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ABSTRACT 

One major challenge in delivering and accessing cloud applications is the management of Quality 

of Services (QoS). It is mandatory for cloud service providers to ensure their performance and 

fulfil QoS, as defined in the Service Level Agreement (SLA). In this paper, we propose a Scaling 

and Fault Tolerance (SFT) algorithm to deploy preventive or remedial measures based on 16 

decision rules for QoS violation detection and prediction. We simulate the SFT algorithm in a 

cloud simulator with four scenarios to measure its effectiveness in handling events such as faulty 

virtual machines (VMs), or over and under-provisioning of resources. Our experimental results 

show that the proposed SFT algorithm performs effectively (close to a 90%100% effective rate) 

in providing preventive or remedial measures and reducing the number of VMs when they are 

not needed. 

 

Keywords:  Cloud computing; Fault tolerance; Quality of service violation; Replication; 

Scalability 

 

1. INTRODUCTION  

According to the National Institute of Standards and Technology (NIST) (Mell & Grance, 2011), 

cloud computing has emerged as one compelling paradigm for providing convenient and on-

demand network access to a shared pool of configurable computing resources that can be rapidly 

provisioned and released with minimal management effort or service provider interaction. This 

has made possible the hosting of cloud services provided by cloud service providers, such as 

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). 

An increasing number of organizations are adapting to cloud computing platforms for their daily 

business functions. These organizations are showing determination in embracing Industry 4.0, as 

cloud computing helps to pool and centralize information for making better business decision. 

The focus of this paper is therefore on the Quality of Service (QoS) pertaining to SaaS.  

Cloud service providers are mandated to enforce service performance and the quality of their 

services, as defined in the Service Level Agreement (SLA).  From their perspective, maintaining 

the conditions defined in the SLA and maximizing the QoS metrics are important tasks. We define 

QoS metrics as CPU load, response time and throughput, as elements of the performance aspect, 

for evaluating cloud services (Bardsiri & Hashemi, 2014). 

Cloud monitoring tools measure and collect cloud QoS data, and this information is used for 

making decisions on scaling cloud resources horizontally, and also for providing fault tolerance 
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if necessary. Therefore, using QoS metrics for modelling the performance of cloud services 

could enable better decision making with regard to preventing or rectifying any cloud QoS 

violation by correlating the decision rules with the QoS metrics, such as response time and 

throughput. A detailed description of the formulation of these decision rules can be found in the 

study by Wong et al. (2018).  

The work by Wong et al. (2019) has proven the feasibility of using horizontal scaling as a 

preventive measure and fault tolerance mechanism of replication, as rectification for QoS 

violations. In this paper, we propose a scaling and fault tolerance (SFT) algorithm and evaluate 

its effectiveness based on CloudSim Plus (Filho et al., 2017), a toolkit with libraries for the 

simulation of cloud computing scenarios. A total of four scenarios were used in the simulation 

to evaluate the effectiveness of the proposed SFT algorithm. One scenario provided a preventive 

measure for probable cloud QoS violation; another  a remedial measure for certain cloud QoS 

violation; while the other two monitored consideration of over- or under- provisioning of virtual 

machines (VMs). One example for monitoring the provisioning of VM is by reducing the 

number of idle VM based on real-world QoS measurement of cloud services, as discussed by 

Zheng et al. (2014).  

Our experimental results show that the proposed SFT algorithm performs effectively (close to a 

90%100% effective rate) in providing preventive or remedial measures and reducing the 

number of VMs when they are not needed, consequently guaranteeing QoS performance, as 

defined in the cloud services SLA. Additionally, the 16 decision rules determine QoS violation 

at four levels, namely no violation, normal, probable violation and certain violation; unlike many 

other works, that only define violations as normal or violation, the four levels are able to detect 

and predict whether a violation will occur or not before it actually happens. The SFT algorithm 

takes appropriate action to prevent the occurrence of actual violation, or rectifies it if violation 

has occurred. Together with the 16 decision rules, it thus contributes towards another aspect of 

detection, prediction, prevention and rectification measures with regard to response time and 

throughput for cloud QoS violations.  

Unlike the work of Aruna and Aramudhan (2016), which includes cost in its proposed method 

of using fuzzy sets to shortlist providers based on the QoS agreed in the SLA, the SFT algorithm 

does not include the cost factor in resolving QoS violations. This will be left for future work.  

