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Abstract. The proposal of synthetic charting is based on the normality assumption. This 
assumption, however, is hard to attain in practice. Therefore, it is important to examine how the 
chart would response under some types of non-normal data. The focus of this article is to monitor 
location shifts using a synthetic chart and to validate its performance under the g-and-h 
distributions. This study shows that the effect of non-normality on the standard synthetic chart is 
not trivial, especially when the underlying distributions are heavy-tailed. With these types of 
distribution, Phase II monitoring of location using median-based estimators is advisable. In doing 
so, the synthetic chart is more robust to departure in the normality assumption with little effect on 
its out-of-control performance. This paper shows how the synthetic parameters should be attained 
to reflect the use of the modified one-step M-estimator (MOM) in its Winsorized version, and the 
median for Phase II. The assessment is based on the average run length and supported by the extra 
quadratic loss function. Finally, the practical application of the proposed synthetic charts is 
illustrated using real data.    
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1. Introduction 

Competition in the manufacturing sector involves delivering high-quality products or 
services quickly at a low cost (Baby and Jebadurai, 2018). Undeniably, cost and quality are 
among key factors in the development of manufacturing strategies (Nurcahyo et al., 2019). 
To achieve such a feat, lean production is usually advocated. Lean production typically 
involves the use of quality tools such as control charts, flowcharts and fish bone diagrams, 
aiming to reduce or eliminate waste that occur during the production process. Today, the 
lean concept has been extended considerably into various fields beyond manufacturing 
(Driouach et al., 2019). As such, the use of quality tools, especially the control chart, is vital.  

Application of the standard control chart, which typically relies upon the normality 
assumption, is favorable in many areas of the statistical process monitoring (SPM), since 
the tool can offer fast detection of special cause(s) in the process. Subsequently, corrective 
action may be undertaken to preserve process quality. One of the many variable control 
charts introduced in the literature is the synthetic chart for process mean, by Wu and 
Spedding (2000). Its use in practice is justified based on its moderate robustness to non- 
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normality for a large sample size n, i.e., n ≥ 6 (Calzada and Scariano, 2001). Nonetheless, 
there is a concern for unacceptably high false alarm rates from the synthetic chart based on 
the sample mean if data distribution is strongly skewed or very heavy-tailed, which brings 
us to the current discussion.  
 Under non-normality, it is better to use robust statistics instead of the sample mean to 
monitor changes in the data (Rocke, 1989). This way, outliers in the subgroups do not cause 
a signal to occur and, as such, the chart only responds to genuine shifts in the process. 
Existing work on the design and implementation of synthetic charts, as based on the median 
estimator, is noted in the literature. See, for example, Hu et al. (2018) and Tran et al. (2019). 
It is not clear how this robust chart performance is impacted under severe non-normality, 
but it seems that making use of the robust estimator with the synthetic control structure 
would lead to better quality tools, as changes in the process can be detected efficiently.  

Notably, there is an increasing frequency of coverage on works associated with control 
charts in the quality technology field, reflecting the relevancy of this quality tool in real 
application (Jensen et al., 2018). Unfortunately, as reviewed by Bono et al. (2017), real data 
usually defy the assumption of normality. Thus, it is important to address the robustness 
(to non-normality) issue and to evaluate the existing and any newly proposed synthetic 
charts with severe deviation from normality. To fill this gap, we investigate the performance 
of the synthetic chart that is based on four different estimators, including the 
aforementioned median estimator, in monitoring the process location of Phase II samples 
upon violation of the normality assumption. In the next section, we give the details 
regarding the selected Phase II estimators before explaining the synthetic charting 
structure.  
 
2. Methods 

2.1.  Descriptions of Robust Estimators 
Let 𝜃 be the process location estimator that needs to be monitored through control 

charting, and 𝜃 be its estimator based on a subgroup of size n. There are many choices for 
𝜃  but we focus on median-based estimators to achieve the highest possible breakdown 
point (BP), i.e., 50%. They are the usual median, modified one-step M-estimator (MOM), and 
its Winsorized version. For comparison purposes, the classical mean estimator is included 
in the study. Based on a random sample X = {Xi, Xi, …, Xn}, these estimators are defined as 
follows: 

• Mean : The sample mean �̅� =
∑ 𝑋𝑖

𝑛
𝑖

𝑛
 has the smallest standard error without comparison 

under normality and, therefore, is the most efficient estimator when data are normally 

distributed. Unfortunately, it also has a BP of 0, suggesting an unreliable estimate under 

non-normality.  

