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ABSTRACT

Thin-walled square steel tubes are part of automobile structures, used as impact energy
absorbers on crush boxes. Under axial crushing, such tubes sometimes produces unpredictable
folding forms. There are three modes of dynamic axial crushing folding forms: the symmetric
collapse mode; the asymmetric mixed collapse mode A; and the asymmetric mixed collapse
mode B. The objective of this paper is to develop a theoretical prediction for the three modes on
a thin-walled square steel tube with eight holes used as crush initiator. The basic folding
mechanism is used to predict the dynamic axial crushing analysis on the tube. These theoretical
analyses can also can be implemented in different crush initiator positions.

Two types of cross section (c/h) were used in this study: specimen A (c/h = 60.42) and
specimen B (c/h = 45.69). Thirty-six experimental drop test studies were conducted on the thin
wall square tube. In addition, the results of a previous drop test were compared to the results of
the theoretical prediction. The results show that the theoretical analysis has good agreement
with the experimental drop test study. This study proposes nine formulas to predict average
force, peak force and energy absorption of the dynamic axial crushing on the thin-walled square
steel tube with eight holes of crush initiator. The limitation of these formulas, however, is that
they are unable to show the relationship between force and time in a graph.
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1. INTRODUCTION

Thin-walled tubes have been widely used in the automotive industry as energy absorber
components because of their excellent energy properties and light weight. Over the years, many
researchers have studied thin-walled tube structures through experiments, numerical
simulations and theoretical analysis, and have attained in-depth understanding of the
characteristics of energy absorption (Hu et al., 2019).

The crashworthiness of thin-walled structures with different cross-sectional configurations,
including square (Sun et al., 2017); circular (Zhang et al., 2018); rectangular (Shena et al.,
2017); star-shaped (Deng et al., 2018); elliptical (Ge et al., 2018; Xiong et al., 2018); tapered
tubes (Tran, 2017); honeycomb (Palomba et al., 2018; Hu et al., 2019); multi-cell (Xie et al.,
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2017; Ding et al., 2018); and hybrid square tubes (Zhang et al., 2019), have been researched in
detail. From these studies, it was well known that the most severe plastic deformation occurs
near sectional corners of tubes, which could dissipate a great amount of energy due to
membrane and bending deformation along the bending hinge lines (Hu et al., 2019). For
example, Shena et al. (2017) investigated the crashworthiness of rectangular single-, double-
and unequal triple-cell tubes made of aluminium alloy. An analytical formula for predicting the
mean crushing force (MCF) of unequal triple-cell tubes was first derived. Quasi-static crushing
experiments and finite element analysis (FEA) were then conducted in the axial direction for
the three diff erent tubes. The results from numerical simulations were compared in detail with
data from experimental tests and theoretical predictions. It was found that the triple-cell tube
exhibited the best crash performance, followed by its double- and single-cell counterparts. A
multi-objective optimization design was employed to investigate the effect of the thickness of
each plate and the arrangements of internal ribs on specific energy absorption (SEA) and MCF.
An experimental study on the crashworthiness of star-shaped tubes under axial compression
was conducted by Deng et al. (2018). A star-shaped tube with twelve corners produced global
buckling in quasi-static compression, while such a tube with eight corners had a better energy
absorption capacity than tubes with six and twelve corners. The deformation modes of quasi-
static and dynamic impact were very similar. According to Ge et al. (2018), the elliptical cross-
section becomes narrower compared to the circle one, which is also helpful in increasing the
energy absorption of the thin-walled tube.

