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ABSTRACT 

This article models a reverse logistics network for battery recycling with consideration of 

environmental and manufacturing costs. The model is developed for a reverse flow multi-echelon 

supply chain, from end customers to the remanufacturing process. Linear programming is used 

to formulate mathematical models and LINGO® is applied to solve the problem of determining 

optimal orders for and sales of recycled batteries, lead alloy and plastics, as well as the optimal 

level of safety stock (service level) for the recycling centers along the reverse logistics network.  

The number of battery orders from unused battery collectors, and the sales of lead alloy and 

plastics to the remanufacturing process considering transportation, environmental cost, 

disassembly cost and inventory costs, are found optimally in different periods. The study also 

indicates that there is a correlation between the associated costs and inventory decisions and total 

profit in recycling centers. 
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1. INTRODUCTION 

Reverse logistics (RL), which refers to a series of activities starting from the level of customer 

collection of products and ending with product remanufacturing processes,   has received much 

attention recently in term of approaches and network models (Sarkis, 2001; Soto Zuluaga, 2005; 

Wang, 2015). Reverse logistics has become an issue of increased concern in environmental 

studies since the operation of the manufacturing process, particularly for hazardous materials, 

impacts negatively on all the parties in a supply chain if it is not appropriately organized. 

Employing good logistics management throughout the material flow, with the involvement of 

planning, managing and controlling the flow of waste until its disposal, can alleviate the risk of 

hazardous material. In the outbound side of green supply chain management, reverse logistics, or 

environmental distribution, is an approach to improve firms’ environmental performance (Rao, 

2002).  

The optimization model for dealing with transportation and routing problems by controlling the 

risk of hazardous waste from the perspective of reverse distribution planning has developed 

rapidly. However, most of the reverse distribution planning models only focus on production 

planning (Guide Jr, 2000; Park, 2005). Regardless of such focus, this study exclusively deals with
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the production planning and inventory control which are integrated into the developed model. 

Products such as batteries, which contain hazardous material, can have a negative effect on the 

environment (Kusrini et al., 2015). This study develops a linear programming model for multi-

period RL in order to determine the optimal number of batteries that should be be produced and 

the number which should be stored as inventory. The objective of the proposed model is to 

minimize total logistics cost, including those of purchase, inventory and transportation, with 

respect to the environmental risk cost. The study develops RL models for batteries in a multi-

echelon distribution system with consideration of environmental manufacturing costs, from the 

point of supply to the point of collection and then delivery to the remanufacturing point.  

 

2. REVERSE LOGISTICS 

De Brito and Dekker (2004) divided RL activities into two parties which are involved in the 

process of moving products back from a supply chain, namely the returner and receiver. The 

returner party is involved with product recall or value recovery, which are actively related to the 

consumers of a product, while the purpose of the receiver party is to make a profit and social 

pressure. The activities of the returner party include reselling, redistributing, reusing, 

reprocessing and recovering value. 

 

 

Figure 1 Basic process of forward and RL 

 

Figure 1 shows the basic processes of forward and RL based on a previous RL study by Guide et 

al. (2003). The used products are collected by the secondary market after acquisition activities 

and then sorted into the next processes.  

2.1. Revenue from RL 

Returned products involve a variety of costs in the remanufacturing processes. Manufacturers 

often prepare a particular supply chain network to manage their returned products, developing or 

renting facilities at downstream levels, and involving dealers, collectors or third parties, who 

undertake acquisition, sorting or dropping off at the returned product centres, before shipping to 

manufacturers. According to Thomopoulos (2016), there are five sources of revenue for the 

manufacturer of returned products, namely refurbishment, remanufacturing, redistribution, and 

discard.  
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Figure 2 Sources of revenue from returned products 

 

