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ABSTRACT 

In general, the multiple-input-multiple-output (MIMO) system is the main method of process 

control in industry. However, the interaction between variables in the process is a challenge 

when designing controllers for the system. Strong interaction worsens system performance. 

Inverted decoupling plays an important role in reducing interaction in the process. Internal 

model control (IMC) is the controller used in this research. A one degree of freedom (1DoF) 

IMC controller is only able to provide a good response to set-point tracking, and has a slow 

response to disturbance rejection. Therefore, a controller that has a good response to set-point 

tracking and disturbance rejection is a two degrees of freedom (2DoF) IMC. The tuning method 

uses maximum peak gain margin (Mp-GM) stability criteria based on the uncertainty model. In 

this study, a reduction in interaction was realized by the addition of inverted decoupling to the 

2DoF IMC control scheme. The Wardle & Wood and Wood & Berry column distillation 

models are given as illustrative examples to demonstrate the performance of the inverted 

decoupling 2DoF IMC control scheme. A comparison is made of the IAE values of 1DoF IMC, 

2DoF IMC, decoupling 2DoF IMC, and inverted decoupling 2DoF IMC, with inverted 

decoupling 2DoF IMC showing the lowest IAE value. 
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1. INTRODUCTION 

Time delay and coupling are problems that widely occur in industry, especially in the MIMO 

process (Jin et al., 2016). Coupling is the interaction between process variables and causes 

difficulties in designing MIMO controllers. One approach to overcoming coupling is by adding 

additional controllers called decouplers (Seborg et al., 2011). This method is very easy to 

implement and understand. There are different types of decoupling, such as ideal, simplified, 

and inverted decoupling, which are often used for industrial process control (Garrido et al., 

2014; Li & Chen, 2014). Ideal decoupling is very easy to use in the design of controllers, but it 

is rarely employed because it has complicated decoupling elements. Simplified decoupling has 

a simple decoupler, but the decoupling process is complicated, while inverted decoupling can 

overcome the weakness of simplified decoupling and achieve the ideal decoupling goals (Chen 

& Zhang, 2007). 
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Wahid and Ahmad (2016) improved multi-model predictive control, which is used to control 

the distillation column. This method can reject very large disturbances. The PID controller has 

been discussed in the literature (Mohebbi & Hashemi, 2016; Mohebbi & Hashemi, 2017).  

However, this has a weakness, which is the presence of new disturbance known after measuring 

output. Haura et al. (2017) simulated a refinery used oil distillation column using a 1DoF IMC 

controller, achieving a very good response for set-point change (servo problem). Unfortunately, 

set-point tracking and load-disturbance rejection in the 1DoF IMC controller scheme cannot be 

regulated or optimized separately. When the parameters are used for set-point tracking, a slow 

response to load-disturbance rejection is obtained, and vice versa. This means that it is very 

difficult to achieve stable and robust control simultaneously between set-point tracking and 

load-disturbance rejection. Sutikno et al. (2013) developed a 2DoF IMC with the Mp-GM 

(Maximum peak – Gain Margin) tuning method to obtain IMC control parameters. 2DoF IMC 

can overcome set-point tracking and load-disturbance rejection separately, without affecting 

each other. The method was used in the process of containing parametric uncertainty and 

obtained a very good response. However, the method is still limited to the SISO (Single Input 

Single Output) system, while processes in industry consist of many variables that interact with 

each other, so further research into Mp-GM tuning in the MIMO system is needed. Astuti et al. 

(2015) proposed Mp tuning for the MIMO system that was implemented on the Wood & Berry 

distillation column. The response showed good results for set-point tracking, but gave 

unsatisfactory results when there was a disturbance in the system. Sutikno et al. (2017) 

proposed a MIMO system able to represent an industrial process called the quadruple tank 

system. However, interactions between process variables in this system are strong, and an IMC 

controller with Mp-GM tuning is not fully able to overcome these. This means the MIMO 

system requires an additional controller to reduce interaction. The purpose of this study is to 

add additional controllers called inverted decoupling to the 2DoF IMC scheme, with the design 

objective to reduce interaction significantly. The system used is MIMO 2×2, which has two 

inputs and two outputs that interact with each other. The tuning method used in this study is 

Mp-GM tuning.  