Scalability is defined as the handling of increasing workloads by allocating more resources to 

the system (Lehrig et al., 2015). There are two general scalability approaches, namely horizontal 

and vertical scaling. Horizontal scaling involves adding or removing VMs to spread the load 

across multiple distributed VMs, while vertical scaling involves increasing and decreasing the 

power of an existing VM by means of more memory (RAM), storage (HDD/SSD), or processors 

(CPUs). In this paper, the focus is on application scalability, which is defined as the maintenance 

of cloud services application performance goals by avoiding QoS violation events when the 

workload submitted by users increases (Kuperberg et al., 2011).  

Fault tolerance, as defined by Ganesh et al. (2014), is the ability of the cloud environment to 

handle unanticipated changes, such as hardware failure, software defects or network congestion. 

Two standard policies, namely proactive and reactive fault tolerance, can be used for real-time 

cloud applications. Proactive fault tolerance can predict faults, errors and failures, and once a 

suspicious component has been detected, it will be replaced proactively. Proactive fault tolerance 

techniques include pre-emptive migration, software rejuvenation and self-healing.  

Reactive fault tolerance reduces the effect of failure on applications being executed when the 

failure effectively occurs. Examples of reactive fault tolerance techniques are check pointing or 

restart, replication, job migration and task resubmission. In this paper, the focus is on 



Wong et al. 1397 

implementing a reactive fault-tolerance policy on computation failure, which involves hardware 

or infrastructure failure. 

 

2. METHODOLOGY 

This section presents an overview of our system incorporated with the proposed SFT algorithm. 

Based on the work of Wong et al. (2018), 16 decision rules were derived for the detection and 

prediction of cloud QoS violations. In the study by Wong et al. (2019), adaptive mechanisms, 

such as horizontal scaling and fault tolerance mechanisms, were proven to be feasible in 

preventing and rectifying such violations. In this paper, we propose a scaling and fault tolerance 

(SFT) algorithm which adopts the adaptive mechanisms to provide preventive and remedial 

measures for handling cloud QoS violations, as well as for monitoring over- or under-

provisioning of resources in the cloud environment; please refer to Figure 1 for an overview of 

the system. The system architecture design includes a cloud broker, a number of servers hosting 

several running virtual machines (VMs) in a data centre, with other functions such as cloud 

monitoring, cloud QoS detection and prediction, and cloud QoS violation adaptive mechanisms 

with the proposed SFT algorithm.  

A service level agreement (SLA) is established between the cloud service provider and cloud 

consumer to guarantee cloud service performance and availability. QoS metrics are used to 

measure the hosted cloud services in the data centre, with consideration of performance and 

availability to ensure that QoS requirements are met and to prevent cloud QoS violation 

occurrences. Such violation might occur due to events such as under-provisioning and 

computation failure, such as faulty VMs, which could disrupt the daily operations of enterprises 

or organizations using business or productivity software on the cloud. 

 

Figure 1 Overview of the proposed system architecture 

Basically, a cloud broker is responsible for managing the use, performance and delivery of cloud 

services, as well as negotiating the relationships between cloud providers and cloud consumers 

(Mell & Grance, 2011). The datacenter is the infrastructure to host several servers deployed for 

running applications and processing workload submitted. 

2.1.  Cloud QoS Monitoring 
With reference to Figure 1 (Steps 1-3), a workload request is submitted and received by the 

cloud broker for processing. Subsequently, this request is allocated to a running VM by the 

scheduler. The VM, hosted in a server located in the datacenter, processes the workload and 

upon completion returns a response. The cloud QoS monitoring function is responsible for 

measuring and collecting QoS metrics, such as response time and throughput. 
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2.2. Cloud QoS Violation Detection and Prediction 

The cloud QoS detection and prediction (Figure 1, Step 4) function introduced by Wong et al. 

(2018) derives 16 decision rules to determine QoS violation conditions based on response time 

and throughput. The raw metrics of these, being in a quantitative range of values, are then 

categorized into linguistic terms. Based on the fact that the relationship between response time 

and throughput is in inverse order, the 16 decision rules, which are categorized into four main 

decision outputs of certainly no violation, normal, probable violation and certain violation, as 

shown in Table 1, are thus derived. The categorization of response time and throughput in 

linguistic terms, with the classification and derivation of the 16 decision rules, has been proven 

to be effective through a support vector machine classification multiplier.   