The main objective of remanufacturing activities in RL is to restore the quality of returned 

products to that which is conformable. There are various reasons for firms to conduct 

remanufacturing processes. First, the market pressure: customers are currently becoming more 

environmentally conscious in eco-manufacturing decision-making issues. This therefore creates 

significant pressures for the manufacturer to implement RL or green manufacturing, as well as 

enhancing its corporate image and gaining competitive advantage. The second reason is related 

to government regulations. In some countries, especially in developed ones such as the U.S and 

European countries, legislation forces manufacturers to take responsibility for their products after 

use by customers and for product disposal. Third, the financial perspective is the main point for 

companies to establish eco-remanufacturing processes.  According to Thierry et al. (1995), the 

cost of remanufacturing processes is equivalent to 4060% of that of manufacturing a new 

product, but it takes only 20% of the effort.  

2.2. Recycling Network 

The recycling network in RL concerns the recovery of low-value materials from items thrown 

away, which are processed as materials along the forward-flow of the supply chain. Generally, 

the recycling network concerns strategic decisions involving the number of facilities, facility 

locations, facility capacity and size, and market acquisition. Furthermore, it deals with the 

selection of appropriate methods or approaches to solve the recycling network problem. Study of 

RL with regard to recycled batteries has been growing recently due to economic reasons and 

environmental considerations (Efendigil, Önüt, & Kongar, 2008). Most approaches to the study 

of the recycling network can be classified into two categories, namely heuristics optimization and 

analytical qualitative exploration. For instance, Schweiger and Sahamie (2013) combined the 

facility location problem and Tabu Search method to develop their RL network for recycled paper 

manufacturers. Indrianti and Rustikasari (2010) proposed a reverse logistic model for the 

production planning of battery recycling using linear programming.  

2.3. Methods and Approaches  

Dowlatshahi (2000) categorized RL study into three groups. The first group focuses on 

remanufacturing activities and their influences on remanufacturing of the life cycle (Raupp et al., 

2015). The second group of RL literature encompasses quantitative models. Some related studies 

which adopt quantitative models, such as that of (Kaya & Urek, 2016), have developed RL 

models and techniques, namely the cost-based model and linear programming, in order to 

improve RL activities, particularly for remanufacturing operations and product failure rate 

reduction. Qualitative studies have also been conducted using Kansei engineering and the Kano 

model (Hartono, Santoso, & Prayogo, 2017). The third group of RL literature discusses 

distribution/transportation (Zhou & Zhou, 2015) and warehousing (Ko & Evans, 2007). 
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3. RL NETWORK AND MATHEMATICAL MODEL 

The RL battery network and the development of the mathematical model are introduced as follow. 

3.1. Network Diagram for the Battery Recycling System 

According to the model, we center on various parties involved in the study, namely the supplier, 

factory, distribution center, end user, collection center, recycling center, and disposal center. The 

supplier is the company supplying raw materials for battery production to the factory, while the 

factory is the company engaged in battery manufacturing. The distribution center is responsible 

for distributing batteries to the end user, the end user being the party utilizing the batteries for a 

particular need. The disposal center deals with the final disposal of the battery and is responsible 

for receiving the disposed or unused batteries.  The collection center is the party which collects 

used batteries; this collected material is recycled at the recycling centre, and the recycling process 

will yield lead alloy and plastic, which are needed by the factory as raw material for battery 

production.  

Figure 3 illustrates the model introduced into the RL of unused batteries. This study takes into 

account environmental value and aims to determine the optimal solution for the quantity of 

unused batteries to be purchased and the sale quantity of lead alloy and plastic. Therefore, we 

expect to achieve the maximum profit.  
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Figure 3 RL structure 

 