• Median : The sample median �̃� can be computed by taking the average of the two middle 

order statistics, 
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)
 when n is odd. With a BP of 0.5, the estimate is still bounded even when 

half of the data is “bad” (Rousseeuw and Croux, 1993). Moreover, its efficiency increases 
and outperforms �̅� as tails of a distribution become heavier or more skewed, suggesting 
higher power (Figueiredo and Gomes, 2004).   

• MOM : For better statistical efficiency under normal or light-tailed distribution, an 
alternative to �̃�, namely, the MOM, is preferable (Wilcox and Keselman, 2003a). Under 
non-normal distribution, MOM offers better statistical efficiency than does �̅� (Ozdemir, 
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2010). Whereas �̅� averages all the data, MOM only averages the values remaining after 
outliers are discarded and, as such, produces a reliable estimate regardless of data 
distribution. More importantly, MOM has a BP of 0.5, owing to the sturdiness of  �̃� and 
the median absolute deviation about the median (MADn), both which are used in ruling 
out the outliers (Wilcox and Keselman, 2003b). Specifically, Xi is flagged as an outlier if 
(𝑋𝑖−�̃�)

𝑀𝐴𝐷𝑛
< −𝐾 or  

(𝑋𝑖−�̃�)

𝑀𝐴𝐷𝑛
> 𝐾 where K is adjusted to 2.24 for a reasonably small standard 

error under normality, and 𝑀𝐴𝐷𝑛 = 1.4826 𝑚𝑒𝑑𝑖|𝑥𝑖 − 𝑚𝑒𝑑𝑗𝑥𝑗|. The use of MOM allows 

for the possibility of asymmetric trimming, which is advantageous when sampling from 
a skewed distribution.  

• Winsorized MOM (WMOM) : The positive features of MOM continue in its Winsorized 

version. The Winsorized MOM (WMOM) was recommended by Haddad et al. (2012) and 

it uses the same criteria as in MOM to identify outliers. Therefore, WMOM also possesses 

the highest possible BP (i.e., 50%). But, unlike the MOM estimator, the WMOM Winsorizes 

data before averaging the values in which the Winsorized sample, W , is obtained, as:  

  𝑊𝑖 = {

𝑋(𝑖1+1) ,                          𝑖𝑓 𝑋𝑖 ≤ 𝑋(𝑖1+1)

  𝑋𝑖 ,                 𝑖𝑓  𝑋(𝑖1+1) <   𝑋𝑖 < 𝑋(𝑛−𝑖2)

 𝑋(𝑛−𝑖2) ,                        𝑖𝑓   𝑋𝑖 ≥ 𝑋(𝑛−𝑖2)

                                                                     (1) 

where Xi  is the ith ordered observations in a sample before replacing the outliers; i1 is the 
number of smallest outliers determined in the sample; i2 is the number of largest outliers 
determined in the sample. 

The monitoring of location as based on the aforementioned estimators with synthetic 
control structure yields four charts, namely, the synthetic �̅�, synthetic �̃�, synthetic MOM 
and synthetic WMOM charts. In the remainder of this paper, each of the charts will be 
referred to by its respective location estimator. To equip the reader with knowledge on how 
these charts work to signal a change when a shift in the mean occurs, we focus on the 
construction of the charts in the next section.  

2.2.  Design and Derivation of Phase II Limits of the Synthetic Charts 
Proposed by Wu and Spedding (2000), a synthetic chart uses two sub-charts: a 

Shewhart chart and a conforming run length (CRL) chart; both are working in tandem to 
detect a change in the process mean. Concisely, the Shewhart chart is initiated to mark 
nonconforming samples, which happen as soon as a sample statistic 𝜃𝑖  traverses the control 

limits at 𝜃0  ± 𝑘𝑠𝜎�̂�;  𝜃0 is the in-control mean value, 𝜎�̂� =
𝜎𝑋

√𝑛
 , 𝜎𝑋 is the standard deviation 

of the study variable X, and ks is a specified control limit coefficient. The process will be 
continuously monitored to detect out-of-control status, which only happens whenever a 
sample CRL is less than or possibly equal to a lower limit of the CRL chart, Ls. The CRL 
sample is attained by calculating the number of samples between two consecutive 
nonconforming samples, including the ending nonconforming one. Recall that these non-
conforming samples are given by the Shewhart chart.  