To enhance the energy absorption capability and reduce the initial peak crushing force of thin-
walled tubes, the attention of many researchers has also been drawn to corrugated tubes
(Mahbod & Asgari, 2018), functionally graded thickness (FGT) tubes (Sun et al., 2017), foam-
filled tubes (Xiong et al., 2018; Googarchin et al., 2019) and metal/composite hybrid tubes
(Zhang et al., 2019). For instance, Mahbod and Asgari (2018) conducted a theoretical study to
investigate the behavior of corrugated composite tubes under axial and oblique crushing. The
corrugated model Cr6n16 improved CFE by about 343% in comparison to the straight tube,
without an sharp reduction in the SEA in axial crushing. The corrugated tube Crénl8 increased
the SEA by about 18%, with the same value of CFE as the straight tube in oblique crushing.
Sun et al. (2017) proposed uniform thickness (UT), axial functionally graded thickness (AFGT)
and lateral functionally graded thickness (LFGT) for thin-walled square structures, and then
investigated their crushing characteristics through theoretical, numerical and experimental
approaches under axial crushing loads. These primary outcomes demonstrate that FGT
structures have considerable potential as energy absorption devices for axial impact. In terms of
the methods for improving energy absorption capacity, a theoretical and numerical investigation
of the energy absorption behavior of foam-filled tapered multi-cell tubes was made by
Googarchin et al. (2019). Their analysis indicates that the SEA in the crushing of the foam-
filled tubes with three cell rows in the cross section and a taper angle equal to 7 degrees would
be five times greater than that in the crushing of the reference tube.

In particular, for the energy absorption structures of bio-inspired design strategies, natural
structural hierarchies were fruitful learning resources. Based on their results from experimental
testing and numerical modelling, Zhang et al. (2018) concluded that a 2nd-order hierarchical
circular tube (HCT) offers significantly greater energy absorption than non-hierarchical
structures (Oth order HCT). Sub-circle diameters and wall thickness have a significant effect on
the crashworthiness indictors of 2nd order HCT. A bio-inspired bionic honeycomb tubular
nested structure (BHTNS) was proposed and the energy absorption characteristics of this
structure under axial crushing conditions were also investigated by systematic experiments,
numerical simulations, and theoretical analysis (Hu et al., 2019). Finally, a theoretical model
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was developed to predict the Pmean of BHTNS. It was observed that the Pmean of the
theoretical model was in good agreement with that from the numerical simulation.

There are some limitations in conducting experimental drop test studies. They need a high
tower, rig, load cell, high-speed camera, LabVIEW software, and computer. Meanwhile,
numerical analysis requires software such as ANSYS LS DYNA, LS DYNA, ABAQUS or Pam
Crash. Significant costs are involved in setting up the two methods, which is the main reason
why development of theoretical analysis is needed.

As mentioned above, this study is related to the theoretical predictions of Zhang et al. (2019),
Tran et al. (2017), Ding et al. (2018), Sun et al. (2017) and Xie et al. (2017). However, the most
common theoretical predictions for rectangular tubes are suggested by Abramowicz and Jones
(1984) and Nguyen et al. (2013). In terms of the number of crush initiators, Nguyen et al. used
one or two, while Abramowicz and Jones did not use any. From the point of view of the basic
folding mechanism, Nguyen et al. employed the symmetric collapse mode, whereas
Abramowicz and Jones used the asymmetric mixed collapse modes A and B, together with the
symmetric collapse mode. Abramowicz and Jones suggested the prediction of an average force
equation, while Nguyen et al. proposed prediction of average force and peak force equations.
Nguyen et al. also used a coefficient of geometry to peak force equation. This study proposes a
new concept for predicting dynamic axial crushing performance, including the use of an eight
crush initiator, asymmetric mixed collapse modes A and B and symmetric collapse mode for
the basic folding mechanism, and equations of average force, peak force and energy absorption.
These prediction equations consider the coefficients of peak force and stress concentration.
Finally, the objective of this study is to develop a theoretical prediction of dynamic axial
crushing on a thin-walled square steel tube with eight holes used as a crush initiator.

2. METHODS

The basic folding mechanism method initially presented by Abramowicz and Jones (1984). was
employed There are three different mechanisms of energy absorption which need to be
considered in a thin-walled square tube structure (see Figure 1). The first is extensional
deformation on a toroidal surface (E1), the second is bending around the horizontal hinge lines
AB and BC (E2), and the third is bending around the inclined hinge lines NB and BH (E3).

e

o=~/ ENF,y=2BNMor Z EBN, p= 2 BNF, yo = Z EBF
Figure 1 Basic folding mechanism of the thin-walled square tube
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Dynamic axial crushing causes o to start from 0° to n/2, while y begins from n/2 to 0°. This
happens simultaneously and continuously. The changes in a and y affect B and o according to
the following equations (Najafi & Rais-Rohani, 2011; Nguyen et al., 2013).