The quantity of unused batteries purchased by the recycling center from the collection center (𝑝) 

in a particular period (𝑡) is denoted by 𝑋𝑝𝑡. 𝐵𝑋𝑡𝑝 is the purchase cost of the unused batteries from 

the collection center (𝑝) undertaken by the recycling center in a particular period (𝑡). The unused 

batteries will be dismantled in order to obtain lead alloy (𝑌) and plastic (𝑍), which is sold to the 

factory (𝑟). 𝑌𝑟𝑡  is the sale quantity of lead alloy by the recycling center to factory (𝑟) in a 

particular period (𝑡), with sale price 𝑆𝑌𝑡𝑟. The sales quantity of plastic is denoted by 𝑍𝑟𝑡 at the 

price of 𝑆𝑍𝑟𝑡. The cost of ownership applied to the recycling center includes the battery holding 

costs per unit (𝐻𝑋𝑡), the holding cost of lead alloy per unit (𝐻𝑌𝑡), the holding cost of plastic per 

unit (𝐻𝑍𝑡), the cost of recycling (COD) and transportation costs (CT). Since the load capacities 

of the vehicles (𝐾) for lead alloy (𝑌) and plastic (𝑍) are different, transportation costs, including 

fixed cost (𝐹) and variable cost (𝑉), are clearly also different. Moreover, the costs to be paid as 

the result of the environmental impact which emerges due to the fuel emissions during the 

transportation process (𝐸𝑒 , 𝐸𝑎) and the abiotic waste during the recycling process (𝐸𝑠) are also 

taken into account. The decision variables involve the quantity of unused batteries to be 

purchased (𝑋𝑡𝑞), the sales quantity of lead alloy (𝑌𝑟𝑡) and plastic (𝑍𝑟𝑡), the inventory of the 

unused batteries (𝑋𝐼𝑡), the inventory of lead alloy (𝑌𝐼𝑡), and the inventory of plastic (𝑍𝐼𝑡). 

Indrianti and Rustikasari (2010) proposed a single period linear programming model for the RL 

of unused batteries. The model incorporated the cost to the environment, with the objective 

function being to optimize total purchase and sale costs. The proposed model in this study will 
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be more comprehensive than that of Indrianti and Rustikasari (2010), since inventory cost is also 

incorporated together with other costs. In addition, this study also enhances the planning horizon 

of the RL problem into a multi-period model. It is evident that the multi-period model can tackle 

the problem more adequately rather than the single-period one. 

3.2. Notation 

Indices; 

𝑡  : Index for period; 𝑡 = 1,2,…, T 

𝑝  : Index for collection center; 𝑝 = 1,2,…, n 

𝑟  : Index for factory; 𝑟 = 1,2,…, m 

Decision variables; 

𝑋𝑝𝑡 : Quantity of batteries (𝑋) purchased from the collection center (𝑝) by the recycling centre  

at a certain time (𝑡) (kg) 

𝑌𝑟𝑡 : Quantity of lead alloy (𝑌) sold by the recycling center to the factory (𝑟) at a certain time  (𝑡) 

(kg) 

𝑍𝑟𝑡 : Quantity of plastic (𝑍) sold by the recycling center to the factory (𝑟) at a certain time  (𝑡) 

(kg) 

𝑋𝐼𝑡 : Quantity of batteries (𝑋) stored at a certain time (𝑡) (kg) 

𝑌𝐼𝑡 : Quantity of lead alloy (𝑌) stored at a certain time (𝑡) (kg) 

𝑍𝐼𝑡 : Quantity of plastic (𝑍) stored at a certain time (𝑡) (kg) 

Parameters; 

𝐵𝑋𝑝𝑡 : Purchase price of batteries (𝑋) from the collection center (𝑝) to the recycling center at a  

 certain time (𝑡) ($/kg) 

𝑆𝑌𝑟𝑡 : Selling price of lead alloy (𝑌) from the recycling center to the factory (𝑟) at a certain time 

(𝑡) ($/kg) 

𝑆𝑍𝑟𝑡 : Selling price of plastic (𝑍) from the recycling center to the factory (𝑟) at a certain time 

(𝑡) ($/kg) 

𝑆𝑆𝑋 : Safety stock for batteries (kg) 

𝑆𝑆𝑌 : Safety stock for lead alloy (kg) 

𝑆𝑆𝑍 : Safety stock for plastic (kg) 

𝐻𝑋𝑡 : Holding cost of the batteries (𝑋) at the recycling center at a certain time (𝑡) ($/kg) 