Development and evaluation of the synthetic chart are typically based on the average 
number of samples (average run length, ARL) required to signal process a mean shift of size 
𝛿 (in standard deviation units). The ARL (𝛿) corresponds to the out-of-control average run 
length when the mean changes from 𝜃0  to 𝜃0 +  𝛿 . Meanwhile, ARL (0) denotes the in-
control value. In designing the chart, i.e., deriving appropriate values of ks and Ls, the two 
charting constants that form the Phase II limits of the synthetic chart, requires user 
specification on the anticipated shift, say 𝛿∗ > 0, and ARL (0). In practice, the pre-specified 
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ARL (0) is set largely based on the cost of false alarms, while 𝛿∗  is considered to have 
substantial impact on the quality of the process.  

Considering the intractability of the sampling distribution of the robust Phase II 
estimators selected in this study, the values of ks and Ls for the robust synthetic charts, i.e., 
�̃� , MOM and WMOM, are obtained via simulation. A code developed in SAS/Data Step 
Version 9.4 is used to identify a set of ks and Ls that minimizes ARL (𝛿∗) while satisfying ARL 

(0). For such a purpose, Equation 2 defined by ARL (𝛿∗) =
1

𝑝
×

1

[1−(1−𝑝)𝐿𝑠
 is first used to 

retrieve several possible pairs (ks, Ls) that meet the requirement for ARL (0) when 𝛿∗ = 0. 
Here, p is the fraction nonconforming in the process, which depends on the Shewhart limit 
coefficient, ks. Initially, Ls is set at 1 with some relevant ks value for the synthetic design. 
Then, 1106 samples of size n are simulated for all charts from the standard normal 
distribution and, for each chart, the sample statistic 𝜃𝑖  is calculated. It is noted that the 
respective 𝜃𝑖 exceeds the control limits of the Shewhart chart, which starts the counter for 
a non-conforming sample. The fraction nonconforming p for the process is obtained by 
averaging over the total 1106 samples. The process is repeated by increasing the value of 
Ls from 1 to 10 incrementally. The resulting pairs (ks, Ls) will result in different ARL (𝛿∗) in 
Equation 2 and for the set of ks and Ls for which ARL (𝛿∗) reaches minimum, it will be the 
final design of the synthetic chart. It is worth mentioning that the optimal pair (ks, Ls) for 
the �̅�  obtained through this simulation process is comparable to the numerical results 
shown in the work of Wu and Spedding (2000), who also noted that the synthetic chart is 
quite robust with regard to Ls and, as such, the optimal design can frequently be found 
among the first ten values of Ls. However, through this simulation study, we also discover 
that, when the anticipated shift is quite small, the optimization search may require a much 
larger set of Ls (and hence, ks) before ARL (𝛿∗) can be further reduced. The results in Table 
1 for n = 5 and 𝛿∗ = 0.5 corroborate the statement.  

 
Table 1 Optimizing synthetic charts given ARL (0) = 370 

  Charts 

  �̅� �̃� MOM WMOM 

𝛿∗ n Ls kS Ls kS Ls kS Ls kS 

0.5 5 14 2.443 15 2.4629 18 2.5558 14 2.4676 
1 5 4 2.219 4 2.2237 4 2.2599 4 2.233 
2 5 2 2.085 2 2.0882 2 2.1134 2 2.0943 

0.5 9 8 2.346 8 2.3492 7 2.3617 7 2.3373 
1 9 2 2.085 2 2.0859 2 2.1043 2 2.0898 
2 9 1 1.943 1 1.9436 1 1.9536 1 1.9454 

 
Table 1 presents the optimized synthetic control chart values of ks and Ls when the 

underlying process data are normally distributed and ARL (0) is set to 370, which is a 
widely used choice. In this study, the pairs (ks, Ls) are derived for different combinations of 
the sample size n = {5, 9} and design shift 𝛿∗ = {0.5, 1, 2}.  
 