— -1 tangd,

Y= tan Bin (1)
_ —q tan e

JB = tan gim iy, (2)

The three energy absorptions were predicted based on Equations 3, 4 and 5 to capture the
asymmetric elements (type-I basic folding machanism) (Najafi & Rais-Rohani, 2011).

16M HbI,
El = h (3)
E, = 2M,mc 4)
E; = 4M,l; % (5)

The equation of energy absorption for the symmetrical element (type-Il basic folding
machanism), including the conical surface, was predicted as follows (Najafi & Rais-Rohani,
2011; Nguyen et al., 2013):

H:
Ey =8M,— (6)

cf2

(24

Typel Type Il

Figure 2 Type of folding in the corner of thin-walled square tube

When axial crushing force hits the thin-walled square column structure, the absorption folding
energy achieves the plastic range of material properties. There are two kinds of folding, type-I
and type-II, as shown in Figure 2. The absorption energy of type-1 and type-II in each corner of
the square tube can be calculated by Equations 7 and 8, respectively:

E, = M, (16HI, > + 2mc + 41, 2) @)

Ey = Mo (5 + 2mc + 4H) (8)

where Mo = oo H¥/4, o is the flow stress, 11 = 0.555 and I3 = 1.148. In addition, H is shown in
Figure 1; c is defined in Figure 2; h is thickness; and b is the radius of the toroidal region in the
kinematically admissible velocity field.
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Figure 3 Geometry and the location of the eight holes on the square tube

The geometry and the location of the eight holes on square tube 1 (Sumarsono et al., 2015) are
shown in Figure 3. The distance of the crush initiator from the upper side varied between 10
mm, 20 mm, 30 mm, 40 mm and 50 mm. The thin-walled square column, as shown in Figure 3,
has sixteen horizontal hinge lines. These lines are divided into two groups; the first has eight
horizontal hinge lines where the hinge lines are not moving, while the second group has moved
eight horizontal hinge lines. The length of the horizontal hinge line for the eight holes as a crush
initiator is determined as Cegquivalent:

Cequivalent (1 - :j?)c 9)

The energy absorption through the horizontal hinge lines is determined as:

'E.rE = BMD(‘? + caqiuﬂianr)d (10)
by substituting Equation 9 into Equation 10, yield:
£, =8M,(2- %) ca (11)

By integrating Equation 11, the energy absorption for the horizontal hinge line at the crush
initiator can then be written as:

Ey, = 4mM, (2 - "f)c (12)
¢ \
- R

Figure 4 Geometry of the thin-walled square column with two holes in a line on each side

3. RESULTS AND DISCUSSION

3.1. Symmetric Collapse Mode with Eight Holes

3.1.1. Mean force (Pm)

According to Abramowicz and Jones (1984), the symmetric collapse mode consists of one
layer, which comprises four type-1 basic folding elements as internal energy, while external
energy is defined as the total initial height 2H and mean force. The energy balance between
internal and external energy can be written as:
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B H*
P,2H = 4M, (16HI, > + 2mc + 41, =) (13)
The eight hole crush initiator element in Equation 12 is substituted into Equation 13, yield:
By b, Zme nR" H
== 32,2+ Z (2 - ) + 81,2 (14)
with
H _ C i
=099 (;} (15)
and _
b c ;
2 =072(%) (16)
By subtituting Equations 15 and 16 into Equation 14, then:
Py € i nR* c i
= 2542(%) +6.34(2- =) () (17)

o

3.1.2. Effective crushing distance (1)

The equation of effective crushing distance for a square column with symmetric collapse mode

can be written as follows: )
= =073 (18)

-

3.1.3. Mean static force (Z,,)

By dividing Equation 17 by Equation 18, the followed dimensionless equation can be used to
predict the mean crushing load in a quasi-static test:

m— 3482 G]; +8.69(2— R ) {5]; (19)

M, cHi / \h
3.1.4. Material strain rate sensivity (£)

Under dynamic loading, the material strain rate needs to be considered to predict the dynamic
average crushing load. This rate for the symmetric collapse mode can be written as follows:

= 033" (20)

A detailed explanation can be found in reference.

