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ABSTRACT 

The majority of imaging systems are software based; they require some kind of microprocessor 

or microcontroller for the imaging algorithms to run. As the speed requirements of imaging and 

communications systems increase, the need for more hardware-based imaging systems arises. 

These fully hardware systems solve the fundamental problem inherent in software-based 

solutions, in which the speed of the algorithms depend on the instruction cycle speed of the 

processor. Once an algorithm is designed directly on hardware, the speed of the algorithm 

depends on the system clock frequency and the propagation delays of the logic cells (or standard 

cells) used in the design, usually measured in nanoseconds per cell. Therefore, such systems no 

longer depend on any instruction cycle delays, as there is no microprocessor involved. Most 

modern imaging and communications systems rely on digital signal processing (DSP) to compute 

complex mathematical operations. The emergence of powerful and low-cost field-programmable 

gate array (FPGA) devices with hundreds of arithmetic multipliers has enabled the development 

of many such DSP hardware applications, traditionally implemented only as software solutions. 
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1. INTRODUCTION 

Lately, there have been several texts (Li & Chu, 1997; Nelson, 2000; Yasri et al., 2009; Mehra & 

Verma, 2012; Nosrat & Kavian, 2012; Sanduja & Patial, 2012; Singh et al., 2012; Umar et al., 

2012; Bhagat et al., 2015) written on hardware-based Sobel implementations on FPGAs using 

VHDL (Ashenden, 2008) or Verilog. However, nearly all of these advocate the use of calculating 

the gradient magnitude by obtaining the sum of the absolute values of the gradient in both the 

horizontal and vertical directions. Implementing gross approximations of many such nonlinear 

imaging algorithms (Arce et al., 2000; Aubert & Kornprobst, 2006; Bertalmıo et al., 2001; 

Chambolle, 1994; Kokkinos, 2013; Kornprobst et al., 1999; Mitra & Sicuranza, 2001; Xu & 

Mueller, 2010) on hardware has become common practice.Although this approach simplifies the 

hardware implementation by avoiding the more computationally intensive square root 

calculations, the resulting gradient magnitude suffers from having more errors than a gradient 

magnitude calculated using the Pythagorean theorem of square-rooting the sum of squares of the 

gradients in each horizontal and vertical direction. 

Before other algorithms are performed, usually, an image filter is applied. This preprocessing 

filter helps ease the computation of further downstream algorithms, such as those used in optical  
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character recognition systems (Pangestu et al., 2017), or the K-NN algorithms (Naik & Metkewar, 

2015) used in artificial intelligence. Either a spatial filter, such as a Sobel edge detector, or a 

histogram equalizer frequency domain filter may be used as the prefilter, depending on the type 

of further processing required. 

This paper introduces a computationally efficient technique of preserving the precision of the 

gradient magnitude by using an efficient and fast square root algorithm in the computation of the 

gradient magnitude. Although we also introduce a different kernel processing scheme that 

computes kernels in parallel, this paper focuses its discussion on the use of the fast reciprocal 

square root (FRSR) algorithm for hardware-based Sobel edge detection. 

 

2. METHODS 

2.1.  Background Theory 

In an n-dimensional rectangular coordinate system (Kreyszig, 2011), the gradient of a scalar 

function  nxxxf ,,, 21   is the vector field 
  niix ,1|f

 
whose components are the partial 

derivatives of f: 
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where 
iê  represents the orthogonal unit vectors pointing in the coordinate system’s directions. 

Equation 1 is the general equation of the gradient of a scalar function in an n-dimensional 

rectangular coordinate system. 

For a 3D Cartesian coordinate system, as in the case of our physical world, Equation 1 becomes 
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where î , ĵ , and k̂  are the orthogonal unit vectors in the x, y, and z axes, respectively. For 

simplicity, some texts denote the partial derivatives pointing in each of the coordinate system’s 

directions as 
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We can also express this gradient vector in the 3D spherical coordinate system in terms of its 

magnitude r and phases (azimuth   and altitude/elevation  ). Recall that to convert from the 

Cartesian coordinate system  zyx ,,
 
to spherical coordinates   ,,r , the following equations 

can be used: 
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The spherical gradient can therefore be written as 
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The resulting gradient is a vector field, denoted as  zyx ,,f  in Equation 5. The magnitude of 

the gradient is denoted as  zyxf ,,f . The gradient equations are clearly nonlinear because 

the square root, arctangent, and arccosine functions are all nonlinear. 