3. Results and Discussion 

3.1.  Performance of the Proposed Synthetic Control Charts 
In assessing control chart performance via ARL, the best charts are those charts that 

can produce ARL (0) closest to the pre-specified value. Meanwhile the ARL (𝛿) is expected 
to be as small as possible, indicating fast detection of a process change. Along with the ARL 
(𝛿 ), this study reports the extra quadratic loss (EQL) value for an out-of-control (OC) 
process. Both ARL and EQL function differently as efficiency indicators. The ARL, in general, 
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measures the performance of the control chart for a specific shift size, 𝛿 , and the EQL 
measures the overall performance over the range of shifts under consideration. The EQL is 

defined as 𝐸𝑄𝐿(𝛿) =
1

𝛿𝑚𝑎𝑥
∑ 𝛿2 × 𝐴𝑅𝐿(𝛿)

𝛿𝑚𝑎𝑥
0  where 𝛿𝑚𝑎𝑥  is the upper boundary of the 

range of shifts under consideration (Malela-Majika et al., 2019). The EQL formula gives 
penalty to the ARL values for larger shifts using a weight 𝛿2. Thus, if the chart had a slowly 
declining ARL (𝛿), it yields a larger EQL. Conversely, if the chart had a quickly declining ARL 
(𝛿), which is an indication of a good chart, it yields a smaller EQL (i.e., minimum EQL value) 
and is considered to be the winner (in terms of fast detection) among the charts being 
compared.  

3.1.1. In-control (IC) performance 
To study robustness of the proposed synthetic charts, we applied the parameters of the 

optimized synthetic charts from Table 1 to process data from the g-and-h distributions 
(Hoaglin, 1985). For each parameter combinations, all ARL values reported for the 
synthetic charts studied here were computed using 10,000 simulations per distribution.  

The g-and-h distributions are based on transformation of the standard normal, which 
allows for symmetric and heavier tails. Specifically, the standard normal variates, 𝑍𝑖 , are 
converted to random variables 𝑋𝑖  as follows (Martinez and Iglewicz, 1984): 

𝑋𝑖 = {
((𝑒𝑔𝑍𝑖 − 1)/𝑔) × (𝑒ℎ𝑍𝑖

2/2),       𝑔 ≠ 0;

𝑍𝑖 (𝑒ℎ𝑍𝑖
2/2) ,                                     𝑔 = 0.

               (2) 

The parameters g and h in Equation 2 control the amount of skewness and kurtosis, 
respectively. To illustrate, Figure 1 shows plots of several g-and-h distributions which cover 
various degrees of non-normality of the underlying data. As shown in the Figure, tails of the 
distribution become heavier as h increased and are further skewed as g increased.         

 
                      (a)      (b)        (c)    (d) 

Figure 1 Distributional shapes: (a) g = 0, h = 0; (b) g = 0, h = 0.5; (c) g = 0.5, h = 0; (d) g = 0.5, h = 0.5 
 

By using process data from the g-and-h distributions with (g, h) = (0, 0), (0, 0.5), (0.5, 
0), and (0.5, 0.5) (Figure 1), the effect of non-normality on the performance of the four 
investigated synthetic charts, i.e., �̅�, �̃�, MOM, and WMOM, can be studied thoroughly. Some 
properties of these four g-and-h distributions can be referred from the paper by Wilcox and 
Keselman (2003b). By including the case g = h = 0.5, the ability of a synthetic chart to 
perform under extreme deviation from the normality assumption can be judged 
exhaustively. If the chart can perform well under this extreme non-normality, it is safe to 
conclude the same satisfactory performance under distributions of lesser skewness and/or 
heavy-tailedness.  

Table 2 displays the ARL (0) for the proposed synthetic charts of different sample sizes 
when the underlying distribution actually follows the g-and-h distributions discussed 
above. In an attempt to judge robustness, these synthetic charts were designed using values 
of ks and Ls in Table 1, which are technically only appropriate for normally distributed 
process data. The results in Table 2 show variations in the control chart performance in 
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relation to the types of distribution. First, consider the situation where the underlying 
process data are normally distributed. All four charts have a similar performance, i.e., they 
have a comparable ARL (0) of approximately 370, as they were designed to have.  