𝐻𝑌𝑡 : Holding cost of lead alloy (𝑌) at the recycling center  at a certain time (𝑡) ($/kg) 

𝐻𝑍𝑡 : Holding cost of plastic (𝑍) at the recycling center  at a certain time (𝑡) ($/kg) 

𝐷  : Disassembly cost of batteries (𝑋) at the recycling center ($/kg) 

𝐹𝑋 : Fixed transportation cost for batteries ($/travel) 

𝐹𝑌 : Fixed transportation cost for lead alloy ($/travel) 

𝐹𝑍 : Fixed transportation cost for plastic ($/travel) 

𝑉𝑋 : Variable transportation cost for batteries ($/kg) 

𝑉𝑌 : Variable transportation cost for lead alloy ($/kg) 

𝑉𝑍 : Variable transportation cost for plastic ($/kg) 

𝐾𝑋 : Vehicle capacity for batteries (𝑋) from the collection center (𝑝) to recycling center  ($/kg) 

𝐾𝑌 : Vehicle capacity for shipping lead alloy (𝑌)  from the recycling center  to factory (𝑟) (kg) 

𝐾𝑍 : Vehicle capacity for shipping plastic (𝑍) from the recycling center to factory (𝑟) (kg) 

𝐿𝑋𝑝 : Distance from collection center (𝑝) to recycling center (km) 

𝐿𝑌𝑟 : Distance from recycling center to factory (𝑟) for lead alloy (km) 

𝐿𝑍𝑟 :  Distance from recycling center to factory (𝑟) for plastics (km) 

𝐴 :  Distance covered per litre of fuel (km/litre) 

𝐼𝑌𝑚𝑎𝑥 :  Maximum storage capacity for lead alloy (kg) 
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𝐼𝑍𝑚𝑎𝑥 :  Maximum storage capacity for plastics (kg) 

𝐼𝑋𝑚𝑎𝑥 :  Maximum storage capacity for batteries (kg) 

𝑄𝑋𝑡     :  Quantity of batteries (𝑋) available at the collection center (𝑝) at a certain time (𝑡) 

𝑄𝑌𝑟𝑡 :  Lead alloy demand (𝑌) by the factory (𝑟) at a certain time (𝑡) (kg) 

𝑄𝑍𝑟𝑡 :  Plastic demand (𝑍) by the factory (𝑟) at a certain time (𝑡) (kg) 

𝑃𝑌 :  Percentage of lead alloy (𝑌) resulting from the disassembly per kg of batteries (%) 

𝑃𝑍 :  Percentage of plastic (𝑍) resulting from the disassembly per kg of batteries (%) 

𝐸𝑒  :  Cost of fuel emissions ($/kg) 

𝐸𝑎 :  Fuel Index ($/kg) 

𝐸𝑠 :  Value of abiotic stock resource for lead alloy waste ($/kg) 

𝑅𝑌  :  Total revenue from lead alloy ($) 

𝑅𝑍  :  Total revenue from plastic ($) 

𝐶𝑂𝑃 :  Total purchase cost ($) 

𝐶𝑂𝐷 :  Total recycling cost ($) 

𝐶𝑂𝐻 :  Total holding cost of the batteries, lead alloy and plastics ($) 

𝐶𝑇𝑋 :  Total transportation cost of batteries ($) 

𝐶𝑇𝑌 :  Total transportation cost of lead alloy ($) 

𝐶𝑇𝑍 :  Total transportation cost of plastic ($) 

𝐶𝑂𝐸 :  Total cost of environmental impact ($) 

Objective function; 

Max profit = Total revenue – Total Cost 

Max Z = (𝑅𝑌 + 𝑅𝑍) − (𝐶𝑂𝑃 + 𝐶𝑂𝐷 +  𝐶𝑂𝐻 + 𝐶𝑇𝑋 + 𝐶𝑇𝑌 + 𝐶𝑇𝑍 + 𝐶𝑂𝐸) 

