlap. The 
appearance of the overlapping items can be seen in Figure 1. 
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Figure 1 Overlapping items. From Three-Dimensional Palletization of Mixed Boxes, by Tsai et al. 
(1993) 

 
Constraint 11 shows that the total number of vendors served by the 𝑘-th vehicle (𝑛𝑘) 

does not exceed all vendors (𝐿). Constraint 12 shows that the total number of vendors 
served by all vehicles (∑ 𝑛𝑘

𝐾
𝑘−1 ) is equal to the total number of all vendors (𝐿). Constraint 

13 shows that a set of 𝑘-th routes consist of consecutive vendors (𝑟𝑘𝑖). Constraint 14 shows 
that the vendors served on route set 1 are not the same or intersect with those served on 
route set 2. Constraint 15 shows that the waiting time for vehicles at the 𝑖-th vendor (𝑡𝑢𝑖) 
depends on the time the 𝑘-th vehicle arrives at the 𝑖-th vendor (𝑠𝑘𝑖) and the starting time 
of vendor’s time window (𝑎𝑖). Constraint 16 shows that the time the 𝑘-th vehicle reaches 
the next vendor (𝑠𝑘𝑖) is equal to the time the vehicle arrives at the previous vendor (𝑠𝑘𝑗) 

plus the waiting time at the previous vendor (𝑡𝑢𝑖) plus the loading time at the previous 
vendor which can be obtained by multiplying 𝑡𝑏𝑖  by the volume of the vendor’s item 
(𝑝 × 𝑙 × 𝑡) plus the travel time from the previous vendor to the next vendor (𝑡𝑖𝑗). Constraint 

17 shows that the vehicle has to arrive between the vendor’s time window. 
TWPM with three-dimensional loading constraints has been proposed for solving the 

VRP with capacity and time window constraints, which emphasize the constraint related to 
capacity used by considering the dimensions of transported items so as to increase the 
capacity utilization of the container. The introduced model is motivated by the unused 
capacity issues of the original TWPM model that caused the utilization of capacity to not be 
maximized; capacity utilization is an important factor for efficient transportation. 

2.2. Heuristic Approach 
 The heuristic approach used in solving problems based on a mathematical model 
TWPM with 3D loading constraints can be seen below. 
1. Find the vendor with the earliest closing hours based on its time window and name the 

vendor as 𝑖. 
2. Find the vendor with the next earliest closing hours based on its time window and 

name the vendor as 𝑗. 
3. Calculate the required time for the vehicle to arrive (𝑠𝑘𝑗) from vendor 𝑖 to vendor 𝑗. 

The value of (𝑠𝑘𝑗) is obtained from 𝑠𝑘𝑗 = 𝑠𝑘𝑖 + 𝑝𝑖 + 𝑡𝑖𝑗 . The time the vehicle arrives at 

the previous vendor (𝑠𝑘𝑖) is added up with the previous vendor’s service time (𝑝𝑖) and 
added up with the travel time from vendor 𝑖 to vendor 𝑗 (𝑡𝑖𝑗). 

4. Compare the time the vehicle arrives (𝑠𝑘𝑗) with the vendor’s opening hours (𝑎𝑗) and 

closing hours (𝑏𝑗) . If 𝑏𝑗 ≥ 𝑠𝑘𝑗 ≥ 𝑎𝑗 , it is meet the requirement of the time window 

constraint. 
5. Calculate the used capacity of the vehicle container by comparing the dimensions of 

transport items (length, width, and height of the transport items) with the dimensions 
of the vehicle container (length, width, and height of the vehicle container). If ∑ 𝑝𝑖

𝑛𝑘
𝑖=1 ≤

𝑃 , ∑ 𝑙𝑖
𝑛𝑘
𝑖=1 ≤ 𝐿 , and ∑ 𝑡𝑖

𝑛𝑘
𝑖=1 ≤ 𝑇  simultaneous are fulfilled, insert the vendor to the 

present route and then repeat steps 2 to 5. 
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3. Results and Discussion 

In order to determine the difference in the results between the TWPM mathematical 
model and TWPM with 3D loading constraints, calculations are made using two 
mathematical models. Data required for the calculations consist of the vendor’s dimensions 
and volume of items transported, dimensions and volume of vehicle containers, travel time 
between vendors, and vendor time windows. The vehicle container volume was 48.07 m3 
(9.5 m length  2.3 m width  2.2 m height). The distance between vendors in matrix form 
can be seen in Table 4. 