 

2.  METHODS 

2.1.  Two Degrees of Freedom (2DoF) IMC 
A two degrees of freedom controller is a control strategy by which it is possible to design 

controllers for set-point tracking and disturbance rejection separately (Goodwin et al., 2002). 

Research on 2DoF controllers has been conducted by Astuti et al. (2015) and Hidayah et al. 

(2014). A Gc1 controller (setpoint tracking) has an open loop design, while a Gc2 (disturbance 

rejection) controller has a feedback design.  

The following are algorithms for Gc1 and Gc2 controllers (Sutikno et al., 2013): 
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where k is the process gain, τ is the time constant, λ1 and λ2 are filter controller parameters, and 

α is the lead parameter of the Gc2 controller. Parameter λ1 is obtained from the tuning results 

using maximum peak (Mp). Mp is defined as the maximum magnitude of the frequency 

response of the closed loop system. Because the system uses MIMO, the calculation is made in 

two steps, the first of which is to calculate λ1 by assuming a SISO system.  
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The SISO equation to calculate  T j  is: 

                 
, 1,2
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i i ii

i i ii ii
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The two results of Equation 3 are included in the following equation. The MIMO 2×2 equation 

to calculate  T j  is: 
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Parameters λ2 and α are obtained from the tuning results using gain margin (GM). The Gc2 

controller on each loop has a SISO design with the formula: 

 1 2 , 1,2i i i ii iiGol Gc Gc Gp Gpm i                        (5) 

2.2. Inverted Decoupling 2DoF IMC 

The decoupling structure on the 2×2 MIMO system can be seen in Figure 1: 

Figure 1 Decoupling structure of 2×2 MIMO 

 

where T is a decoupled process, Gp is the process in the MIMO system, C is the controller, and 

D is the decoupler, as follows: 
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the decoupled T process becomes: 

GpDT             (11) 
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The results of the T obtained are complex, meaning the design of the controller for the 

decoupled process is difficult. Chen and Zhang (2007) proposed an inverted decoupling method 
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by modifying the decoupling structure shown in Figure 1. Assuming  1111 GpT   and 2222 GpT  , 

decoupler D then becomes: 

TGpD 1           (13) 
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From Equation 14, the equation of input process u to controller output c becomes : 
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If simplified, Equation 15 becomes: 
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So the inverted decoupling equations become: 
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The inverted decoupling equation equals the decoupling equation, but the inverted decoupling 

structure is the opposite of the decoupling structure. 
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Figure 2 2DoF IMC scheme for 2×2 MIMO system 
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Figure 2 shows the 2DoF IMC scheme without the addition of inverted decoupling for the 2×2 

MIMO system using Mp-GM tuning, while Figure 3 shows a 2DoF IMC scheme with the 

addition of inverted decoupling for the same system. 
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Figure 3 Inverted decoupling 2DoF IMC scheme for 2×2 MIMO system 

2.3. Experimental Procedure 

The research method consisted of five main steps. The first step was to conduct interaction 

analysis using the relative gain array (RGA) method in the MIMO 2×2 system. This method 

was used to establish the magnitude of the interactions occurring in the MIMO system. The 

second step was to calculate decoupling based on Equations 17 and 18, while the third step was 

to determine the worst case based on the uncertainty model. The deviation value was calculated 

at ±20% of the model process parameters. The combination of the lower and upper limit 

parameters was calculated  T j  (complementary sensitivity function). The value with the 

largest max  T j  indicated that the most difficult case was controlled. The fourth step was to 

tune parameter λ1 using maximum peak (Mp) stability criteria, with the following steps: 

1) set the initial value of λ1 (filter time constant Gc1) equal to θ (time delay) from the 

process model, divided by 20; 

2) determine parameter λ on each controller by means of the other controller designed as 

SISO (Single Input Single Output) to simplify iteration, as in the SISO system there is 

no interaction between the process variables;  

3) calculate the maximum frequency of closed loop frequency response in the frequency 

range of 310  to 310 . Graph used in semilog  T j  db vs ω (frequency); 

4) if max >1.05, then λ increases by a small amount, for example λ +0.001. 

