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Abstract. This study explored the ion adsorption of heavy metals using a copolymer gel containing 
zwitterionic betaine N,N'-dimethyl(acrylamidopropyl)ammonium propane sulfonate (DMAAPS) as 
the ion adsorbent agent and N-isopropylacrylamide (NIPAM) as the thermosensitive agent. We 
investigated the effect of ion monomer concentration and type and of temperature on the 
adsorption, desorption, and swelling properties and their correlation. A free-radical polymerization 
reaction was performed to prepare the thermosensitive NIPAM-co-DMAAPS gel using accelerators 
such as N,N,N',N'-tetramethylethylenediamine, ammonium peroxydisulfate as the initiator, and 
N,N'-methylenebisacrylamide at a concentration of 10 mmol/L as the cross-linker. An analysis was 
then performed on the gel’s adsorption, desorption, and reversible adsorption-desorption 
properties using atomic absorption spectrophotometry. The results showed that the swelling 
degree and adsorption values increased as the temperature decreased in the gel with 
NIPAM:DMAAPS ratios of 9:1 and 8:2. In contrast, in a 7:3 ratio, the swelling degree increased 
significantly, and the adsorption ability decreased as the temperature increased. The higher the 
temperature, the smaller the quantity of Zn2+ and Pb2+ ions adsorbed and desorbed. The results 
indicate that in nitrate solution, Pb2+ ions are more easily adsorbed than Zn2+ ions. 
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1. Introduction 

Industrial development leads to increasing metal concentrations in the environment. 
This is a serious problem, given that heavy metals are non-biodegradable and persistent. 
Therefore, above certain concentrations, they harm aquatic ecosystems and human health. 
Various technologies have been successfully developed to decrease the heavy metal 
contents of industrial liquid waste.  

One of these technologies is a conventional method of chemical precipitation and 
neutralization (El Samrani et al., 2008; Amaral Filho et al., 2016) . Although this method is 
commonly used, it can produce other waste in the form of sludge containing high heavy 
metal ion concentrations.  Other methods are reverse osmosis (Chan and Dudeney, 2008), 
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and nanofiltration (Cséfalvay et al., 2009), which involve separating the heavy metal content 
in liquid waste using membranes. However, such methods require high operational costs. In 
addition, using adsorbent-containing ligands, such as ion-exchange or chelating groups, also 
requires a strong acid or base in the process of cation or anion resin regeneration. This is a 
disadvantage because if the process is unsuccessful, it produces secondary waste in the form 
of a strong acid or base (Qdais and Moussa, 2004).  

Kusrini et al. (2018) applied an adsorption technique with maximum iodine 
absorbance of 572.2 mg/g to remove commercial lanthanide ions from an aqueous solution 
using an adsorbent in the form of activated carbon extracted from a banana peels. Olufemi 
and Eniodunmo (2018) reported the adsorption of nickel (II) ions from aqueous solutions 
using banana peels and coconut shells. The optimal conditions were an adsorbent dose of 
4.5 g, 120 minutes of contact time, and 25°C for the banana peels and an adsorbent dose of 
4.5 g, 30 minutes of contact time, and 25°C for the coconut shells. The adsorption was better 
determined by the Langmuir isotherm, with coefficient of correlation values of 0.9821 for 
the banana peels and 0.9744 for the coconut shell.  

Another adsorption method involves the use of a thermosensitive gel in the form of 
zwitterionic betaine, which can bind the anions and cations in liquid waste simultaneously 
(Ningrum et al., 2015 ; Ningrum et al., 2019a; Ningrum et al., 2019b). An interaction between 
negative and positive charges in the same repetition unit in zwitterionic sulfobetaine causes 
ion selectivity, making this method more attractive than others (Neagu et al., 2010). In 
general, zwitterionic betaine polymers are thermosensitive in water. They do not dissolve 
even at temperatures above the upper critical solution temperature (UCST). This means that 
when they are below the UCST and in water, they undergo coil collapse due to inter- and 
intra-chain interactions. Above the UCST, the inhibition caused by the inter- and intra-chain 
interactions can be overcome by the thermal energy produced. The increase in zwitterionic 
polymer concentration causes an increase in intra- and/or inter-chain interactions in the 
polymer, and thus higher thermal energy is needed to overcome the interaction, causing the 
polymer’s UCST to increase (Takahashi et al., 2011). Zwitterionic betaine properties is also 
affected by interactions between zwitterionic containing charged groups and aqueous salt 
solutions (Kudaibergenov et al., 2006). Poly(N-isopropylacrylamide) (poly[NIPAM]) is a 
polymer with thermosensitive properties characterized by a low critical solution 
temperature (LCST) of 32°C (Ningrum et al., 2017a). NIPAM has a neutral charge and swells 
at low temperatures and shrinks at high temperatures because it changes from hydrophilic 
to hydrophobic.  