Next, consider the situation where data are non-normally distributed. Combining the 
two factors—the distributional shape and design shift—we notice that the ARL (0) 
produced by synthetic charts based on �̃�, MOM, and WMOM are well controlled in any non-
normal data, if they were designed for a medium (𝛿∗ = 1) and a large (𝛿∗ = 2) shift. It is also 
interesting to note here that several ARL (0) for these charts actually exceed 370 when data 
distribution is skewed normal-tailed, with MOM consistently emerging as the best chart. 
Nonetheless, if we specify a too-small shift in designing the chart, a few of them may not 
perform robustly under heavy-tailed distributions. However, their IC performance can 
certainly be enhanced with larger sample sizes n, resulting in MOM producing ARL (0) that 
are much closer to the pre-specified value when compared to the rest of the charts under 
consideration. Once again, the application of MOM is advantageous if we design the chart 
for small shift and apply it on the skewed normal-tailed process data. The MOM generates 
ARL (0) = 246.41 for n = 5 and ARL (0) = 382.05 for n = 9, beating other supposedly robust 
charts for the case g = 0.5 and h = 0.  

 
Table 2 ARL(0) for sample size n = 5 and n = 9    

   Charts 
 𝛿∗ g h n = 5  n = 9 

   �̅� �̃� MOM WMOM  �̅� �̃� MOM WMOM 

0.5 0.0 0.0 371.78 370.34 372.99 372.80  372.03 366.32 374.92 375.63 
 0.0 0.5 1660.85 119.43 118.30 127.84  2836.71 176.98 214.89 188.51 
 0.5 0.0 202.89 188.76 246.41 248.70  300.36 286.36 382.05 332.24 
 0.5 0.5 6706.56 133.94 137.34 139.61  6986.98 184.40 219.32 198.19 

1 0.0 0.0 366.94 369.97 372.78 372.21  372.56 365.77 368.52 374.51 
 0.0 0.5 3657.79 203.72 221.67 205.64  5010.58 270.34 289.21 267.65 
 0.5 0.0 326.80 310.63 389.22 349.99  400.20 397.51 426.20 385.98 
 0.5 0.5 7114.94 253.71 267.53 251.83  7355.55 310.12 321.58 310.92 

2 0.0 0.0 371.88 373.58 372.92 371.48  372.07 370.77 370.97 376.80 
 0.0 0.5 4739.19 268.63 283.57 271.91  5783.29 325.47 331.96 320.41 
 0.5 0.0 399.47 394.75 450.34 396.83  430.82 433.06 438.67 405.31 
 0.5 0.5 7438.38 351.37 360.92 345.25  7370.50 380.08 386.75 389.56 

 
Despite being able to control false alarms under skewed normal-tailed cases, the �̅�  fails 

to demonstrate the same virtue when applied to heavy-tailed data, as its ARL (0) are 
significantly higher than the expected 370. This is true for both sample sizes, alluding to a 
potential power problem (to be discussed next). 

3.1.2. Out-of-control (OC) performance 
Sample sizes of n = 5 and 9 are common in SPM because real data based on these 

numbers are easily obtained. However, in synthetic charts, it is advisable to use n ≥ 6 to 
achieve good detection (Calzada and Scariano, 2001). Thus, only cases for n = 9 are 
discussed in this section.  

Table 3 displays results for the ARL (𝛿) which are obtained using ARL (0) = 370, n = 9 
and 𝛿∗ = {0.5, 1, 2} for the shift size 𝛿 = {0.25, 0.5, 0.75, 1, 1.5, 2, 3}. The EQL values are listed 
as well.  