5) The fifth step was to tune parameter λ2 (filter time constant Gc2) and α using the stability 

criterion of gain margin (GM), with the following steps: 

i. set the value of λ2 at less than λ1. In this research λ2 = 0.9 λ1; 

ii. set the initial value of α equal to λ2. Add α in small amounts so that the value of 

GM on the open loop systems is equal to the GM value. A good value of GM is 

around 1.74. 
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3. RESULTS AND DISCUSSION 

Wood & Berry and Wardle & Wood distillation columns were used as examples as this study is 

limited to MIMO 2×2. The transfer function from both columns was made by interaction 

analysis to determine the correct pairing configuration with the Relative Gain Array (RGA) 

method. The results of the interaction analysis with the RGA method show that the diagonal 

value of the matrix is greater than one and positive, so the pairing used in both columns is 1-1 / 

2-2. The decoupling equation on each column was then calculated, with the result showing that 

both columns are realizable decoupling. The worst case model calculation was then made using 

MATLAB software.  

 

Table 1 Results of the Wood & Berry and Wardle & Wood distillation columns 

Type of Column Wood & Berry Wardle & Wood 

RGA 
2.0094 1.0094
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In practice, the model transfer function parameters differ from the process transfer function 

parameters, so the values of gain, dead time, and the process time constant will deviate. In this 

study, the deviation value is taken to be approximately 20%. The lower and upper limits of each 

parameter form a combination of cases. Tables 2 and 3 show the case combination in each loop 

from the Wood & Berry and Wardle & Wood distillation columns. Each loop has eight 

combinations of process parameters, then the value of  T jω is calculated based on Equation 

4. The highest  T jω value has the most difficult process parameter to control, which is 

called the worst case. In Table 2, the highest  T jω value is in the sixth case. The worst case 

is then used as a process parameter in the 2DoF IMC scheme. 

 

Table 2 Case Combination on the Wood & Berry distillation column 

Case k τ θ Max  T jω  

1 10.24 13.36 0.8 1.0000 

2 10.24 13.36 1.2 1.0000 

3 10.24 20.04 0.8 1.0069 

4 10.24 20.04 1.2 1.0112 

5 15.36 13.36 0.8 1.0000 

6 15.36 13.36 1.2 1.3999 

7 15.36 20.04 0.8 1.0081 

8 15.36 20.04 1.2 1.0160 
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Table 3 Case combination on the Wardle & Wood distillation column 

Case k τ θ Max  T jω  

1 0.1 48 4.8 0.9998 

2 0.1 48 7.2 0.9998 

3 0.1 72 4.8 1.0062 

4 0.1 72 7.2 1.0132 

5 0.15 48 4.8 0.9999 

6 0.15 48 7.2 1.3810 

7 0.15 72 4.8 1.0099 

8 0.15 72 7.2 1.0252 

 

The λ parameter was then found by using Mp tuning. The calculation was made using 

MATLAB software. The Mp tuning method determines the controller parameters, so the 

complementary sensitivity function of each loop can be 1.05, as at that value the overshoot 

generated is approximately 10%. If it is less than 10% the response tends to be slow, but if it is 

more than 10% it will tend to trigger instability. 