Table 1 The 16 decision rules 

Rule# 

Response 

Time 

(seconds) -  

linguistic 

category 

Response Time 

(seconds) -  

range of values 

Throughput  

(kbps) - 

linguistic category 

Throughput  

(kbps) - 

range of values 

Decision Rules 

1 Short 0.112–0.339 High > 0.881 Certainly No 

Violation 

2 Short 0.112–0.339 Normal 0.377–0.880 Normal 

3 Normal 0.340–3.479 High > 0.881 Normal 

4 Normal 0.340–3.479 Normal 0.377–0.880 Normal 

5 Short 0.112–0.339 Low 0.124–0.376 Probable violation 

6 Normal 0.340–3.479 Low 0.124–0.376 Probable violation 

7 Long 3.480–4.340 High > 0.881 Probable violation 

8 Long 3.480–4.340 Normal 0.377–0.880 Probable violation 

9 Long 3.480–4.340 Low 0.124–0.376 Probable violation 

10 Short 0.112– 0.339 Very Low 0–0.123 Certain violation 

11 Normal 0.340–3.479 Very Low 0–0.123 Certain violation 

12 Long 3.480–4.340 Very Low 0–0.123 Certain violation 

13 Very Long > 4.341 High > 0.881 Certain violation 

14 Very Long > 4.341 Normal 0.377–0.880 Certain violation 

15 Very Long > 4.341 Low 0.124–0.376 Certain violation 

16 Very Long > 4.341 Very Low 0–0.123 Certain violation 

 

For example, in Table 1, Row 2 for rule #1, the response time is in the short time region, with a 

range of values of 0.1120.339 s, while throughput is in the high value zone, with a range of 

values greater than 0.881 kbps. This decision rule determines that the QoS is in the ‘certainly no 

violation’ condition. 

Based on these four main decision output categories, the main concern would be when QoS is 

in a probable (Table 1, Rows 5-9) or certain (Table 1, Rows 10-16) violation state.  This means 

that when QoS is in a probable violation state, preventive measures should be deployed to 

prevent further quality downgrade to the certain violation state, instead bringing the situation 

back to the normal state. Likewise, when QoS is in a certain violation state, remedial action 
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should be taken immediately to rectify the situation and bring QoS back, if not to normal, but to 

at least a probable violation state. 

2.3.  Cloud QoS Violation Adaptive Mechanism 
Based on the 16 decision rules, we therefore propose a Scaling and Fault Tolerance (SFT) 

algorithm implemented with adaptive mechanisms to provide preventive and remedial measures 

for the two QoS areas of most concern, probable and certain violation conditions (Figure 1, Steps 

5-6).  

The SFT algorithm in pseudo code form is shown in Figure 2. It first takes the four decision 

outcomes of certain violation, probable violation, normal and certainly no violation as input for 

determining QoS violation conditions at 15 second intervals throughout the duration of the 

running of the cloud service. The algorithm then provides preventive measures, remedial action 

or decision scales based on the QoS decision outcome. For example, for a real-life SaaS, if the 

workload submitted is being processed over a long time span due to under-provisioning, the SFT 

algorithm will deploy a preventive measure of horizontal scaling to scale out the number of VMs 

to balance the workload, hence guaranteeing the SaaS QoS. Additionally, the algorithm could 

be applied to homogenous VMs without any modification required; refer to the flowchart in 

Figure 3 (reading from top to bottom, left to right), for the flow of the SFT algorithm. 

 

 

Figure 2 Pseudo procedure of the SFT Algorithm   

As seen in Figure 3, after the SFT has determined the decision outcome to be certain violation 

(CV), it then checks for CPU utilization. When this is fully utilized (CPUUtilization = 1), the 

preventive measure of horizontal scaling is deployed by adding two new VMs to the hosting 

server, which is to cater for under-provisioning events caused by workload fluctuation due to a 

larger processing request. However, when CPU utilization is not fully utilized (CPUUtilization 

< 1), this might indicate an event such as a faulty VM, so the remedial action of replication or 

task retry is deployed. Additionally, any workload that has been scheduled to run on a faulty 

VM will be evicted and the faulty VM will be destroyed. Subsequently, a new replicate VM 

which has the same configuration and image of the faulty VM will be provisioned, started and 

added to the hosting server. Workload that has been scheduled to be processed with the faulty 

VM will be resubmitted to the replicate VM. Either the remedial or preventive measure process 

will end if there is no further workload running on the VM; otherwise, it will route back to the 

start. 
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Figure 3 Flowchart for the SFT algorithm   

In the event that the decision outcome is probable violation (PV), the preventive measure of 

horizontal scaling by provisioning a new VM to the hosting server is deployed. This is to cater 

for under-provisioning caused by the large workload being submitted. Similarly, the process will 

end if there is no further workload running on VM; otherwise, it will also route back to start. 