3.1.5. Cowper Symonds
The Cowper-Symonds formula is an empirical uniaxial constitutive equation to show the
relationship between static and dynamic loads and is written as follows:

2=14 (£) (21)
By substituting Equation 20 into Equation 21 yield the following equation.
‘;—u =1+(0332) (22)

where v is the velocity, customary coefficient D = 40.4 s™* and p = 5 for mild steel from an
experimental test conducted by Abramowicz and Jones (1984).

3.1.6. Mean dynamic force (ﬁmd)
Multiplying Equations 19 and 22 gives the mean dynamic crushing loads as follows:

*‘:-:d = {1 + [D.EE%}g} {34.82 [i]; +8.69(2- :i] [%];} (23)
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3.1.7. Peak dynamic force (ﬁpmkd)

Some authors have agreed that coefficient of geometry (kz) and the coefficient of stress
concentration (k) influence the peak dynamic force. On the other hand, the cofficient of
experimental peak crushing force, ko = 2.91, affects the peak dynamic force (Nguyen et al.,
2013). Moreover, other authors have found that the coefficient of stress concentration and
coefficient of experimental peak crushing force show a close relation to the experimental result
(Sumarsono et al., 2015; Malawat et al., 2017). Therefore, the peak dynamic force can be
written as:

Ppea’ _ (K1 vy o)s _ R (c)F

2 = ks (Z) {1 +(0332) }{34.82 (5) +869(2-=) (%) } (24)
3.1.8. Energy absorption (E,)

Prediction of energy absorption uses the mean dynamic force and displacement of folding:

E, = 6,M, {1 + (033 g)i} {34.82 (i)g +8.69(2 - z—f;) (i)g} (25)

3.2. Asymmetric Mixed Collapse Mode A with Eight Holes

3.2.1 Mean force (E,,)

According to Abramowicz and Jones (1984), the asymmetric collapse mode consists of two
layers, which in turn consist of six type-l and two type-1l basic folding elements as internal
energy. The external energy is determined as the total initial height 4H and mean force.
Furthermore, the energy balance between internal and external energy can be written as:

P, 4H = M, (96HI, > + 16mc + 2453§+%+ 8H ) (26)
By substituting the eight hole crush initiator element from Equation 12 into Equation 26, yield:
%=2411§+%(2—’:ﬁ]+%+5fﬁ§+%+z 27)
with )
~=073 (i); (28)
and
r=os1(3) (29)
By subtituting Equations 28 and 29 into Equation 27, resulting:
= 2497 (2 +430(2- =) (2) +292(2) +2 (30)

3.2.2. Effective crushing distance (&)

The equation of effective crushing distance for a square column with asymmetric mix collapse
mode A can be written as follows:

Sa =
o 0.77 (31)
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3.2.3. Mean static force (B,)

By dividing Equation 30 by Equation 31, the following dimensionless equation can be used to
predict the mean crushing load in a quasi-static test.

f{—-: = 3243 [;); +558(2-2) {;]; +3.79 (;)E +2.6 (32)
3.2.4. Material strain rate sensitivity (£)

The material strain rate in an axially crushed square tube for asymmetric mixed collapse mode
A can be written as follows:

= 0.495 (33)
A detailed explanation can be found in Abramowicz and Jones (1984).
3.2.5. Cowper Symonds

The empirical formula of the Cowper-Symonds uniaxial constitutive equation is shown in
Equation 21. By substituting Equation 33 into Equation 21, this gives:

% -4 (0.49 L) (34)

O

where v = velocity, customary coefficient D = 40.4 s~ and p = 5 for mild steel.

3.2.6. Mean dynamic force (ﬁmd)
Multiplying Equations 32 and 34 gives the mean dynamic crushing loads.

*:i = {1 + (0.49%)::} {32.43 (;]E +558(2- %) (;}; +379(2) + 2.6} (35)

3.2.7. Peak dynamic force (kad)

Multiplying Equation 35, the experimental peak crushing force coefficient (k;,), and the stress
concentration coefficient (k) gives the peak dynamic force (Nguyen et al., 2013).

oo () o (000 5 {203 (5 550 (22 (0 #3793 + 26 9

3.2.8. Energy absorption (E,)
Multiplying the mean dynamic force and displacement of folding gives the energy absorption.