Zwitterionic polymers have great potential in a wide range of biological and medical 
applications, such as antifouling coatings (Guo et al., 2015), blood contacting sensors (Yang 
et al., 2011; Joshi et al., 2015), drug delivery in vivo (Fang et al., 2011; Cao et al., 2012), 
separation membranes (Hadidi and Zydney, 2014; Tu et al., 2015), marine coatings (Aldred 
et al., 2010; Zheng et al., 2017), catalysts (Ajmal et al., 2015), and absorption dyes (Sahiner 
and Demirci, 2017). Liu et al. (2005) used a hybrid zwitterionic polymer for ion exchange 
membranes synthesized by sol–gel process on N-[3-(trimethoxysilyl) propyl] ethylene 
diamine, with 3-glycidoxypropyltrimethoxysilane, and by a reaction with γ-butyrolactone.  

Ningrum et al. (2017b) conducted a study on the effect of monomer concentration on 
the adsorption and desorption properties of thermosensitive NIPAM and N,N'-
dimethyl(acrylamidopropyl)ammonium propane sulfonate (DMAAPS) gel, comparing 
NIPAM:DMAAPS monomer ratios of 2:8, 1.5:8.5, and 1:9. The temperatures used during 
desorption and adsorption were 10, 30, 50, and 70℃, while the solution used was NaNO3. 
The results showed that the higher the concentration and temperature of the NaNO3 
solution, the lower the NIPAM monomer concentration in the NIPAM-co-DMAAPS gel. In 
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another study, Ningrum et al. (2020a) investigated the properties of an NIPAM-co-DMAAPS 
polymer gel, such as transition temperature, molecular structure, viscosity in water and 
Zn(NO3)2 solutions, and adsorption behavior. The poly (NIPAM-co-DMAAPS) in both water 
and the Zn(NO3)2 solution demonstrated a transition period of LCST. The higher the NIPAM 
monomer ratio, the lower the polymer’s LCST. In addition, its transition temperature with 
a lower NIPAM concentration was not verified either in water or in the Zn(NO3)2 solution. 
Moreover, the higher the NIPAM concentration used in the preparation, the higher the 
polymer’s viscosity, and the higher ion adsorption onto the gel, the higher the polymer 
transmittance. 

Several studies have explored the copolymerization of polymers and thermosensitive 
zwitterionic sulfobetaine. The use of zwitterionic polymers can improve the selectivity of 
ions against adsorption since the cations and anions in the solution bind through both 
negative and positive charges (Ningrum, 2019; Ningrum et al., 2020b). These studies, 
however, generally focused only on the synthesis of gel and its properties. Therefore, this 
research aimed to improve the adsorption capability of gel by employing NIPAM and 
DMAAPS and copolymerizing them in various molar ratios such as 9:1, 8:2, and 7:3. 
DMAAPS was used as the ion adsorption agent because of its charged groups, while NIPAM 
acted as the desorption agent because it can change from hydrophilic to hydrophobic. 
NIPAM fills the space between DMAAPS molecules in the copolymer and allows further 
distances between them. Consequently, the interaction between charged groups of 
DMAAPS is weakened. The weak interaction between the charged groups causes the ions in 
the solution to pair easily with charged groups, as they are not engaged in inter- or intra-
chain or intra-group interactions. Since they can adsorb and desorb ions, the gels can be 
used in reverse. In addition, at higher NIPAM concentrations, the gel is expected to be have 
higher swelling ability that will maximize the desorption and adsorption efficiency of the 
gel. In light of this, the effects of time, temperature, and monomer concentrations on the 
swelling degree, adsorption, and desorption in Zn(NO3)2 and Pb(NO3)2 solutions were 
investigated. The reversible adsorption-desorption of Zn2+ and Pb2+ in an aqueous solution 
with an NIPAM-co-DMAAPS gel were also examined. 
 