In the case that the decision outcome is certainly no violation (CNV), the system will check the 

VM status. If a VM is found to be idle for more than 30 seconds, only then will it be destroyed, 

otherwise nothing is done. The 30 second waiting interval is to ensure that the VM remains idle 

in the CNV condition with no new workload submission to provide for continuous availability 

of the cloud services. The process will route back to the start if there is still workload running 

on the VM.   

 

3. EXPERIMENTAL SETUP  

In order to evaluate the effectiveness of the proposed SFT algorithm, CloudSim Plus (Filho et 

al., 2017) was used to simulate workloads resembling real-world QoS cloud measurement, as 

seen in Table 2, which shows a description of the workload based on decision rule distribution. 

Referring to Table 2, Columns 2-3 represent the configuration for generating workload which 

resembles the workload pattern of running web services. Workload request is defined as the 

number of million instructions per second (MIPS) needed by the VMs for execution of the 

workloads.  Workload size is the size of the workload to be processed. Columns 4-5 show the 

response time and throughput values computed based on their workload characteristics on one 

VM. Column 6 represents the frequency distribution of workload characterized by the decision 

rule stated in Column 7. The last column, Column 8, represents the percentage of each category 

of decision output; for example, 14%, 71%, 9% and 6% are the percentage distribution for 

certainly no violation, normal, probable violation and certain violation respectively. These 

distributions closely resemble real-world QoS measurement of cloud services (Zheng et al., 

2014).  
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To illustrate this further, for example in Table 2, Row 2, the workload request of 22000MIPS 

accounts for 58% of the workload frequency distribution for the decision rule of certainly no 

violation. The decision outcome of certainly no violation contributes 14% of total distributions 

to the real-world QoS measurement of cloud services. A point to note is that not all workloads 

based on the 16 decision rules could be simulated. For example, short response time and very 

low throughput (Table 1, Rule#10) do not resemble a real-world QoS measurement of any cloud 

service. 

Table 2 Workload generation based on QoS decision rules 

No 
Workload 

Request 

(MIPS) 

Workload 

Size 
(kb) 

Response 

Time (s) 
Throughput 

(kbps) 

Workload 
frequency 

distribution 
(%)   

Decision 

rules 

Decision rules 
frequency 

distribution (%)  

1 22000 0.3 0.327 0.916 58 

Certainly No 

Violation  
14 

2 21600 0.3 0.322 0.932 20 

3 20700 0.3 0.308 0.973 8 

4 18000 0.3 0.268 1.119 22 

5 24600 0.3 0.366 0.819 43 

Normal  71 

6 31500 0.3 0.469 0.639 27 

7 37000 0.3 0.551 0.544 15 

8 44500 0.3 0.663 0.453 11 

9 50500 0.3 0.752 0.399 4 

10 59900 0.3 0.892 0.336 44 

Probable 

Violation 
9 

11 85600 0.3 1.275 0.235 18 

12 105000 0.3 1.563 0.192 14 

13 128000 0.3 1.906 0.157 14 

14 149000 0.3 2.219 0.135 10 

15 240000 0.3 3.574 0.084 52 

Certain 

Violation 
6 

16 460000 0.3 6.849 0.044 32 

17 640000 0.3 9.530 0.032 14 

18 911000 0.3 13.565 0.022 2 

3.1.  Experimental Setup 

All the simulations were created using CloudSim Plus (Filho et al., 2017), a cloud toolkit for 

generating cloud computing infrastructures and application services, with the sub datasets 

derived from the WS-DREAM dataset, which consists of real-world QoS evaluation results from 

142 users on 4,500 web services over 64 different time slices (Zheng et al., 2014). Under this 

simulated environment, virtual machines (VMs) resembling cloud resources were made 

available by the real cloud provider; for example, t2.medium of Amazon EC2 instances (AWS, 

2018) was selected for use. This dual-core Intel Xeon 2.49 GHz CPU can execute 63000 million 

instructions per second (MIPS), with 4096 MB memory and 100Mbps network bandwidth. The 

number of VMs used was set at one at the start of the simulation as a baseline, and this number 

was kept constant for all the experiments unless it was being scaled out by decisions made by 

the SFT algorithm.  The baseline for response time and throughput follows the normal 

transaction workload, as shown in Table 2 (Items 5-9). To simulate the provisioning of both 

VMs and workloads, time-shared policy (Calheiros et al., 2010) was implemented. In this policy, 

the processing power (CPU Cores) is concurrently shared by the VMs across the same time 

frame. For our experiments, each CPU Core was shared by two VMs, each taking up the 

respective equally divided workload simultaneously. To simulate a faulty VM, CloudSim Plus 

was used to provide a fault injection class to inject a faulty VM during the simulation runtime. 