For the reader’s convenience, the minimum EQL value for different combinations of n 
and 𝛿∗ is in bold, suggesting the best overall performance. We first start with the case of g 
= h = 0 (the upper part of Table 3). Noticeably, all four charts perform consistently across 
all large 𝛿 values, when the underlying process data are normally distributed.  
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Table 3 ARL (𝛿) using process data from various g-and-h distributions when n = 9 

g h 𝛿∗ Charts 
ARL (𝛿)  

0.25 0.5 0.75 1 1.5 2 3 EQL 

  0.5 �̅� 48.59 5.94 2.21 1.35 1.02 1.00 1.00 7.47 
   �̃� 48.86 6.02 2.22 1.34 1.01 1.00 1.00 7.47 
   MOM 55.85 6.77 2.27 1.35 1.02 1.00 1.00 7.70 
   WMOM 51.99 6.22 2.17 1.33 1.02 1.00 1.00 7.55 
  1 �̅� 61.20 7.42 2.19 1.26 1.01 1.00 1.00 7.81 

0 0  �̃� 61.71 7.41 2.15 1.26 1.01 1.00 1.00 7.81 
   MOM 67.40 7.94 2.24 1.27 1.01 1.00 1.00 8.00 
   WMOM 62.29 7.69 2.19 1.26 1.01 1.00 1.00 7.86 
  2 �̅� 70.43 9.32 2.58 1.36 1.01 1.00 1.00 8.27 
   �̃� 71.35 9.30 2.61 1.36 1.01 1.00 1.00 8.30 
   MOM 75.49 9.50 2.63 1.36 1.02 1.00 1.00 8.41 
   WMOM 71.21 9.18 2.61 1.37 1.01 1.00 1.00 8.29 
  0.5 �̅� 1615.09 222.83 2.94 1.04 1.00 1.00 1.00 58.20 
   �̃� 51.20 7.33 2.23 1.31 1.02 1.00 1.00 7.63 
   MOM 57.88 8.05 2.26 1.31 1.02 1.00 1.00 7.83 
   WMOM 55.38 7.52 2.20 1.29 1.02 1.00 1.00 7.73 
  1 �̅� 3217.60 216.24 1.44 1.02 1.00 1.00 1.00 90.75 

0 0.5  �̃� 69.75 8.68 2.12 1.23 1.01 1.00 1.00 8.08 
   MOM 74.01 9.17 2.17 1.23 1.01 1.00 1.00 8.22 
   WMOM 72.51 8.87 2.12 1.23 1.01 1.00 1.00 8.15 
  2 �̅� 4010.05 163.89 1.32 1.03 1.00 1.00 1.00 102.88 
   �̃� 86.77 10.60 2.46 1.30 1.02 1.00 1.00 8.69 
   MOM 88.59 10.57 2.52 1.32 1.02 1.00 1.00 8.74 
   WMOM 88.05 10.70 2.48 1.30 1.02 1.00 1.00 8.72 
  0.5 �̅� 35.37 6.58 2.39 1.38 1.00 1.00 1.00 7.28 
   �̃� 34.96 6.80 2.42 1.39 1.00 1.00 1.00 7.30 
   MOM 43.02 6.98 2.44 1.37 1.01 1.00 1.00 7.48 
   WMOM 39.85 6.71 2.36 1.37 1.01 1.00 1.00 7.37 
  1 �̅� 56.59 8.68 2.40 1.26 1.00 1.00 1.00 7.86 

0.5 0  �̃� 55.51 8.88 2.45 1.25 1.00 1.00 1.00 7.85 
   MOM 59.49 8.97 2.47 1.27 1.00 1.00 1.00 7.96 
   WMOM 56.58 8.68 2.39 1.26 1.00 1.00 1.00 7.85 
  2 �̅� 70.94 11.11 2.86 1.33 1.00 1.00 1.00 8.47 
   �̃� 70.79 11.16 2.91 1.33 1.00 1.00 1.00 8.48 
   MOM 72.62 10.98 2.86 1.36 1.00 1.00 1.00 8.50 
   WMOM 70.46 10.74 2.88 1.35 1.00 1.00 1.00 8.44 
  0.5 �̅� 5623.46 1516.86 11.67 1.00 1.00 1.00 1.00 251.16 