Max Z = [∑ ∑ 𝑌𝑟𝑡 . 𝑆𝑌𝑟𝑡
𝑚
𝑟=1

𝑇
𝑡=1 + ∑ ∑ 𝑍𝑟𝑡 . 𝑆𝑍𝑟𝑡

𝑚
𝑟=1

𝑇
𝑡=1 ] - [∑ ∑ 𝑋𝑝𝑡 . 𝐵𝑋𝑝𝑡

𝑛
𝑝=1

𝑇
𝑡=1 + ∑ ∑ 𝐷. 𝑋𝑝𝑡

𝑛
𝑝=1

𝑇
𝑡=1 +

(∑ 𝑋𝐼𝑡 . 𝐻𝑋𝑡
𝑇
𝑡=1 + ∑ 𝑍𝐼𝑡 . 𝐻𝑍𝑡

𝑇
𝑡=1 ) + ∑ ∑ (

𝑋𝑡𝑝

𝐾𝑋
. 𝐹𝑋 + 𝑉𝑋. 𝑋𝑡𝑝) + ∑ ∑ (

𝑌𝑟𝑡

𝐾𝑌
. 𝐹𝑌 +𝑚

𝑟=1
𝑇
𝑡=1

𝑛
𝑝=1

𝑇
𝑡=1

𝑉𝑌. 𝑌𝑟𝑡) + ∑ ∑ (
𝑍𝑟𝑡

𝐾𝑍
. 𝐹𝑍 + 𝑉𝑍. 𝑍𝑟𝑡) +  (

2

𝐴
) (𝐸𝑒 + 𝐸𝑎) (∑ ∑

𝑌𝑟𝑡

𝐾𝑌
. 𝐿𝑌𝑟 +𝑚

𝑟=1
𝑇
𝑡=1 ∑ ∑

𝑍𝑟𝑡

𝐾𝑍
. 𝐿𝑍𝑟 +𝑚

𝑟=1
𝑇
𝑡=1

𝑚
𝑟=1

𝑇
𝑡=1

∑ ∑
𝑋𝑝𝑡

𝐾𝑋
. 𝐿𝑋𝑝

𝑛
𝑝=1

𝑇
𝑡=1 ) + 𝐸𝑆 ∑ ∑ 𝑋𝑝𝑡

𝑛
𝑝=1

𝑇
𝑡=1 ]       (1) 

where: 

𝑅𝑌 = ∑ ∑ 𝑌𝑟𝑡 . 𝑆𝑌𝑟𝑡
𝑚
𝑟=1

𝑇
𝑡=1                         (1.1) 

𝑅𝑍 = ∑ ∑ 𝑍𝑟𝑡 . 𝑆𝑍𝑟𝑡
𝑚
𝑟=1

𝑇
𝑡=1            (1.2) 

𝐶𝑂𝑃 = ∑ ∑ 𝑋𝑝𝑡 . 𝐵𝑋𝑝𝑡
𝑛
𝑝=1

𝑇
𝑡=1         (1.3) 

𝐶𝑂𝐷 = ∑ ∑ 𝐷. 𝑋𝑝𝑡
𝑛
𝑝=1

𝑡
𝑡=1            (1.4) 

𝐶𝑂𝐻 = ∑ 𝑋𝐼𝑡. 𝐻𝑋𝑡
𝑇
𝑡=1 + ∑ 𝑍𝐼𝑡. 𝐻𝑍𝑡

𝑇
𝑡=1             (1.5) 

𝐶𝑇𝑋 = ∑ ∑
𝑋𝑝𝑡

𝐾𝑋
. 𝐹𝑋 + 𝑉𝑋. 𝑋𝑝𝑡

𝑛
𝑝=1

𝑇
𝑡=1            (1.6) 

𝐶𝑇𝑌 = ∑ ∑
𝑌𝑟𝑡

𝐾𝑌
. 𝐹𝑌 + 𝑉𝑌. 𝑌𝑟𝑡

𝑚
𝑟=1

𝑇
𝑡=1            (1.7) 