 
Table 4 Distance matrix (km) 

Vendor 0 1 2 3 4 5 

0 - 23.2 19.3 8.1 7.7 36.3 
1 23.2 - 22.1 21.8 21.4 17 
2 19.3 22.1 - 11.2 10.9 36.7 
3 8.1 21.8 11.2 - 1.8 35.1 
4 7.7 21.4 10.9 1.8 - 34.3 
5 36.3 17 36.7 35.1 34.3 - 

 
Each vendor consists of one or more items. The dimensions of transported items 

include the length, width, height, and vendor’s time window, as shown in Table 5. 
 

Table 5 Dimension of vendor’s item 

Vendor 
Height 

(m) 
Width 

(m) 
Length 

(m) 
Item’s 

Volume (m3) 
Total 
Items 

Total Volume 
(m3) 

Opening 
Hour 

Closing 
Hour 

1 0.73 1.15 8.49 7.13 3 21.38 8:39 9:54 
2 0.66 0.57 0.77 0.29 1 0.29 09:19 11:56 
3 0.73 1.15 9.04 7.62 3 22.86 09:40 11:38 
4 2.00 0.57 6.72 7.66 1 7.66 10:02 10:31 
5 1.10 1.15 8.66 10.95 2 21.9 08:47 10:36 

 
The travel time (in matrix form) required for vehicles to move from one vendor to 

another can be seen in Table 6. 
 

Table 6 Travel time matrix (min) 

Vendor 0 1 2 3 4 5 

0 - 28 23 10 9 44 
1 28 - 27 26 26 20 
2 23 27 - 13 13 44 
3 10 26 13 - 2 42 
4 9 26 13 2 - 41 
5 44 20 44 42 41 - 

 
3.1.  Optimal Solutions 

We developed an AMPL model and solved the problem using the CPLEX engine to find 
optimal solutions. The routing results using the TWPM mathematical model can be seen in 
Table 7. 
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Table 7 TWPM routing results 

Route Distance (km) Capacity (m3) Total Distance (km) 

0-4-3-2-0 20.7 30.81 
80.3 0-1-0 23.3 21.38 

0-5-0 36.3 21.9 

 
The routing results using the TWPM mathematical model with 3D loading constraints 

can be seen in Table 8. 
 

Table 8 TWPM with three-dimensional loading constraints routing results 

Route Distance (km) Capacity (m3) Total Distance (km) 

0-1-5-0 40.3 43.28 
60.9 0-4-3-2-0 20.7 30.81 

 
3.2.  Heuristic Results 

For larger problems, we developed a greedy heuristic approach described as follows. 
The results obtained using this approach can be seen in Table 9. 
1. Find the vendor with the earliest closing hours based on its time window and name 

that vendor 𝑖. 
The vendor with the earliest closing hours is vendor 1. 

2. Find the vendor with the next earliest closing hours based on its time window and 
name that vendor 𝑗. 
The vendor with the next earliest closing hours is vendor 4. 

3. Calculate the required time for the vehicle to arrive (𝑠𝑘𝑗) from vendor 𝑖 to vendor 𝑗.  

The total time required for the vehicle to go from vendor 1 to vendor 4 is 58 minutes, 
obtained by adding up the time the vendors were served, 32 minutes, and the travel 
time from vendor 1 to vendor 4, 26 minutes. The vehicle arrived at vendor 1 at 09:07 
and will arrive at vendor 4 at 10:05. 

4. Compare the time the vehicle arrives (𝑠𝑘𝑗) within the vendor’s opening hours (𝑎𝑗) and 

closing hours (𝑏𝑗). 