   �̃� 42.45 8.10 2.50 1.33 1.01 1.00 1.00 7. 56 

   MOM 47.99 8.82 2.53 1.34 1.01 1.00 1.00 7.75 

   WMOM 44.57 8.35 2.51 1.32 1.01 1.00 1.00 7.62 

  1 �̅� 6568.34 1949.92 1.05 1.00 1.00 1.00 1.00 304.95 

0.5 0.5  �̃� 69.86 10.74 2.44 1.21 1.01 1.00 1.00 8.30 

   MOM 73.36 11.30 2.48 1.22 1.01 1.00 1.00 8.43 

   WMOM 70.74 11.32 2.47 1.20 1.00 1.00 1.00 8.37 

  2 �̅� 6835.23 1782.46 1.01 1.00 1.00 1.00 1.00 296.55 

   �̃� 91.83 13.54 2.79 1.28 1.01 1.00 1.00 9.08 

   MOM 92.65 13.42 2.82 1.29 1.01 1.00 1.00 9.10 

   WMOM 92.42 13.85 2.87 1.26 1.01 1.00 1.00 9.12 

 
 

For 𝛿 ≥ 1, all three designs offer equivalent ARL performance, suggesting the charts 
will not lose performance even if we misdesigned them. For 𝛿 ≤  0.75, we perceive a 
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variation in the control chart performance, noticeably, as soon as we introduced potential 
shifts in the process.For instance, the ARL (𝛿 = 0.25) of the �̅� is the smallest, suggesting 
quickest detection among all charts under consideration. This chart also yields the best 
overall performance (in terms of EQL) across all design shifts, as to be expected under 
normality.  

Next, the case g = 0 and h = 0.5 is considered. The general observation is that �̅� yields 
the worst performance with a slowly declining ARL ( 𝛿 ). The effect of heavy-tailed 
distribution on the chart is trivial for 𝛿 ≥ 1 but, below the threshold, it loses performance. 
It has the worst performance when 𝛿∗= 2. Evidently, synthetic charting using median-based 
estimators is more beneficial when employed with this type of distribution. By having 
significantly smaller standard errors than �̅�  under non-normality, the robust charts 
produce narrower control limits, which lead to better detection of the OC status. To 
illustrate, in Table 3, the ARL (𝛿 =  0.25) of the �̅� designed for 𝛿∗= 2 is 4010.05, which is 
significantly (about 45 times) higher than the next largest ARL (𝛿 = 0.25) value produced 
by the MOM (88.59). According to the EQL determinant, �̃� is the most effective in detecting 
shifts. 

Arriving at the case g = 0.5 and h = 0, the general conclusion is that the effect of change 
in design shift follows the finding under normality, and that the effect can be generalized 
across all estimators. However, the ranking changes, unlike that seen in the normal 
distribution. Indeed, there is no variation in the control chart performance if a large shift (𝛿 
> 1) occurs, and that minimal difference exists if the magnitude of the shift is small (𝛿 < 
0.75). However, when we introduced the smallest shift (𝛿 = 0.25) in the process, the ARL 
(𝛿) for the synthetic chart based on MOM and WMOM are slightly higher than the rest of the 
charts under consideration. While it seems counterintuitive that the WMOM gives the best 
overall performance if designed for 𝛿∗ = 2, this can be explained by the weightage assigned 
to the ARL based on 𝛿2 in the EQL formula. The ARL (𝛿) for WMOM is much smaller for 
larger values of 𝛿 compared to the rest of the charts under consideration. Therefore, the 
chart is more dominant than others. For 𝛿∗ = 0.5 and 1, both �̅� and �̃� are at par according 
to the EQL determinant, and they both outweigh the MOM and WMOM in detecting OC 
status.    

      Under extreme non-normality, i.e., when g = h = 0.5, �̃� is regarded as most effective in 
signalling OC status in accordance with the ARL and EQL. This is true for all design shifts. 
Conversely, �̅� yields the worst performance with substantially large ARL values for small 
shifts. The results support our conjecture in Subsection 3.1.1. regarding detection delay of 
a process change by �̅�.  

  Evaluation of synthetic charts under severe deviation from normality as illustrated in 
this section confirms that the standard synthetic chart (�̅�) is highly susceptible to the effect 
of non-normality. The situation can be easily managed by using robust statistics in the place 
of sample mean. 