3.2.  The Four Scenarios for Simulation 
The experiments conducted were based on four scenarios. The SFT algorithm was executed 

before and after the simulation of each scenario in order to gather relevant results for comparison 
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and evaluation; please refer to Figures 4a4d for the timeline of simulation and submission of 

workloads. 

The first scenario involved submission of a workload (Table 2, Rows 15-18) to the system every 

15 seconds for 10 occurrences, as shown in Figure 4a. In this scenario, a preventive measure 

was deployed to handle the workload causing certain QoS violation without any faulty VM 

event.  This experiment was repeated 30 times, with a total of 270 (10 occurrences excluding 

the first x 30) random workload submissions, creating a certain QoS violation state in order to 

test the SFT. 

 

 

Figure 4 Simulation and workload submission timeline  

The second scenario comprised submission of a workload (Table 2, Rows 5-9) to the system 

every 15 seconds for three occurrences, as shown in Figure 4b. The injection of a faulty VM was 

deployed at the 20th second of the simulation run time to cause a certain QoS violation condition. 

In this scenario, VM failure was injected to simulate an event causing a certain QoS violation 

condition in order to test the capability of the SFT in deploying remedial action to handle the 

faulty VM. This experiment was repeated 30 times, with random submission of workloads. 

In the third scenario, a workload (Table 2, Rows 10-14) was submitted to the system every 15 

seconds for 10 occurrences, as shown in Figure 4c. This was to simulate workloads for probable 

violation events and to test the SFT algorithm in handling preventive measures. The experiment 

was repeated 30 times, with random submission of workloads. 

The fourth scenario involved submission of a workload (Table 2, Rows 1-4) to the system every 

15 seconds for two occurrences, as shown in Figure 4d.  The aim of this scenario was to simulate 

workloads in order to investigate the capability of the SFT algorithm in handling over-

provisioning cases when the system detects a QoS certainly no violation condition. This 

experiment was repeated 30 times, with random submission of workloads. 

3.3.  Performance Evaluation of SFT Algorithm 
The performance of the SFT algorithm was evaluated separately for each scenario using 

performance metrics such as average response time, average throughput, number of VMs applied 

and effective rate. Average response time represents the mean response time value collected for 
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each point of time from all the repeated experiments. Average throughput represents the mean 

throughput value, also collected for each point of time from all repeated experiments.  The 

number of VMs applied indicates the total number of VMs running in the host server. The 

effectiveness of the algorithm will vary according to the scenario being evaluated. Finally, the 

effective rate of the algorithm is determined by how successful it is in preventing probable QoS 

violation or rectifying cases of certain violation. The effective rate can also mean how successful 

the algorithm is in removing idle VMs when no workload has been submitted for 30 seconds 

when in a certainly no violation condition. 

For deploying preventive measures, the SFT adds two more VMs (scales out) to the hosting 

server when handling certain violation events without a faulty VM. Conversely, for remedial 

measures, it applies fault tolerance techniques such as replication when handling certain 

violation events with a faulty VM. The preventive measure of scaling out (adding one additional 

VM) to the hosting server is deployed by SFT for probable violation events. This is to achieve 

the goal of maintaining cloud QoS requirements. Removing an idle VM is executed through SFT 

when a certainly no violation event is detected and there is no submission of workload for more 

than 30 seconds. As a result, all possible decision outcomes of probable violation, certain 

violation and certainly no violation scenarios are fully covered for performance evaluation.  

  

4. RESULTS AND DISCUSSION 

This section presents the experimental results based on the simulation of the four scenarios.  For 

the results of the first scenario, please refer to Figures 5a, 5b and 5c, which show average 

response time, average throughput and number of VMs applied with CPU utilization 

respectively before and after implementation of the SFT algorithm from all the 30 repeated 

experiments conducted. As can be seen from Figure 5, the algorithm detected the occurrence of 

certain violation at time 15 s and started to deploy a preventive measure by adding two more 

VMs to the hosting server. By balancing the workload with newly added VMs, this therefore 

prevented any certain violation cases from occurring in subsequent time frames. However, it 

was observed that on 13 occasions (3 when the workload request was at 640000MIPS and 10 

when at 911000MIPS), the SFT was not able to deploy preventive measures to bring the QoS 

state back to probable violation or normal. Therefore, in general, SFT was effective 95% of the 

time with regard to preventive measures in the first scenario. This result is still satisfactory, as 

these two workload requests seldom occur. 