The vehicle's arrival time at vendor 4 is between the vendor’s time window, which 
meets the requirement of the time window constraint. 

5. Calculate the used capacity of the vehicle container. 
Capacity calculations are done by comparing the dimensions of transport items and the 
dimensions of the vehicle container simultaneously. 

 
Table 9 Routing and item placement result 

Vendor Item 
Length (m) 

 (x-axis) 
Width (m) 

(y-axis) 
Height (m) 

 (z-axis) 

1 
1 8.49 1.15 0.73 
2 8.49 1.15 1.46 
3 8.49 1.15 2.19 

4 1 6.72 1.72 2 

 
6. Repeat steps 2 through 5. 

If the time window constraint, as well as the dimensions of transport items and the 
dimensions of the vehicle container constraints, are met, then the vendor is included in 
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the route; repeat Steps 2 to 5. The final results of the route, along with the placement 
of the transport items, can be seen in Table 10. 
 

Table 10 Routing and item-placement complete results 

Route Vendor Item 
Length (m) 

(x-axis) 
Width (m) 

(y-axis) 
Height (m) 

(z-axis) 
Capacity 

(m3) 
Distance 

(km) 

Total 
Distance 

(km) 

1 
1 

1 8.49 1.15 0.73 

29.33 55.5 

126.9 

2 8.49 1.15 1.46 
3 8.49 1.15 2.19 

4 1 6.72 1.72 2 
2 1 0.77 2.29 0.66 

2 

5 
1 8.66 1.15 1.1 

44.76 71.4 
2 8.66 1.15 2.2 

3 
1 9.04 2.3 0.73 
2 9.04 2.3 1.46 
3 9.04 2.3 2.19 

 
Figure 2 is a visual example of the placement of transport items of routes 1 and 2 based 

on results using the heuristic method. 
 

 
 (a) (b) 

Figure 2 Visualization of transport items placement of: (a) route 1; and (b) route 2 

 
3.3.  Comparison of Optimal Solution and TWPM Heuristic Results with Three-Dimensional 
Loading Constraints 
 According to Table 11, the comparison results between the optimal solution and TWPM 
heuristic approach with 3D loading constraints can be seen from the results of the total 
distance. The time limit and optimality gap set in CPLEX were default and equaled 1e75 

seconds and 0, respectively. CPLEX could solve the problem to optimality in 0.0625 seconds. 
 
Table 11 Optimal solution and heuristic results comparison 

 Number of 
Route 

Transported Volume 
Average (m3) 

Loading Rate 
Average 

Total Distance 
(km) 

Vehicle 
Container 

Volume (m3) 

Optimal solution 2 37.045 77.06% 60.9 
48.07 

Heuristic approach 2 37.045 77.06% 126.9 

 
3.4.  Test of Significance Results 

The significance test was used to see whether there is a significant difference between 
the objective function results obtained using the TWPM mathematical model and TWPM 
with 3D loading constraints. The data used in the significance test were obtained from the 
results of objective function from 30 cases, calculated using the CPLEX engine, and each 
case consisted of 5 vendors. A recapitulation of the results can be seen in Table 12. 
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Table 12 Results recapitulation 

No 

Distance 
of 

TWPM 
Results 

(km) 

Distance of TWPM 
with 3D Loading 

Constraints Results 
(km) 

Difference No 

Distance 
of 

TWPM 
Results 

(km) 

Distance of TWPM 
with 3D Loading 

Constraints Results 
(km) 

Difference 

1 80.3 61 -19.3 16 85.9 73.7 -12.2 
2 99.7 90.1 -9.6 17 71.4 69.7 -1.7 
3 81.9 74 -7.9 18 103.6 101.5 -2.1 
4 73.2 54.4 -18.8 19 101.4 94.3 -7.1 
5 66.3 53.6 -12.7 20 67.8 66.7 -1.1 
6 64.7 58.7 -6 21 78.9 74.7 -4.2 
7 81 76.3 -4.7 22 92.9 85.2 -7.7 
8 76.4 71.3 -5.1 23 102.8 101.7 -1.1 
9 64.5 53.9 -10.6 24 66.1 56.3 -9.8 