1 1 2

E, = 8,M, {1 +(0.49 %)5} {32.43 (%)5 +558(2- ’:—:;?) (%)i +3.79 (i)E + 2.6} (37)

3.3. Asymmetric Mixed Collapse Mode B with Eight Holes

3.3.1. Mean force (Pm)

According to Abramowicz and Jones (1984), asymmetric mixed collapse mode B consists of
two layers, which have seven type-I and one type-Il basic folding elements as internal energy,
total initial height 4H, and mean force as external energy. The formula can be written as
follows:

P, 4H = My (112HL, 2 + 14mc + 281, + ¥ + 2mc + 4H ) (38)

Substituting the eight hole crush initiator element in Equation 12 into one layer horizontal hinge
line in Equation 38 gives:
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f{-—:={zaﬁ+§(z—§] Ze st 2 (39)

with i
=083 (i); (40)

and _
r=065(5) (41)

By subtituting Equations 40 and 41 into Equation 39, yield:

In— 27.93(2) +3.78(2 - ”R:]{iji +165(2) +1 (42)

C
M, h cHi

3.3.2. Effective crushing distance ()
The effective crushing distance of asymmetric mixed collapse mode B on a square column can
be written as:

g _
£ =077 (43)

3.3.3. Mean crushing Force (Z,,)

By dividing Equation 42 by Equation 43, the following dimensionless equation can be used to
predict mean crushing load:

o =3627 G]; +490(2-=) G]E +214 {%]; +130 (44)
3.3.4. Material Strain Rate Sensitivity (£)

The effect of the material strain rate is shown in Equation 45:
£=041° (45)

A detailed explanation can be found in Abramowicz and Jones (1984).

3.3.5 Cowper Symonds

The empirical formula of the Cowper-Symonds uniaxial constitutive equation to show the
relationship between static and dynamic load is shown in Equation 21. By substituting Equation
45 into Equation 21, the Cowper Symonds formula can then be written as:

d
So

% —1+(0412)

o

e

(46)

3.3.6. Mean Dynamic Force (Fmd)
Multiplying Equations 44 and 46 gives the mean dynamic crushing loads.

%: = {1 + (0.415)3} {35.2? @; +490(2- %) {%)E +2.14 {%)E + 1.30} (47)

3.3.7. Peak Dynamic Force (ﬁpmd)

Multiplying Equation 45 by the experimental peak crushing force coefficient (Ko), and the
stress concentration coefficient (Kt) predict the peak dynamic force (Nguyen et al., 2013).

fr‘*‘f:T'fn =k, () {1 + (041 5]:} {36.2? (2) +490(2- :;i) (;]E +214(2) + 1.30} (48)




Malawat et al. 1051

3.3.8. Energy Absorption (Ey)
Prediction of energy absorption can be calculated by multiplying the mean dynamic force and
displacement of folding, giving:

E, = 65M, {1 +(0.41 é)i} {36.27’ (%)§ +490(2- :—fj) (Ef +2.14 (%)§ + 1.3&} (49)

3.4. Comparison to Abramowicz’s Formula

Abramowicz and Jones (1984) presented their prediction of the energy absorption occurring on
a thin-walled square tube structure without crush initiator. All the modes of square tube
collapse due to axial crushing could be predicted by using their formula. They proposed an
equation to predict energy absorption in the symmetric collapse mode as:

Pn” _ 52.22{1 + (033 iﬂ]_} [;}_ (50)

o

The equation for asymmetric mixed collapse mode A is:

iiﬂ = {1 +(0.49 iﬂ]_} {43.51 [;}_ +3.79 [;]_ + 2.6} (51)

and the equation for asymmetric mixed collapse mode B is:

iiﬂ - {1 +(0.41 iﬂ]_} {45.15@; 4214 (;)_4‘ 1.3} (52)

This study proposes the prediction of energy absorption occurring in a thin-walled square tube
structure; however, this study considers a crush initiator. The proposed equation for symmetric
collapse mode is shown as Equation 23, while that for the prediction of asymmetric mixed
collapse mode A is Equation 35 and for asymmetric mixed collapse mode B Equation 47. The
proposed formulas display a similar trend with Abramowicz’s Formulas.