2. Methods 

2.1.  Materials 
 NIPAM (KJ Chemicals Co., Ltd., Japan) was synthesized for the gel copolymer. N-hexane 
was used to purify NIPAM in the recrystallization process. DMAAPS (KJ Chemicals Co., Ltd., 
Japan) was synthesized by the ring-opening reaction method introduced by Lee and Tsai 
(1994).  In addition, 1,3-propanesultone (PS; Tokyo Chemical Industry Co., Ltd., Japan) was 
used. An amount of 75 g of PS was mixed with 75 g of acetonitrile. The mixture was then 
added dropwise to a mixture of 100 g of DMAAPS and 200 g of acetonitrile for 90 minutes 
and then stirred at 30°C for 16 hours. The produced DMAAPS crystals were washed with 
500 mL of acetone. The stirring then continued at room temperature for two days, 
producing white crystals, which were filtrated and washed with 500 mL of acetone and 
dried in a vacuum oven at 50°C for 24 hours. 

The NIPAM-co-DMAAPS gel was synthesized by a free-radical polymerization reaction. 
DMAAPS, NIPAM, N,N,N’,N’-tetramethylethylenediamine (TEMED), and N,N’-
methylenebisacrylamide (MBAA) were added into distilled water until it reached a total 
solution volume of 100 mL. The solution was then poured in a four-necked separable flask 
and purged with nitrogen gas for 10 minutes to free up the dissolved oxygen. Then, 20 mL 
of ammonium peroxydisulfate (APS) solution with purging nitrogen gas added to the 
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polymerization reactor. The nitrogen gas was kept flowing at 10°C for 6 hours during the 
polymerization reaction. Table 1 shows the gel copolymer synthesis conditions. 

 
Table 1 Composition for zwitterionic copolymer gel synthesis  

  Concentration (mmol/L) 

Monomer DMAAPS 100, 200, 300 

 NIPAM 900, 800, 700 

Linker MBAA 30 

Accelerator TEMED 10 

Initiator APS 2 

 
To produce a gel cylinder, gel was synthesized in a four-necked separable flask using 

glass tubes 3 mm in diameter and 20 mm in length. Then, the gel produced by 
polymerization reaction in the glass tubes was cut into 3 mm length. This NIPAM-co-
DMAAPS gel was washed with distilled water and then dried for several days on Teflon 
paper placed on a petri dish covered with a plastic film with small holes in it to prevent the 
gel from cracking due to evaporation. Other gel products were then cut into small pieces, 
washed, and dried in an oven. Then, to produce gels with a size of ≥ 90 µm, the gels were 
crushed and sieved. In the end, two types of gels were produced: cylindrical gels for swelling 
tests and crushed gels ≥ 90 µm in size for ion adsorption and desorption tests. The 
concentrations in the solutions after the adsorption and desorption processes were 
measured by atomic absorption spectrophotometry (AAS). The NIPAM-co-DMAAPS gel 
synthesis apparatus is shown in Figure 1. 

 

 

(A) DMAAPS and NIPAM feed tank 
(B) Polymerization batch reactor 
(C) Heater 
(D) Temperature controller and thermocouple 
(E) Stirrer 
(F) Condenser 

(G) N2 purge  
(H) Initiator feed tank 
(I) N2 gas  
(J, K, L, M) Valves 
(N) Flowmeter 

Figure 1 NIPAM-co-DMAAPS gel experiment setup 



Suprapto et al.   303 

2.2.  Swelling Degree Test 
In the swelling degree test, a millimeter block was used to measure the diameter of the 

cylinder gel after it was developed until it reached the equilibrium swelling point in a 
solution at 10, 30, 50, and 70°C. Equation 1 was used to calculate the swelling degree. 