𝐶𝑇𝑍 = ∑ ∑
𝑍𝑟𝑡

𝐾𝑍
. 𝐹𝑍 + 𝑉𝑍. 𝑍𝑟𝑡

𝑚
𝑟=1

𝑇
𝑡=1          (1.8) 

𝐶𝑂𝐸 =  (
2

𝐴
) (𝐸𝑒 + 𝐸𝑎) (∑ ∑

𝑌𝑟𝑡

𝐾𝑌
. 𝐿𝑌𝑟 +𝑚

𝑟=1
𝑇
𝑡=1 ∑ ∑

𝑍𝑟𝑡

𝐾𝑍
. 𝐿𝑍𝑟 + ∑ ∑

𝑋𝑝𝑡

𝐾𝑋
. 𝐿𝑋𝑝

𝑛
𝑝=1

𝑇
𝑡=1

𝑚
𝑟=1

𝑇
𝑡=1 ) +

 𝐸𝑆 ∑ ∑ 𝑋𝑝𝑡
𝑛
𝑝=1

𝑇
𝑡=1      (1.9) 

Constraints; 

∑ 𝑌𝑡𝑟 =𝑚
𝑟=1  ∑ (𝑋𝑝𝑡 . 𝑃𝑌)𝑛

𝑝=1                       (2) 

∑ 𝑍𝑡𝑟 =𝑚
𝑟=1 ∑ (𝑋𝑝𝑡 . 𝑃𝑍)𝑛

𝑝=1                                      (3) 

∑ ∑ 𝑋𝑝𝑡
𝑛
𝑝=1

𝑇
𝑡=1 + 𝑋𝐼𝑡−1 − 𝑋𝐼𝑡  ≤

𝑄𝑌𝑟𝑡

𝑃𝑌
+

𝑄𝑍𝑟𝑡

𝑃𝑍
       (4) 
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∑ ∑ 𝑌𝑟𝑡
𝑚
𝑟=1

𝑇
𝑡=1 + 𝑌𝐼𝑡−1 − 𝑌𝐼𝑡 ≤ 𝑄𝑌𝑟           (5) 

∑ ∑ 𝑍𝑟𝑡
𝑚
𝑟=1

𝑇
𝑡=1 + 𝑍𝐼𝑡−1 − 𝑍𝐼𝑡 ≤ 𝑄𝑍𝑟           (6)  

𝑆𝑆𝑋 ≤ 𝑋𝐼𝑡 ≤ 𝐼𝑋𝑚𝑎𝑥          (7)  

𝑆𝑆𝑌 ≤ 𝑌𝐼𝑡 ≤ 𝐼𝑌𝑚𝑎𝑥          (8)  

𝑆𝑆𝑍 ≤ 𝐼𝑍𝑡 ≤ 𝐼𝑍𝑚𝑎𝑥          (9)  

  𝑋𝑝𝑡 ≤ 𝑄𝑋𝑝𝑡          (10) 

  𝑌𝑟𝑡 ≤ 𝑄𝑌𝑝𝑡          (11)  

  𝑍𝑟𝑡 ≤ 𝑄𝑍𝑟𝑡          (12)  

  𝑋𝑝𝑡 , 𝑌𝑟𝑡, 𝑍𝑟𝑡 , 𝑋𝐼𝑡, 𝑌𝐼𝑡 , 𝑍𝐼𝑡, ∀𝑡, 𝑝, 𝑟 ≥ 0 (Non negativity)   (13) 

According to Equation 1, the objective function is constructed to maximize total profit. The 

components of total cost are detailed in Equations 1.11.9 with respect to purchase cost, holding 

cost, transportation cost, recycling cost and environmental impact cost. Some constraints exist 

with the particular conditions, so demand, supply and inventory must be configured properly. 

