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ABSTRACT 

Multi-variable model predictive control (MMPC) was used to control the dimethyl ether (DME) 

purification process of methanol in the production of DME from synthesis gas. The use of MMPC 

aims to capture the phenomenon of the interaction between the variables in the process in order 

to improve the control performance. As the process comprises four input variables and four output 

variables, MMPC (4×4) is used in this study. The inter-variable interaction is shown in a 4×4 

matrix, where each matrix element is a first-order plus dead-time (FOPDT) model. MMPC (4×4) 

was tested by changing the set point (SP) and disturbance rejection. The control performance 

indicators used are integral absolute error (IAE) and integral square error (ISE) and, as a 

comparison, the control performance of the single-input single-output (SISO) model predictive 

control (MPC). The results show that MMPC (4×4) is better than MPC in both IAE and ISE. In 

terms of SP change, MMPC (4×4) is able to significantly improve the control performance of 

MPC, by 78% (IAE) and 90% (ISE). Whereas in the disturbance rejection testing, the 

improvements in control performance were 58 % (IAE) and 81% (ISE). 
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1. INTRODUCTION 

Dimethyl Ether (DME) can be used as an alternative energy source. As a propellant, DME is less 

polluting, naturally degrades easily, has a high cetane number, and does not produce SOx, CO, 

and particulate emissions. DME has physical properties similar to those of liquefied petroleum 

gas (LPG); hence, DME can be used as a substitute for LPG in domestic applications. In addition 

to this, DME can be used in diesel engines. Because of its wide range of applications, it is 

important for the large-scale production of DME to be actualized (Marchiona et al., 2008; 

Solichin et al., 2011; Patil & Thipse, 2012). 

It is very important to obtain and maintain operating conditions at their optimum level so that the 

desired product can be successfully obtained (Kusrini, 2018). This requires process control so 

that any disturbances that arise can be handled as well as possible. Likewise, in the production of 

DME from synthesis gas, proper process control is needed so that the expected product is 

achieved. 

In general, DME is produced via methanol dehydration in a catalytic fixed-bed reactor, followed 

by a purification process. Wahid and Gunawan (2015) demonstrated the method for determining  

the  control structure of the DME plant designed  by   Solichin et al.  (2011)  with  the   use  of  a 
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proportional-integral (PI) controller structure. Research on the purification process of this DME 

production plant was continued by Yanuardi (2015) using an advanced control system that 

employed single variable model predictive control (MPC). Both the PI control system and MPC 

system are able to attain zero offset when the SP tracking test and disturbance test are given, but 

the error value, which uses the integral absolute error (IAE) and integral square error (ISE) as the 

error calculation, given by these two controls system is still relatively high. This may be caused 

by the strong interaction between the process variables in the process system. It is possible to 

manage this problem with the use of a more advanced control system, namely multi-variable 

model predictive control (MMPC). The use of MMPC can also reduce the total amount of capital 

investment in the control system by reducing the amount of controller used (Wahid & Ahmad, 

2007). 

The MMPC (4×4) used in this study differs from that used by Wahid and Ahmad (2015, 2016) 

because here, only one MMPC is used. Wahid and Ahmad (2015, 2016), in contrast, used several 

MMPCs (2×2) in a multi-model MPC to control the purity of the product from a distillation 

column. However, the use of one MMPC to control four controlled variables (CVs) is expected 

to meet the DME purity target in a distillation column. 

 

2. SIMULATION 

The condition of the DME purification process is based on the DME plant simulation designed 

by Solichin et al. (2011). DME is purified using a distillation tray column. In this process section, 

MMPC is used to control four variables, namely the feed column temperature, column condenser 

vessel temperature, column condenser percent level, and the column bottom stage percent level. 

This process simulation was carried out using the Aspen HYSYS program as shown in Figure 1. 
 

 

Figure 1 DME & Methanol Separation Process Scheme with MMPC (4×4) 

 

2.1. DME and Methanol Separation 

In the DME purification plant, DME will be purified from other mixtures using the distillation 

column. The product that emerges from the methanol dehydration reactor is a mixture comprising 

DME, methanol, water, and some unreacted gas (Yanuardi, 2015). The unreacted gas in the 

product is then purged (Wahid & Putra, 2018). The DME mixture that will enter the distillation 

column is in the form of gas; hence, the mixture must be cooled using a precooler prior to it 

entering the distillation column until it becomes at least a gas and liquid mixture. Table 1 shows 
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the specifications of the distillation column, while the operating conditions of the process are 

shown in Table 2. 

 

Table 1 Distillation column specifications 

Parameter Value 

Number of stages (trays) 8 

Stage inlet (stage) 3 

Condenser pressure (psia) 201.6 

Reboiler pressure (psia) 201.7 

 

Table 2 Distillation stream operating conditions 

Variable 
Value 

Feed Top Product Bottom Product 

Flowrate (kgmole/h) 4354 1694 2649 

Temperature (oC) 63.51 46.12 67.36 

Pressure (psia) 206.9 201.2 202.2 

DME Fraction (%) 43.28 99.41 9.35 

Methanol Fraction (%) 43.23 0.248 21.42 

 

The controller type used in the DME and methanol separation process is an MPC controller. This 

type of controller can be modified to become a multivariable MPC. The CVs and manipulated 

variables (MVs) of this process are shown in Table 3. 