However, to simplify the scope of this study, we will be working with 2D images. For a 2D 

Cartesian coordinate system, the gradient of a scalar image function  yxf ,  can therefore be 

expressed in polar coordinates, as shown in Equation 7. 
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In our work, we will show that calculating the gradient magnitude as the square root of the sum 

of squares of the gradients in the horizontal and vertical directions, 
22

yx ggf  , gives us a 

more accurate representation of the gradient information within an image, as opposed to making 

gross approximations of the gradient magnitude by omitting the square root computations. We 

will show that implementing a fast, area-efficient, and computationally efficient square root 

algorithm on hardware is not just feasible but also necessary for emerging imaging applications 

that have more stringent demands on image quality. 

In the case of the Sobel operator, the partial derivatives 
xg
 
and 

yg  can been approximated with 

3×3 kernel matrices: 
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In the many cases in which the absolute values of the derivatives are used to calculate the 

magnitude of the gradient vector, the gross approximation is applied as such: 
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where 1z
 
through 

9z  are pixels from a 3×3 section of image data. 

From the basic definition of the derivatives of a 1D function f(n), we know that the first-order 

derivative is the difference between two neighboring points on the same function with respect to 

n: 
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For our purposes, we need only to calculate the magnitude of the gradient for now. To compute 

the magnitude of the gradient numerically, we substitute Equation 10 into Equation 7: 

          22
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Here, we compute the difference in intensity of adjacent pixels both in the x and y directions as 

the first-order partial derivatives. For our case, the intensity difference of adjacent pixels, 

   nfnf 1 , may also use the definition taken from Sobel approximation, as shown in 

Equation 9, i.e.,    321987 22 zzzzzzgx 
 
and    741963 22 zzzzzzg y   

Substituting this into Equation 11, we have 
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There are existing square root algorithm implementations in hardware, but they have not been 

applied to the field of image processing. We have studied two of these implementations—the 

non-restoring square root algorithm (Nanhe et al., 2013) and the FRSR (rsqrt) algorithm Lomont, 

2003; Robertson, 2012; Zafar & Adapa, 2014; Kho et al., 2018). Because of the speed and 

efficiency of the FRSR algorithm, we have decided to use this in the design and implementation 

of the Sobel gradient computations. 

2.2.  Algorithm Modeling 

The reciprocal square root (rsqrt) algorithm approximates the reciprocal of the square root x/1  

of a given number x. Because 
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we can also obtain the square root by multiplying the reciprocal square root result with the given 

input. 

All our equations have been modelled directly using Python. These algorithms were compared 

against Python’s built-in OpenCV libraries. First, Equation 8 was modelled in Python to obtain 

the horizontal and vertical gradients, 
xg  and 

yg  respectively, of the Lenna image. Second, 

Equations 9 and 12 were then modelled to obtain the approximate and actual magnitudes of the 

gradient vector f . 

The results from these Python models are dumped to files that are later compared with the results 

from the hardware simulations. 
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2.3. Hardware Architecture 

2.3.1.  System block diagram 

Figure 1 shows the block diagram of our proposed hardware architecture for our video processing 

platform. For the purpose of having a hardware platform capable of showing video processing 

features, the first phase of our video platform involved efforts to design and build the processing 

and to display the blocks necessary to enable such a demonstration. 

 

 

Figure 1 Block diagram of our proposed video processing hardware platform 

Therefore, for the purpose of this study, we have simplified our architecture to read a fixed 

512×512 pixel Lenna image stored in an FPGA’s internal random access memory (RAM) blocks, 

instead of having a variable video source coming from a camera input. Working with static 

images helps us verify that our algorithms work as intended and also helps us measure the 

performance of our algorithms against that of other techniques. A camera input is planned for the 

next phase of this project and is not within the scope of the present study. 

2.3.2.  Frame buffer, frame reader, and frame writer 

The frame buffer stores all the pixels from a single 512×512 pixel image or a 512×512 pixel 

segment of a larger image that needs to be processed. In our implementation, we have used the 

standard 512×512 pixel Lenna image to be able to have a fixed static image for analysis and 

comparison of our algorithms against other techniques. This frame buffer is implemented as block 

RAM in hardware. Because of the structural constraints of the physical memory within the FPGA, 

the frame reader can only read image data from the frame buffer in 2n-pixel blocks; in our case, 

the memory data width is 16 pixels wide. For simplicity, each pixel is 8 bits in the case of 

monochrome processing. In the future, our design can still be extended for color processing, in 

which each of the three color components will be processed independently and in parallel, in 

effect making our existing design a color channel processor. 

2.3.3. Kernel memory translator, reader, and writer 

Figure 2 shows the kernel chunk processing scheme as implemented by our current hardware 

architecture.  