3.2.  A Numerical Example 
The purpose of this example is to illustrate the performance of the synthetic charts 

when (i) data is real, and (ii) process parameters are estimated. The data concern the wait 
times (in minutes) of patients’ who underwent a colonoscopy procedure in a regional 
medical center. Thirty samples, each of size five patients, had been taken and were shown 
to be positively skewed by Jones-Farmer et al. (2009). The data are presented in Figure 2.  
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Figure 2 Patients’ waiting time (in minutes) 
 
From these 30 samples, the in-control mean, 𝜃0 , is estimated by the average 𝜃 , 

computed as 𝜃0 = ∑ 𝜃𝑗
30
𝑗=1 /30. With four different choices for 𝜃, as discussed in Subsection 

2.1, we then have four different estimators for 𝜃0 to be considered in this example, namely 
�̅�, �̃�, MOM, and WMOM. For a fair comparison of these location estimators, the standard 
deviation estimator �̂� for each chart is the same. In this paper, 𝜎 is estimated by the average 

range R defined by �̂� = (
1

𝑑2
) ∑ 𝑅𝑖

30
𝑗=1 /30, where the value of 𝑑2 for n = 5 is taken to be equal 

to 2.326 (Montgomery, 2013). For this example, the ARL (0) is set at 370 and the design 
shift 𝛿∗ at 0.5. Then, the control limits coefficient kS of the Shewhart sub-chart and the lower 
control limit LS of the CRL sub-chart for the different synthetic charts can be obtained from 
Table 1, because the pairs (kS, LS) only depend on n, ARL (0) and 𝛿∗  (Wu and Spedding, 

2000). For example, if 𝜃 = �̅�, then kS = 2.443 and LS = 14. Substituting the values of kS and 

LS into 𝜃0 ± 𝑘𝑆
�̂�

√𝑛
  yield 5.59 and 13.13.73 for the lower (LCL) and upper (UCL) limits of the 

Shewhart sub-chart, respectively. In the same manner, we obtain the control limits of the 
Shewhart sub-chart for the three robust synthetic charts: (i) �̃�, (ii) MOM, and (iii) WMOM. 
Accordingly, their control limits are (i) (5.3, 13.10), (ii) [4.9, 13.10], and (iii) [4.89, 13.11], 
(in brackets, the first value is LCL followed by UCL). Applying all four charts on the skewed 
data, no OC status is detected by the robust charts but the �̅� signals at subgroup 27. In 
practice, further investigation needs to be done before taking corrective action, but if the 
process is actually stable, the false signal by �̅� simply leads to unneeded distraction, not to 
mention wasted effort. This concern can easily be managed via the application of robust 
synthetic charts, as supported by the findings in Section 3.1.  

 
4. Conclusions 

Robustification in this study is intended to lead to a synthetic chart, the IC ARL of which 
is not sensitive to the non-normal data or the particular values of design parameters, kS and 
LS, but which will detect location shifts reliably. We identify MOM as best fit for the synthetic 
chart. This way, researchers in many application domains will not be constrained by the 
normality assumption, but may instead work with the original data without having to worry 
about the shape of the distributions. While this paper concentrated on the performance of 
the synthetic chart based on the assumption of known process parameters, we believe that 
the findings can be easily extended to the estimated parameters case, which will be 
considered in our future work.   

The decision of what shift for which to design rarely gets attention in the literature, and 
even more rarely under non-normal cases. The three design shifts employed in this study 
provide valuable information for further implementation and for the designing of synthetic 
charts in practice. Generally, the synthetic charts designed for a small shift (𝛿 = 0.5) exhibit 
lack of IC robustness, and therefore can be misleading in the detection of OC status. 
However, for a large sample size (n = 9), the synthetic MOM and WMOM charts are better at 
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controlling the ARL(0), which leads to the best charts (in terms of in-control robustness) 
across the distributional shapes. Moreover, the results confirm that these synthetic median-
based charts (including the use of the usual median estimator) perform reliably and quickly 
if designed for a medium-sized (𝛿 = 1) or a large shift (𝛿 = 2). For OC processes, the data 
of which follow heavy-tailed distributions, these charts offer quickly declining ARLs, 
suggesting not much loss in responsiveness to genuine shifts in the process.    
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