 

Table 3 List of CVs and MVs 

No. CV MV 

1 Column feed temperature Precooler heat flow 

2 Condenser vessel temperature Column condenser heat flow 

3 Column condenser level Top product flowrate 

4 Column stage volume Bottom product flowrate 

 

2.2. Multivariable (4×4) Model 

The interactions between each CV and MV in the DME and methanol separation process need to 

be identified. The system identification results are in the form of FOPDT models, which are 

obtained by changing the step function  in each MV to produce four process reaction curves 

(PRCs) for the four CVs. Because there are four MVs, 16 PRCs are generated, as shown by Figure 

2. The obtained PRCs are converted into FOPDT models using the Smith method (Smith & 

Corripio, 1997). All of the transfer functions obtained are then expressed in a 4×4 matrix to give 

16 matrix elements, each of which is an FOPDT model (Corriou, 2017). This matrix functions as 

an MMPC (4×4), as shown by Equation 1. 

 

























































)(

)(

)(

)(

)()()()(

)()()()(

)()()()(

)()()()(

)(

)(

)(

)(

4

3

2

1

44434241

34333231

24232221

14131211

4

3

2

1

sMV

sMV

sMV

sMV

sGsGsGsG

sGsGsGsG

sGsGsGsG

sGsGsGsG

sCV

sCV

sCV

sCV

   (1) 

where 𝐺11(𝑠) is a transfer function, for example, which is the process model for 𝐶𝑉1and 𝑀𝑉1: 
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Figure 2 PRCs generated from the MV changes: 1st to 4th row for MV1 to MV4 changes 
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where K is the process gain,   is the time constant, and  is dead time (Marlin, 2000). 

2.3. Multi-variable Model Predictive Control Tuning  

Just as in a proportional-integral-derivative (PID) control system, MMPC also has controller 

parameter values. In an MMPC controller, the value gained from FOPDT is used to calculate the 

three MMPC parameters of sampling time (T), prediction horizon (P), and control horizon (M). 

The sampling time is the time interval during which the MVs are being optimized by evaluating 

new inputs and constraints. The prediction horizon is the number of future control intervals the 

MPC controller must evaluate by prediction when optimizing its MVs at control interval. 

Meanwhile, the control horizon is the number of MV moves to be optimized at a definite control 
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interval. The values of T, P, and M are calculated using the Shridhar and Cooper method (1998), 

which is shown in Equations 3 to 5 as follows: 

 

 Sampling Time 
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      (6) 

 

If the parameter values obtained using the Shridhar and Cooper calculations yield only a nearly 

good enough controller performance, fine-tuning is carried out with the results obtained from the 

Shridhar and Cooper method as the initial values of the new controller parameters. This fine-

tuning continues until the optimal parameter value is obtained (Marlin, 2000). 

2.4. MMPC Performance Test Parameter 

To determine whether the tuning result is a good one or not, the performance of the MMPC 

controller must be tested. The test is carried out either by changing the SP value or adding 

disturbance to the process and assessing how the CVs respond. In this study, the size of the SP 

changes and disturbance applied was 5% of the initial value. After making these changes, the 

controller performance was determined by calculating the error with the IAE and ISE methods. 

Equation 8 shows the empirical equation for the IAE method and Equation 9 is for the ISE 

method. These two error counting methods are commonly used to evaluate the performance of a 

control system. The calculation results for the IAE and ISE from the MMPC (4×4) control system 

will be compared to those obtained from the MPC control system designed by Yanuardi (2015) 

in a previous study. 
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3. RESULTS AND DISCUSSION 

3.1.  DME and Methanol Separation MMPC (4×4) Model  
Equation 10 shows the 16 FOPDT models (G11 ... G44) that resulted from the empirical modeling 

of the DME purification process from methanol. All of the MMPC (4×4) elements as shown by 

Equation 1 are represented by a specific transfer function model, and there are no zero-value 

elements. This shows that all of the MV changes will affect all CVs or that there is an interaction 

between all CVs and MVs. What is interesting is the effect of the changes in MV2 - MV4 on CV1, 

which is behind the input variables. Changes in MV should affect only the CV in one piece of 

equipment and the one in front of it, without no effect on those behind it. However, the system 

identification shows different results. This is because the feed stream is connected to the inside 
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of the distillation column so that any changes in the distillation column will affect the operating 

conditions in the feed stream.  
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The sensitivity of an MV to a CV is shown by the amount of process gain (K). Equation 10 shows 

that changes to MV1 have the greatest effect on CV3 and less effect on CV2; changes in MV2 also 

greatly affect CV2 and have less effect on CV1; changes in MV3 greatly affect CV2 but have less 

of an effect on CV4, while changes in MV4 exert the greatest influence on CV1 but less influence 

on CV2. These results can be used as the basis for CV and MV pairing if using SISO-based 

controllers. However, for greater precision, relative gain array (RGA) analysis can be used (Ajayi 

& Ogboh, 2012; Wahid & Hambali, 2015). 