 

  
(a) (b) 

Figure 4 λ1 parameter results using Mp tuning on the Wood & Berry column: (a) loop 1; (b) loop 2 

 

  
(a) (b) 

Figure 5 λ1 parameter results using Mp tuning on the Wardle & Wood column: (a) loop 1; (b) loop 2 
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Parameters λ2 and α were searched for using GM tuning, with the results on each column as 

follows. 
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(a) (b) 

Figure 6 Results of λ2 and α parameters using GM tuning on the Wood & Berry column: (a) loop 1;  

(b) loop 2 

 

Figure 4a shows the result of parameter λ1 on the Wood & Berry column for loop 1 obtained 

1.839, at a maximum frequency of around 1.5 and maximum peak (Mp) of 1.05, while Figure 

4b shows the result of parameter λ1 for loop 2 obtained 6.593, at a maximum frequency of 

around 0.5 and Mp of 1.05.  

Parameter λ1 on the Wardle & Wood column is shown in Figures 5a and 5b. Parameter λ1 for 

loop 1 obtained 19.344 at a maximum frequency of around 0.2 and Mp of 1.05, while parameter 

λ1 for loop 2 obtained 18.385, at a maximum frequency of around 0.2 and Mp of 1.05. 
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(a) (b) 

Figure 7 Results of parameters λ2 and α using GM tuning on the Wardle & Wood column: (a) loop 1;  

(b) loop 2 

 

In Figure 6a, parameters λ2 and α were obtained at the optimum Gain Margin (GM) of 3.1886. 

This means that at this value, parameters λ2 and α gave the smallest IAE (Integral Absolute 

Error). In Figure 6b, the optimum GM obtained 3.1997. Figure 7 also gives the results of 

parameters λ2 and α, with the optimum GM in loop 1 being 3.3 and in loop 2 3.2991. 

After all the parameters were obtained, a simulation was performed using SIMULINK software 

for each column. Set-point changes were made in loop 1 and loop 2, and disturbances given in 

loop 1. 
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(a) (b) 

Figure 8 Response results: (a) loop 1; (b) loop 2 on the Wood & Berry column 

 

 
(a) 

 

 
(b) 

 
(a) (b) 

Figure 9 Response results: (a) loop 1; (b) loop 2 on the Wardle & Wood column 

 

In this study, Integral Absolute Error (IAE) was used to compare the quality of the controlled 

responses. A smaller IAE indicates better process control because the optimum settings can 

minimize the IAE value. In Figures 8 and 9, four controllers are used to compare the results. 

The first controller uses 1DoF IMC, and the results give a good response to the setpoint 

tracking, but a very slow response to disturbance rejection, so the resulting IAE value is still 

high. IAE integrates the absolute error over time. The IAE value indicates that the lower the 

IAE value, the better the controller used, and vice versa. The second controller uses 2DoF IMC, 

with IAE results lower than those of 1DoF IMC. These results show that GM tuning can 

overcome the weakness of Mp tuning, which still has a slow response to disturbance rejection. 

However, in GM tuning the interaction is still high; it can be seen in the simulation results that 

when there is a disturbance in loop 1, there is still a big change in loop 2. The third controller is 

2DoF IMC with the addition of decoupling. Unfortunately, the use of decoupling produces a 

higher IAE value than without decoupling. The benefit of decoupling may not be fully realized 

because an imperfect process model or worst case model was used. The fourth controller is 

2DoF IMC with the addition of inverted decoupling; changes in loop 2 tend to be small and not 

affected by the disturbance in loop 1. From the results of this simulation it can be concluded 

that 2DoF IMC using Mp-GM tuning with the addition of inverted decoupling gives the 

smallest IAE value, as inverted decoupling can greatly reduce control loop interactions and the 

change for one controlled variable has little effect on the other controlled variables. 

 

4. CONCLUSION 

In this study, the system used was MIMO 2×2 with Mp-GM tuning. Four controllers were used 

to compare the results, namely 1DoF IMC, 2DoF IMC, decoupling 2DoF IMC, and inverted 

decoupling 2DoF IMC. The results show that inverted decoupling produces the lowest IAE 
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value compared to the other controllers.  This structure is able to reduce the interaction between 

variables in the MIMO 2×2 process. 
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