3.5. Validation of the Prediction with the Experimental Data

The results of the mathematical calculation or theoretical analysis need to be validated with the
experimental data of the drop test to ensure that the mathematical formula is close to the actual
results. The theoretical analysis was compared with the experimental results of specimen A (c/h
= 60.42) and B (c/h = 45.49), as shown in Figure 4 (Sumarsono et al., 2015; Malawat et al.,
2017; Malawat & Sumarsono, 2017). The differences between the theoretical analyses and the
experimental results for peak crushing force were around 10% and 4% for specimens A and B,
and for mean crushing force they were around 10% and 7% for specimens A and B,
respectively. At the 90% confidence level, the degree of the differences is still acceptable.

»ak Crushing Force (kN)

Pe
Mean Crushing Force (kN)

(@) (b)
Figure 4 Validation of theoretical prediction with experimental drop test data
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The most important factor in the calculation is yield strength; that of specimens A and B is 225
MPa and 265 MPa respectively (Sumarsono et al., 2015; Malawat et al., 2017; Malawat &
Sumarsono, 2017).

P P
' \,
\,
E
0
v
- Rig
- Frame of Tower s
m 5
Kamera Load Cell
(@) (b)

Figure 5 Drop test tower

An experimental study was conducted at the Laboratory of Technology Mechanics, Department
of Mechanical Engineering, University of Indonesia. A 3 m drop tower was used to generate the
impact energy with an effective dropping load of 1.5 m. A 80 kg drop load mass was placed in
the center of the dropping line. A sketch and photograph of the drop tower are shown in Figures
5a and 5b, respectively (Malawat et al., 2017).

Load Cell NI cDAQ-9174 LabVIEW 2011 Graph
NI 9234 Force vs Time

Figure 6 Acquisition process of data in drop test

The study used load cell PCB Piezotronics with serial number 203B ICP and 88.96 kN
capacity. The signal from the load cell was connected to the computer using NI cDAQ-9174
and NI 9234, with a sampling rate of 51.2-kilo sample per second. LabVIEW Professional
Development System 2011 software was used to display the results in a graph. The flow of the
data acquisition process is shown in Figure 6 (Malawat et al. 2017). Similar data acquisition
arrangements were used by Dionisius et al. (2017) to validate their numerical simulations in an
impact transferability model.
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Force (kN)

0 5 10 15 20 25 30 35 40 45

Time (ms)

~——B-401 ——B-402

Figure 7 Results of drop test

Figure 7 shows the experimental results of the drop test. They indicate the relationship between
force (kN) and time (ms). The blue line represents the results of specimen B-401 (without crush
initiator), while the red line shows the result of specimen B-402 (with crush initiator, 10 mm
from the edge). The results indicate that the peak crushing force was 53.8 kN and 36.5 kN for
B-401 and B-402 respectively. This means that the crush initiator influenced the reduction in
peak crushing force (Sumarsono et al., 2015).

(b)
Figure 8 Process of axial crushing on specimen square tube: (a) without crush initiator; and (b) with
crush initiator

Figure 8 shows the process of proportional folding on the specimen square tube. The pictures
were taken by a high speed camera (960 fps). For the square tube without crush initiator (a), the
first folding started at a certain distance from the upper end, while for the square tube with
crush initiator, whose position is 10 mm from the upper end, the first folding started on the
crush initiator. This proves that a crush initiator is needed as an initial folding guide.

4. CONCLUSION

This work has presented a comparison between theoretical and experimental analysis of the
behavior of a thin-walled square tube structure under axial crushing. For the symmetric collapse
mode, the formula for predicting mean dynamic force is shown as Equation 23; for peak
crushing force as Equation 24; and for energy absorption as Equation 25. For asymmetric
mixed collapse mode A, the formula for predicting mean dynamic force is shown as Equation
35; for peak crushing force as Equation 36; and for energy absorption as Equation 37. For
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asymmetric mixed collapse mode B, the formula for predicting mean dynamic force is shown as
Equation 47; for peak crushing force as Equation 48; and for energy absorption as Equation 49.
The theoretical analysis shows close agreement with the experimental drop test study.
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