                                                    Swelling degree =                                      (1) 

where dswell is the gel diameter after it reached the equilibrium swelling point at a certain 
temperature (i.e., the swollen gel diameter) and ddry is the dry gel diameter. 

2.3.  Adsorption/Desorption Test 
Zn(NO3)2 and Pb(NO3)2 solutions were used in the adsorption and desorption 

processes. One gram of gel copolymer was added to 20 mL of aqueous solution (10 mmol/L) 
in a glass bottle. It was then stirred at various temperatures of 10, 30, 50 or 70°C for 15 
hours until it reached the adsorption equilibrium point. Subsequently, the concentrations 
of cations and anions in the final solutions were analyzed by AAS after separating the gel by 
centrifugation for 10 minutes and filtration using a syringe filter.  

After the adsorption, the gel that had previously been dried was placed into Zn(NO3)2 
and Pb(NO3)2 solutions for the desorption test. Both solutions had the same concentration 
(10 mmol/L) and were stirred at various temperatures of 10, 30, 50 or 70°C for 15 hours. 
To determine the amount of ions adsorbed, Equation 2 was used.  

                                                                                                           (2) 
                                    
 
where Q is the quantity of ions (Pb2+ and Zn2+) adsorbed on or desorbed from the gel 
copolymer, C0 is the ion concentration (Pb2+ or Zn2+) in the solution before the adsorption 
and desorption tests, C is the ion concentration (Pb2+ or Zn2+) after the adsorption and 
desorption tests, V is the volume of the sample solution, and m is the weight of the dry gel.  

2.4.  Reversible Adsorption-Desorption Test 
Reversible adsorption-desorption was defined as the ability of the gel to adsorb and 

desorb ions continually at 10 and 70°C, respectively, for 15 hours in 10 mmol/L of Zn(NO3)2 
or Pb(NO3)2 solution. Once the adsorption experiment was completed, the solution 
temperature was increased to 70°C to desorb the ions previously adsorbed. The gel was 
utilized repeatedly to adsorb and desorb until it reached its saturation point, that is, the 
point at which it could not adsorb or desorb ions. The gel was separated from the solution 
by centrifugation for 10 minutes, filtrated by syringe filter, and finally the ion concentration 
in the solution was measured by AAS. 
 
3. Results and Discussion 

3.1.  Effect of Time on the Swelling Degree of the NIPAM-co-DMAAPS Gel 
Swelling degree, or volumetric swelling, is the ratio between swollen gel volume and 

dry gel volume. This study used NIPAM:DMAAPS ratios of 9:1, 8:2, and 7:3 with a total 
molarity of 1000 mmol/L. Figure 2 shows the times until the NIPAM-co-DMAAPS gel 
reached the equilibrium swelling point in the Zn(NO3)2 solution at various temperatures. In 
the NIPAM:DMAAPS ratios of 9:1 and 8:2, a significant increase was observed at 0–9 hours, 
and the gel reached the equilibrium swelling point at 9–15 hours (Figures 2a and 2b). These 
results indicate that the higher the temperature, the lower the swelling degree. 

 

Q = (C0 − C)V 

m 
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Figure 2 Equilibrium swelling of the NIPAM-co-DMAAPS gel in various time ranges and 
temperatures in NIPAM:DMAAPS ratios of: (a) 9:1; (b) 8:2; and (c) 7:3 in concentrations of 10 
mmol/L of Zn(NO3)2 solution 

 
In the NIPAM:DMAAPS ratio of 7:3, Figure 2c shows a significant increase in swelling 

at 70°C between 0 and 3 hours and then a slow increase in the next 3–9 hours until the gel 
reached the equilibrium swelling point at 9–15 hours. A significant increase occurred at 
temperatures of 10–50°C between 0 and 3 hours before the gel reached a constant value at 
3–15 hours. These results show that the swelling degree increased in correlation with the 
increase in temperature. Furthermore, it can be concluded that swelling equilibrium can be 
achieved at 15 hours or more. Based on this, it was possible to determine the quantity of 
ions adsorbed on the NIPAM-co-DMAAPS gel. 