Constraints (2) and (3) have the aim of balancing the supply and demand of lead alloy and plastic, 

respectively. Constraints (4), (5) and (6) configure simultaneously between inventories and 

recycling, so that the quantity of batteries, lead alloy and plastic produced for both do not exceed 

demand. Constraints (7), (8) and (9) ensure that the inventory can be controlled in a bound amount 

within a safety stock and maximum storage capacity. Constraints (10), (11) and (12) ensure that 

the quantity of batteries, lead alloy and plastic produced by the recycling process is lower than 

demand. 

 

4.  NUMERICAL RESULTS 

In the study, six collection centers, one recycling center, four lead alloy manufacturers and five 

plastics manufacturers are involved in the RL network model and LINGO® is used to solve the 

RL problem. The optimal solution results of the proposed RL are shown in Table 1. 

Table 2 shows that the decision to purchase recycled batteries by the recycling center is from 

collection centre 2, collection centre 3, collection centre 4 and collection centre 5, with purchase 

quantity varying in each period, while collection centre 1 and collection centre 6 were not selected 

as suppliers. 

The optimal solutions for recycled lead alloy and plastics supply for the factories are shown in 

Table 3, which indicates that total supply of lead alloy and plastics varied in each period and 

between factories. The inventory of recycled batteries, lead alloy and plastics is shown in table 

4, which indicates that optimal storage for recycled batteries, lead and plastic did not change in 

each period of time. 

4.1. Sensitivity Analysis 

Sensitivity analysis was conducted on several parameter changes, such as transportation and 

disassembly costs, to determine the level of influences on changes in profit and service level that 

influence the safety stock of recycled batteries, lead alloy and plastics, as well as changes in their 

holding costs. 

Profit changes = 
𝑧 

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
      (14) 

where z is the average value of the reduction in profit ((Yn)-(Yn+1)), and reduction interval is 

equal to difference in value of parameter change. 
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Table 1 Optimal recycling center battery orders  

Recycling centre purchase of batteries (kg) 

Collection centre 1 Collection centre 2 Collection centre 3 

Availability 
Order 

decision 
Availability 

Order 

decision 
Availability 

Order 

decision 

10,500 0 10,500 10,500 9,500 9,500 

9,900 0 9,000 9,000 9,200 6,254 

10,200 0 10,800 4,394 9,400 9,400 

10,000 0 10,200 8,148 9,800 9,800 

Collection centre 4 Collection centre 5 Collection centre 6 

Availability 
Order 

decision 
Availability 

Order 

decision 
Availability 

Order 

decision 

9,000 9,000 10,800 5,251.9 5,000 0 

9,500 9,500 10,500 10,500 6,000 0 

8,500 8,500 10,200 10,200 5,200 0 

9,000 9,000 11,000 11,000 5,000 0 

 

Table 2 Demand vs. supply of lead alloy and plastics 

Optimal supply of  lead alloy (kg) 

Factory 1 Factory 2 Factory 3 Factory 4 

Demand Supply Demand Supply Demand Supply Demand Supply 

12,000 12,000 9,000 3,551 13,000 0 5,000 5,000 

15,000 15,000 8,000 4,314 10,000 0 2,000 2,000 

14,500 14,500 5,000 9,96.6 8,000 0 4,000 4,000 

14,000 14,000 10,000 5,769 8,000 0 3,000 3,000 
 

Optimal supply of  plastics (kg) 

t Factory 1 Factory 2 Factory 3 Factory 4 Factory 5 

 Demand Supply Demand Supply Demand Supply Demand Supply Demand Supply 

1 2,000 2,000 1,000 1,000 5,000 5,000 3,000 3,000 2,000 303 

2 2,500 2,500 1,500 1,500 6,000 6,000 2,000 1,723 1,500 0 

3 2,000 2,000 2,000 2,000 5,000 5,000 2,000 1,723 1,500 0 

4 2,700 2,700 1,800 1,800 6,000 6,000 2,000 2,000 1,800 23.13 

 

Table 3 Optimal storage solution 

Battery storage (𝑋𝐼)(kg) 
Lead alloy storage 

(𝑌𝐼)(kg) 