 

Figure 5 Experimental results for first scenario 

The experimental results of the second scenario can be seen in Figures 6a, 6b and 6c, which 

display the average response time, average throughput and number of VMs applied with CPU 

utilization respectively before and after implementation of the SFT algorithm in all the repeated 

experiments conducted. As shown in Figure 6, remedial action was taken to replicate the faulty 

VM when SFT detected a certain violation occurrence at the 20th second point. Re-submission 

of the workload attached to the faulty VM was made at the 31st second by SFT when average 
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response time (Figure 6a), throughput (Figure 6b) and full CPU utilization (Figure 6c) resumed 

operation. Based on the observations, SFT was able to perform replication for all the faulty VMs, 

thus achieving a 100% effective rate for remedial action in the case of certain violation events. 

 

 

Figure 6 Experimental results for second scenario 

The experimental results of the third scenario are shown in Figures 7a and 7b, which display the 

average response time and average throughput before and after implementation of the SFT 

algorithm from all the repeated experiments conducted. As can be seen from Figure 7, the 

algorithm detected the occurrence of probable violation at the 15th second and then deployed a 

preventive measure by adding an additional VM to the hosting server.  Therefore, balancing the 

workload after the addition of a new VM prevented a further system downgrade to the certain 

violation condition. However, based on the observations made from all the repeated 

experiments, it was discovered that the SFT algorithm was not able to deploy preventive 

measures on 30 occasions when the workload request was at 128000MIPS (15 times) and 

149000MIPS (15 times). Therefore, it is considered to be effective close to 90% of the time in 

relation to preventive measures in the third scenario. This result remains satisfactory, as these 

two workload requests only contribute to around 2% of probable violation events out of the total 

of 100%, including other normal, certainly no violation and certain violation events. 

 

 

Figure 7 Experimental results for third scenario 

For the experimental results of the fourth scenario, please refer to Figure 8, which displays the 

number of VMs applied before and after implementation of the SFT algorithm in all the repeated 

experiment conducted. As can be seen from the figure, the SFT algorithm waited for 30 seconds 

(at the 60th second), only then removing the VM which was in an idle state accordingly. From 

the observations made for all the repeated experiments, SFT was effective 100% of the time in 

the fourth scenario. 
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A point to note is that most of the data centres consist of configurable computing resources, both 

physical and virtual, which are connected and accessible through broad networks. This allows 

cloud service providers to pool multiple computing resources together from data centres in 

different locations to serve multiple consumers using a multi-tenant model, and to scale 

computing resources according to cloud consumer demand (Mell & Grance, 2011). Hence, to 

dynamically adjust scaling in or out, the resources should not represent an issue.  

However, in our future research, the SFT algorithm should include a feature to intelligently 

identify heavy or light workloads processed by each cloud application. In this way, heavy 

workloads could be dynamically allocated to more, or just the right number of, VMs for 

processing the workload without encountering QoS violation when the cloud platform is already 

fully occupied by the running of other cloud applications. Likewise, the lighter workloads of 

other applications could be allocated to fewer, or just the minimum number of, VMs for 

processing the workload without encountering any QoS violations. 

 

 

Figure 8 Experimental results for fourth scenario 

 

5. CONCLUSION 

In this paper, we have presented the design and implementation of a system that can perform 

VM-scaling, replication and task retry. We developed a scaling and fault tolerance (SFT) 

algorithm to deploy preventive measures or take remedial action based on QoS decision 

outcomes with regard to response time and throughput. Experiments based on four scenarios to 

measure the effectiveness of the algorithm in handling events such as faulty VMs and over- and 

under-provisioning were conducted. Our experimental results show that the algorithm was 

effective 90% to 100% of the time when handling probable violation events using a scaling 

technique as the preventive measure; when taking remedial action using replication and task re-

submission as fault tolerance techniques; and in resolving over-provisioning. The SFT 

algorithm, together with the 16 decision rules, thus contributes to an additional aspect of 

detection, prediction, prevention and rectification measures of response time and throughput for 

cloud QoS violations.  
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