 
Table 2 Percent adsorption of ions onto the gel with different NIPAM:DMAAPS ratios in 
concentrations of 10 mmol/L of nitrate solution at various temperatures 

NIPAM:DMAAPS 
Ratio 

Temperature 
(°C) 

Zn(NO3)2 Pb(NO3)2 

C0–C 
(mmol/L) 

Percent 
Adsorption 
(mmol/g of 

gel) 

C0–C 
(mmol/L) 

Percent 
Adsorption 
(mmol/g of 

gel) 

9:1 

10 8.16 22.16 9.69 26.24 

30 8.13 22.09 9.66 26.19 

50 8.10 21.85 9.65 26.04 

70 7.91 21.36 9.60 25.99 

8:2 

10 8.23 12.50 9.78 14.80 

30 8.20 12.44 9.72 14.74 

50 8.12 12.29 9.69 14.65 

70 7.91 11.98 9.66 14.59 

7:3 

10 8.20 9.14 9.70 10.83 

30 8.15 9.10 9.69 10.80 

50 8.11 9.05 9.65 10.77 

70 7.89 8.80 9.64 10.76 

 
Table 2 shows that the percent adsorption of both Zn2+ and Pb2+ decreased as the 
temperature increased and the NIPAM:DMAAPS ratio decreased. The rising temperature 
increased the thermal motion of the gel, causing the bond of the gel whose charge group 
was initially bound to Zn2+ and Pb2+ ions to break and the adsorption power to decrease. 
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3.2.  Effect of the NIPAM Concentration on the Gel Copolymer’s Adsorption and Swelling 
Degree 

Figures 3a and 3b show the effect of the NIPAM monomer concentration on the NIPAM-
co-DMAAPS swelling degree at various temperatures. Combined with Figures 2c and 2d, 
they show that the swelling degree and adsorption decreased when the temperature 
increased in the nitrate solution with NIPAM:DMAAPS ratio of 9:1 and 8:2. This occurred 
because poly(NIPAM) is a thermosensitive polymer with an LCST of around 32°C. This 
means that when it is dissolved in water, it swells at low temperatures and shrinks at high 
temperatures because it changes from hydrophilic to hydrophobic. Therefore, the NIPAM 
concentration in the NIPAM-co-DMAAPS gel has an increasingly hydrophobic effect as the 
temperature increases. 

 

Figure 3 Effect of NIPAM concentration on the NIPAM-co-DMAAPS gel swelling degree with various 
NIPAM:DMAAPS ratios in concentrations of 10 mmol/L of (a) Zn(NO3)2 solution and (b) Pb(NO3)2 
solution; effect of NIPAM concentration on the adsorption of (c) Zn2+ ions on the NIPAM-co-DMAAPS 
gel in concentrations of 10 mmol/L of Zn(NO3)2 solution and (d) Pb2+ ions on the NIPAM-co-DMAAPS 
gel in concentrations of 10 mmol/L of Pb(NO3)2 solution 

 
In addition, a significant increase was observed in the swelling degree in the nitrate 

solution at 70°C with the NIPAM:DMAAPS ratio of 7:3 (Figures 3a and 3b). This 
phenomenon is at odds with the theory that poly(NIPAM) gels tend to swell below the LCST 
of 32°C and shrink above the transition temperature. This occurred because of the higher 

relative DMAAPS concentration, whose solubility was affected by the temperature at 
NIPAM:DMAAPS ratio of 7:3. Hence, the higher the temperature, the higher the solubility. 
However, in the case of a higher swelling degree, this characteristic is strongly influenced 
by the gel’s ability to adsorb water, not the strongly charged–group DMAAPS bond in the 
solution.  
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As the temperature increased, the quantity of ions adsorbed onto the gels with various 
monomer ratios decreased. Moreover, at lower temperatures, intra-group pairing of SO3

- 
and N+ dominated the interactions within the gel, and such pairings were enough to block 
the gel’s ability to adsorb water. Consequently, the quantity of ions adsorbed onto the 
copolymer gel was limited. Thermal motion at higher temperatures weakened the pairing 
between Zn2+ and NO3

- in the solutions with SO3
- and N+ in the gels, respectively. In addition, 

the gel’s shrinking at higher temperatures, particularly in the NIPAM:DMAAPS molar ratios 
of 9:1 and 8:2 (Figures 3a and 3b) resulted in a stronger interaction between sulfobetaine 
groups. This phenomenon caused the amount of ions adsorbed onto the gel to decrease. 