10 70.4 69.3 -1.1 25 73.1 55.3 -17.8 
11 71.9 58.6 -13.3 26 122.2 118.9 -3.3 
12 72.7 59.6 -13.1 27 77.1 56.1 -21 
13 123.3 109.5 -13.8 28 63.6 47.6 -16 
14 90.9 52.9 -38 29 47.5 39.7 -7.8 
15 67.2 66.1 -1.1 30 67.3 52.5 -14.8 

 

Before the significance test, the normality test was first conducted to determine the 
difference between the two samples because the requirement for the significance test was 
a normally distributed difference between the two samples. Table 13 is the result of the 
normality test from the difference between the two samples. 

 
Table 13 Normality test 

 
Kolmogorov-Smirnova 

Statistic df Sig. 

Difference .130 30 .200* 

 
The significance value (Sig.) = 0.2 ≥ α, can be concluded that the distance difference is 

normally distributed. Table 13 is the result of the significance test. The significance test 
used is the paired t-test because data comes from the same sample with different 
treatments (Kim, 2015). In this case, different treatments are the calculation of the distance 
using the TWPM mathematical model and TWPM with 3D loading constraints. 

 
Table 14 Paired t-test 

  Mean 
Std. 

Deviation 
Std. Error 

Mean 

95% Confidence Interval 
of the Difference t df 

Sig. (2-
tailed) 

Lower Upper 

Pair 1 
Model 1 – 
Model 2 

10.09333 7.99547 1.45977 7.10778 13.07889 6.914 29 .000 

 

The significance value (Sig.) = 0 < α; thus, it can be concluded that there is a significant 
difference between the distance obtained from calculations using the TWPM mathematical 
model and TWPM with 3D loading constraints. 
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3.5.  Comparison of the Mathematical Model of TWPM and TWPM with Three-Dimensional 
Loading Constraints 
 The comparison between the TWPM mathematical model and TWPM with 3D loading 
constraints can be seen from the results of the objective function. In addition, the average 
volume of transport served by a vehicle can also be used to compare the mathematical 
model results. 
 
Table 15 Results of the TWPM mathematical model and TWPM with three-dimensional 
loading constraints comparison 

 Number of 
Route 

Transported Volume 
Average (m3) 

Loading Rate 
Average 

Distance 
Average (km) 

Vehicle Container 
Volume (m3) 

Model 1 6 34.78 72.35% 105.33 
48.07 

Model 2 5 41.822 87.00% 138.6 

 

 Model 1 indicates the TWPM mathematical model; Model 2 indicates the TWPM 
mathematical model with 3D loading constraints. The number of routes based on Table 14 
was reduced from six to five. In addition, in some cases, the number of routes could be the 
same, or the number of routes generated by the TWPM mathematical model with 3D 
loading constraints could be increased. Although the number of routes was the same or 
even increased, the results of total mileage were different. The total mileage generated 
using the TWPM mathematical model with 3D loading constraints was further. The average 
transported volume increased by applying the TWPM mathematical model with 3D loading 
constraints. 
 
4. Conclusions 

Based on the results of mathematical calculations and analyses, several conclusions can 
be drawn: (1) This study aimed to TWPM propose a model that considered the actual 
dimensions of items and containers in the capacity constraints, namely, TWPM with 3D 
loading constraints. The TWPM mathematical model with 3D loading constraints can solve 
the trip-route determination problem. The constraints that must be considered include the 
time window constraint for each vendor as well as the dimensions of transport items and 
vehicle container constraints (length, width, and height) of each vendor; (2) The results of 
the TWPM mathematical model with 3D loading constraints were proven to increase the 
capacity utilization of vehicle containers and reduce the total travel distance; (3) This study 
assumed that vehicles used to solve the routing problem are homogeneous; hence, routing 
using a heterogeneous vehicles should be considered in future research. 
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