 

  

Figure 2 Kernel chunk processing scheme Figure 3 Boundary kernel structure 
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The kernel reader reads 3×3 (or odd number-sized) kernels from the kernel memory translator in 

three read requests. Each read request gives us 15 pixels, so we will receive 45 pixels in three 

such requests. This 45-pixel chunk will then be processed by the algorithm processing block in 

3×3 pixel kernels before proceeding to the next 45-pixel chunk. 

Each 45-pixel chunk contains full data for twelve 3×3 pixel kernels, as well as partial data for 

another two 3×3 pixel kernels at the boundary of the next 45-pixel chunk. To ease our processing, 

we have grouped these two boundary kernels, numbered kernels 13 and 14 in Figure 2, as a single 

4×3-pixel boundary kernel. The data structure of our boundary kernel is shown in Figure 3. 

Because we shift by one pixel for every computation, we have a total of 15 full or partial 3×3 

pixel kernels that can be processed from the data given by this 45-pixel chunk. In our current 

design, all the 15 kernels are processed in parallel. 

2.3.4.  Sobel using the fast reciprocal square root algorithm 

Most video and image processing Sobel edge detection algorithms (Nelson, 2000; Yasri et al., 

2009; Mehra & Verma, 2012; Nosrat & Kavian, 2012; Singh et al., 2012; Umar et al., 2012; 

Bhagat et al., 2015) use the sum of the absolute values of the gradient in both the horizontal and 

vertical directions, yx ggf  , in the calculation of the gradient magnitude. However, here, 

we are using the square root algorithm in the gradient magnitude computations. 

Furthermore, in most hardware-based square root computational systems (Li & Chu, 1997; 

Ercegovac et al., 2000; Ercegovac et al., 2005; Wang, 2007; Lachowicz, 2008; Sajid et al., 2010; 

Istoan & Pasca, 2015; Ananthalakshmi & Sudha, 2017), the non-restoring square root algorithm, 

or the sum of the absolute values of the gradients in the horizontal and vertical directions, is used 

to approximate the magnitude of the gradient vector. However, in this work, we are using the 

FRSR algorithm (Lomont, 2003; Robertson, 2012; Zafar & Adapa, 2014; Kho et al., 2018) to 

compute the square root in hardware. 

 

3. RESULTS AND DISCUSSION 

3.1.  Model Verification 
While working on our algorithm, we found it necessary to compare the results of our technique 

with those of other algorithms. However, we noticed that we could not assume there is an 

algorithm that gives better results compared with our algorithm. The goal of verifying our model 

against other algorithms is to determine how much sharper or blurrier our algorithm is against 

other algorithms. Because of a lack of a golden reference image that is universally accepted as 

the sharpest version of the standard Lenna image, we decided that we needed to perform image 

quality measurements without having a reference image. There are several texts (Kanjar & 

Masilamani, 2013a; Kanjar & Masilamani, 2013b; Kanjar & Masilamani, 2017) that discuss 

techniques to perform sharpness measurements, and these kinds of measurements remain an 

actively researched topic today. 

In the case of comparing between two Sobel edge detection algorithms, the gradient magnitude 

masks of the resulting images from both algorithms are measured. Because Sobel algorithms are 

not prone to noise and false positives, the number of edge pixels detected by an algorithm 

determines the sharpness of the edges. False positives and the mistakes caused by the algorithm 

in the detection of edges are uncommon for Sobel algorithms. However, if an edge is represented 

by more pixels, the thickness of the edge increases, and the edge appears blurrier than another 

edge whose thickness is small. One can safely assume, having the gradient magnitudes of two 

competing output images from two different Sobel algorithms, that the output image with thinner 

edges is sharper than that whose edges are thicker. 
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In this study, for the sake of simplicity, we propose a fairly simple technique to measure the 

sharpness quality of our algorithm against another algorithm. To have a fairly good assessment 

of how our algorithm performs, we calculate the relative difference in the number of edge pixels 

from our output image against that from the output image of another competing algorithm. From 

the Sobel gradient output of one algorithm, the sum of the number of edge pixels, hereinafter 

referred to as the sum of edges, is measured and compared against the sum of edges of a 

competing Sobel algorithm. If the sum of edges from one algorithm is smaller than that from a 

competing algorithm, it is implied that the edges from the former algorithm are thinner than those 

from the latter. There are, of course, more complicated methods to measure the thickness of edges 

within a Sobel gradient mask; however, the sum of edge pixels method is a fairly inexpensive 

technique to estimate the performance between two edge detection algorithms. 