Moreover, as Figures 3c and 3d show, the amount of Pb2+ ions adsorbed was higher 
than that of Zn2+ ions. This phenomenon is explained by the Hofmeister series of cations as 
follows (Collins and Washabaugh, 1985): 

H+ > Ba2+ > Sr2+ > Ca2+ > Mg2+ > Cs+ > Rb+ > NH4
+ > K+ > Na+ > Li+ 

Based on their atomic diameter, ions can be classified into two groups: kosmotropes and 
chaotropes. Kosmotropes are on the left side of the series, while chaotropes are on the right 
side. Zn2+ is considered a kosmotrope, as its atomic diameter (74 pm) is close to that of Mg2+ 

(72 pm), and has greater hydration potential than Pb2+, whose atomic diameter is 119 pm. 
Therefore, it is more difficult for sulfobetadine groups in the copolymer gel to adsorb it. 

3.3.  Effect of Reversible Adsorption-Desorption on Ion Concentration 
Figure 4 shows the gel’s capability of reversible adsorption-desorption after having 

been used over a certain period until it reached its saturation point. After the adsorption 
experiment had been completed, the solution’s temperature was raised from 10 to 70°C to 
desorb the ions previously adsorbed. The same process was repeated for the second and 
third reversible adsorption-desorption tests. Reversibility 1 in Figure 4 shows the quantity 
of ions desorbed in the nitrate solution after 15 hours. In the first 15 hours, the desorption 
in the Zn(NO3)2 solution first increased and reached a constant value in the third 
reversibility test, where the final concentration was 0.0018 mmol/g of dry gel. This means 
that NIPAM drove the bonds between Zn2+ and NO3

- with charged groups (N+ and SO3
-) in 

the gel copolymer in the first 15 hours at 70°C, thus weakening the bonds. However, over 
time, these copolymer bonds were located at the saturation point of desorption; thus, the 
copolymer gel stabilized, as it could not desorb further. A significant increase also occurred 
in the Pb(NO3)2 solution at 15 hours and subsequently decreased to a concentration of 
0.0675 mmol/g of dry gel. 

 

 

Figure 4 Reversible adsorption-desorption of copolymer gel in nitrate solutions with an 8:2 
NIPAM:DMAAPS ratio at 70°C 



Suprapto et al.   307 

4. Conclusions 

The copolymer gel took more than 15 hours to reach the swelling degree equilibrium 
and desorption and adsorption points. In the NIPAM:DMAAPS ratios of 9:1 and 8:2, the 
swelling degree increased as the temperature decreased. In contrast, the 7:3 ratio resulted 
in a higher swelling degree as the temperature increased. In the nitrate solution, the 
swelling degree and adsorption ability of the 9:1 and 8:2 ratios decreased with an increase 
in temperature. Conversely, in the 7:3 ratio, the swelling degree increased significantly, 
while the adsorption capability decreased with a temperature increase. Furthermore, in the 
9:1 ratio and a temperature of 10°C, the gel’s adsorption ability reached its highest values 
of 22.16% (Zn2+) and 26.24% (Pb2+). It can be concluded that the higher the temperature, 
the lower the quantity of Zn2+ and Pb2+ ions adsorbed and desorbed. In nitrate solution, Pb2+ 
ions are more easily adsorbed than Zn2+ ions. An ion concentration of 0.0018 mmol/g of dry 
gel was obtained from the reversible adsorption-desorption test using an 8:2 
NIPAM:DMAAPS ratio in the Zn(NO3)2 solution, while the Pb(NO3)2 solution reached an ion 
concentration of 0.0675 mmol/g of dry gel. 
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