3.2.  MMPC Performance  
The MMPC controller parameter value obtained using the Shridhar-Cooper method is still too 

imbalanced; hence, some fine-tuning must be carried out. As we can see, the value of T is too 

small and the values of P and M are too big. In this case, a very large degree of computational 

effort is required. The result derived from the Shridhar-Cooper method is thus used as an initial 

value for fine-tuning. Fine-tuning is carried out by adjusting the parameter value up to the point 

at which the controller gives a proper response. Table 4 shows the results from the Shridhar-

Cooper method and the optimum parameter values obtained from fine-tuning (Shridhar & 

Cooper, 1998). 

 

Table 4 MMPC (4×4) controller parameter results 

Tuning Method T P M 

Shridhar-Cooper 0.0352 5121.84 1027.86 

Fine Tuning 25 18 41 

 

The performance of the tuned controller parameters should then be tested. The optimum 

controller parameter will result in minimum error. In a multi-model controller, the optimum 

controller parameter will minimize disturbance due to interaction between the variables. Two 

types of performance test were carried out, specifically against the change of SP and disturbance 

rejection. The value of the SP changes and disturbance test was 5%. 

3.2.1. MMPC performance test against change of SP by 5% 

The controller response against an SP change of 5% is shown in Figure 3. The MMPC controller 

produced a faster and more stable response compared to the MPC controller response. This is due 

to the fact that MMPC evaluates the interaction between every CV and MV whenever there is a 

change of SP in one of the CVs. Meanwhile, the MPC controller does not evaluate the interactions 

between any of the CVs and MVs, which means the result is not very satisfying. The increase in 

controller performance from MPC to MMPC obtained in this study is shown in Table 5. 
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(a) (b) 

  
(c) (d) 

Figure 3 Test result of 5% SP change for: (a) column feed temp.; (b) condenser vessel temp.; (c) 

condenser level; (d) stage total volume  

 

Table 5 Performance comparison between MPC and MMPC with 5% SP change 

Variable 
IAE ISE Improvement Improvement 

MPC MMPC MPC MMPC IAE (%) ISE (%) 

Column feed temp (oC) 200.84 44.20 222.42 21.84 77.99 90.18 

Condenser vessel temp. (oC) 136.68 64.72 148.49 97.18 52.65 34.56 

Condenser liquid level (%) 300.53 175.14 551.37 442.60 41.72 19.73 

Bottom stage total volume (%) 164.10 53.56 35.46 14.71 67.36 58.51 

 

3.2.2. Disturbance test: feed temperature increased by 5% 

The results of the disturbance test show that the MMPC controller produced a better response 

compared to the MPC controller. Figure 4 shows that the MMPC controller responds faster than 

the MPC controller when disturbance is applied to the system. Table 6 shows the decreasing error 

that occurred in the system. When controlled by the MMPC controller, all of the CVs yield a 

smaller error value than when controlled by the MPC controller, thus proving that the MMPC 

controller is better than the MPC controller in every respect. 

Table 6 shows that MMPC (4×4) is better than MPC in both IAE and ISE. With respect to the SP 

change, MMPC (4×4) is able to improve the control performance of MPC by 78% (IAE) and 

90% (ISE). Meanwhile, in the disturbance rejection testing, the improvements in control 

performance were 58% (IAE) and 81% (ISE). 
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(a) (b) 

  
(c) (d) 

Figure 4 Test result against 5% temperature change for (a) column feed temp.; (b) condenser vessel 

temp.; (c) condenser level; (d) stage total volume 

Table 6 Performance comparison between MPC and MMPC with 5% temperature change 

Variable 
IAE ISE Improvement Improvement 

MPC MMPC MPC MMPC IAE (%) ISE (%) 

Column feed temp (oC) 34.06 14.2 2.58 0.49 58.31 81.01 

Condenser vessel temp. (oC) 19.4 16.4 2.06 1.47 15.46 28.64 

Condenser liquid level (%) 53.2 27.4 3.74 1.19 48.50 68.18 

Bottom stage total volume (%) 152.6 117.4 23.27 20.87 23.07 10.31 

 

4. CONCLUSION 

This study shows that each of the CVs and MVs in the DME and methanol separation process 

interact with each other. This is indicated by the lack of a zero value inside the MMPC (4×4). 

This study also shows that MMPC (4×4) is better than MPC with respect to both IAE and ISE. 

In terms of SP change, MMPC (4×4) significantly improves the control performance of MPC, by 

78% (IAE) and 90% (ISE). Whereas in disturbance rejection testing, the improvements in control 

performance were 58% (IAE) and 81% (ISE). Thus, while MMPC not only serves as a more 

effective controller system, it is also more beneficial in terms of the number of controllers used, 

which will affect capital costs. 
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