To determine whether a pixel is an edge pixel or not, we apply a threshold to the gradient mask. 

In this study, we used a threshold value of 10, which means pixels having values between 0 and 

10 are considered edge pixels, assuming that the gradient mask plots edges using brighter values 

on a dark background. From our measurements, we found that our algorithm is 0.438% sharper 

than the OpenCV implementation and 6.508% sharper than an algorithm that uses absolute values 

rather than computes the square root. 

3.2.  Functional Simulations and Hardware Synthesis 
We have implemented this design on a Xilinx Zynq (ZC7010) FPGA device and used Xilinx’s 

ChipScope integrated logic analyzer to acquire real-time waveforms from our development 

hardware. Figure 4 shows a partial view of the functional simulation results in ModelSim. 

 

 

Figure 4 ModelSim simulation results 

3.3.  Place-and-Route (PAR), and Design Assembly 
We have performed manual placement-and-routing for some speed-critical blocks, especially 

those that need to be connected to the Transition-Minimized Differential Signaling (TMDS) I/O 

pins for High-Definition Multimedia Interface (HDMI) transmission to an external display. This 

is shown in Figure 8. 

Xilinx’s tools show that our Sobel gradient algorithm was physically implemented with only 

2,577 look-up tables (LUTs). This includes the FRSR algorithm as a part of the gradient 

calculations, as well as the kernel buffering and processing algorithms. As we are processing 15 

kernels in parallel, our implementation may utilize more resources than other implementations. 

However, more processing is completed within a shorter amount of time. Furthermore, in our 

implementation, we have included other blocks, such as the frame buffer, frame reader, and frame 

writer, which are not included in other implementations. Table 1 shows our implementation 

results compared with the existing literature. 

3.4.  Discussion 
Our Sobel gradient algorithm was verified by writing the equations directly in Python and 

verifying the algorithm against a built-in Python library OpenCV. The FRSR algorithm was not 
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modelled, as the hardware functional simulations and verification processes already verify the 

correctness of this algorithm against the square root function. 

 

Table 1 Xilinx post-PAR utilization report of the Sobel algorithm with fast 

reciprocal square root 

Resource Proposed Sanduja Mehra 

Total LUTs 2577 3901 353 

Total LUTRAM 535 N/A N/A 

Total flip-flops  3084 836 482 

Total BRAM 15 N/A N/A 

DSP 10 N/A N/A 

 

All hardware blocks have been written in VHDL hardware language. The design was functionally 

simulated in Mentor Graphics ModelSim, and the data from our simulations were compared 

against those from the Python models. Our simulation test bench dumps files in the same format 

as the Python scripts to ease our correlation and debug work, as shown in Figure 5. 

  
(a) x-direction gradient 

xg  of the Python model (b) x-direction gradient 
xg  of the hardware RTL 

design 

  
(c) y-direction gradient 

yg  of the Python model (d) y-direction gradient 
yg  of the hardware RTL 

design 

Figure 5 Comparison of the x- and y-direction gradients of the hardware RTL design against the 

OpenCV Python model 

After gaining enough confidence from our simulations, we synthesized our design to FPGA 

hardware using Xilinx Vivado. The final implementation was downloaded into the Xilinx Zynq 

7C7010 device, and the hardware results were measured and verified. We used Xilinx ChipScope 

to acquire and display the data in real time. 
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(a) Original Lenna image. (b) OpenCV Sobel implementation. (c) Our Sobel implementation 

modeled and implemented on 

hardware 

Figure 6 Comparison of the gradient processing of the standard Lenna image between our 

implementation and OpenCV 

3.5.  Future Work 
Future work may explore the gradient computations of images that contain depth information, 

such as those from a time-of-flight camera or a 3D image, which will be making use of Equation 

5. We could also explore various video input mechanisms, such as those from a camera sensor, 

VGA or HDMI cable input, or wireless transfer. 

Future work may also discuss our kernel processing algorithms in more detail, as well as perform 

performance analysis and comparisons against other solutions. 

 

4. CONCLUSION 

The Sobel algorithm, used frequently in many edge detection algorithms, has been shown to be 

feasibly implemented on digital hardware. However, the gradient magnitude of these 

implementations used the summation of the absolute values of the 
xg  and 

xg  gradients as its 

estimate yx ggf  , whereas in our implementation, we used the actual square root 

operator to compute the gradient magnitude. Using the FRSR algorithm gives a more accurate 

estimate of the gradient magnitude as computed from the square root of the square of the gradients 

in both the horizontal and vertical directions 
22

yx ggf  , compared with using the 

summation of the absolute values of the gradients. 
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