Plastic storage 

(𝑍𝐼)(kg) 

900 600 600 

900 600 600 

900 600 600 

900 600 600 

 

4.2. Transportation Cost and Disassembly Cost vs. Profit 

Discussion of the tradeoffs between the transportation costs and profit of firms has been made 

previously by Thisse and Perreur (1977) in order to understand the point of maximum profit and 

minimum total transportation costs.  The findings of their study are in line with the results of this 

research, showing that there is no change in the decision variables for the purchase quantity of 

unused batteries, the sales quantity of lead alloy and plastic, and the inventory of unused batteries, 

lead alloy and plastic, as the consequences of the change in transportation costs. The change has 

an effect by reducing total profit by 2.68% on average, along with the increase in fixed 

transportation costs. 

There is no change in the decision variables for the purchase quantity of unused batteries, or the 

sales quantity of lead alloy and plastic, as consequences of the increase in recycling costs. 
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Meanwhile, the change in recycling costs does not affect the inventory of unused batteries, lead 

alloy or plastic. The change in recycling costs reduces total profit by 64.36% on average, along 

with the increase in recycling costs (see Figure 4b).  

 

  
(a) (b) 

Figure 4 Tradeoffs between: (a) Transportation cost vs. profit; (b) Recycling cost vs. profit 

 

4.3. Service Level (Safety Stock) vs. Profit 

An investigation into the link between service level and profit is important to understand the 

function of service operations and a firm’s profitability (Kamakura et al., 2002). The results of 

this study indicate that the change in unused battery service level, which can be a linear 

relationship with safety stock, does not affect the decision variables for the purchase quantity of 

unused batteries, the sales quantity of lead alloy and plastic, and the inventory of unused batteries, 

lead alloy and plastic.  The lower service level value causes safety stock to decline (see Figure 

5). The change in the service level of unused batteries causes total profit to decline by an average 

of 0.36% with every increase of service level of 5%.  

 

 

Figure 5 Sensitivity of service level of unused batteries to total profit 

 

The change in lead alloy service level does not affect the decision variables for the purchase 

quantity of unused batteries, the sales quantity of lead alloy and plastic, or the inventory of unused 

batteries, lead alloy and plastic.  The lower service level causes total profit to decrease (see Figure 

6a). Furthermore, the change in the service level of lead alloy causes total profit to decline by an 

average of 4.75% with every increase of service level of 5%. 

There is a change in the decision variables for the purchase quantity of unused batteries, and the 

sales quantity of lead alloy and plastic, as consequences of the change in service level, whereas 

the inventory of unused batteries, lead alloy and plastic does not change (see Figure 6b). The 

change in the service level of plastic causes total profit to decline by an average of 5% with every 

increase of service level of 5%. These results are relevant to the finding of previous research, 

which showed that the replenishment quantity of a product affects service level (Minner & 

Transchel, 2010). 
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(a) (b) 

Figure 6 Safety stock of: (a) lead alloy vs. profit; (b) plastic vs. profit 

 

5.   CONCLUSION 

Most researchers in developing a mathematical model of RL networks have only considered the 

costs associated with transportation and disassembly costs, while RL network models of recycled 

batteries have been paid little attention in terms of the inclusion of environmental implications. 

This study has developed a mathematical model using linear programming for the RL network 

of battery recycling with multi-period planning. The proposed model takes into account various 

parameters, including the holding cost of batteries, lead alloy and plastics. The results indicate 

that the parameters associated with transportation, disassembly and inventory decisions, such as 

holding costs and service levels, impact significantly on profit. 

The results of the sensitivity analysis show that the manufacturing process in the recycling centers 

is interconnected with the supply and demand from the collection centers and factories 

respectively. The development of mathematical models of RL in further research needs to 

consider the forward logistic network for closed loop supply chain purposes. Integration of both 

flows of the logistic network would improve the performance of the model, as well as the level 

of implication of associated parameter changes to the broader supply chain. 
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