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ABSTRACT 

This research addresses the problem of finding a minimum Hamming Weight by proposing a 

left-to-right recoding of integers (from the most significant bit to the less significant one). This 

representation is the enhanced and modified version of a well-known recoding method called 

Generalized Non-Adjacent Form (G-NAF). Scanning the digits from the left-to-right is called 

Modified Generalized Signed Digit Non-Adjacent Form (MGSDNAF), which unlike the G-

NAF, presents the ‘nice property’ to be obtained. A ‘nice property’ is one that is based on 

intuition and is  particularly desirable to be obtained in a given context. This processing 

direction is of great importance because a table of pre-computed values may be used to speed 

up the scalar multiplication only for that direction. A subsequent advantage is that recoding the 

exponent in advance is not required. This results in better performances in both running time 

and memory space. This representation method can reduce the Hamming Weight of integers 

from about 21.6% for radix 3 to 15.1% for radix 9. These numbers for G-NAF recoding are 

16.7% and 8.9% respectively. Comparing these numbers together shows that efficiency of the 

proposed method in reducing the Hamming Weight is more than the efficiency of G-NAF, 

which is from 30% (for radix 3) to more than 65% (for radix 9) more efficient in reducing the 

Hamming Weight. Finally, two radix 3 single scalar multiplication methods for Elliptic Curve 

Cryptography (ECC), which are based on G-NAF and Left-to-Right MGSDNAF, are compared 

in order to examine the application of the proposed method in cryptography. The results show 

that the proposed method can reduce the number of underlying arithmetic operations in single 

scalar multiplication by 14.1% while G-NAF can only reduce this number by 11.5%. 
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1. INTRODUCTION 

Modular exponentiation is one of the most time-consuming operations in most of cryptosystems 

(Hankerson et al., 2000). Therefore, improving the efficiency of the algorithm which performs 

this operation is very important due to its direct impact on the performance of the resulting 

protocol of cryptography. To compute g
m 

(g raised to the power of m) basically two main types 

of exponentiation might be basically distinguished. In one type, the base (g) is fixed and the 

exponent (m) varies (e.g. ElGamal cryptosystems) (ElGamal, 1985; Menezes et al., 1997) while 

in the other type, there is a variable base (g) and a fixed exponent (m) (e.g. RSA cryptosystems) 

(Rivest et al., 1978; Koc, 1994). The current study is mainly concerned with the first type of 

exponentiation. Further use of this method is demonstrated when inverses can be computed 
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(virtually) for free (e.g. elliptic curves) (Morain & Olivos, 1990). The main idea is to enhance 

the effectiveness of multiplication by decreasing the Hamming Weight of the exponent. This 

study places an emphasis on elliptic curves defined over binary fields in order to show the 

application of the proposed method in Elliptic Curve Cryptography. 

One of the most well-known representations of integers is Generalized Non-Adjacent Form (G-

NAF) which is known as an efficient representation for radix-r integers (Clark & Liang, 1973; 

Muir, 2007). Clark and Liang’s algorithm to build a G-NAF scans the number from the least 

significant digit to the most significant digit. The Hamming Weight (average density of non-

zero digits) of this formation is asymptotically  with (r-1) pre-computed points. For 

example, the Hamming Weight of the standard radix-r representation is , so for r = 3 this 

number would be 0.67 with 2 pre-computed points. In the same radix 3, G-NAF has the 

average of 0.5 non-zero density with the same amount of pre-computed points. For that reason, 

the G-NAF can improve the efficiency of computing the paring based cryptosystem by making 

the scalar multiplication more efficient. Moreover, the non-zero density can be also reduced by 

adding new digits to the digit set and making the digit set larger.   

Computing the scalar multiplication in Elliptic Curve Cryptography (ECC) is a good example. 

ECC requires computation of mP in the following form shown in Equation 1: 
 

 
(1) 

 

In Equation 1, m is an integer and P is a point on an elliptic curve. The two most important 

algorithms for computing mP are illustrated in Figures 1a and 1b, (Muir, 2007). 

In both algorithms, a signed radix-r representation of the number m would be used instead of its 

normal presentation. The main difference of these two algorithms is the way that they process 

the digits. The algorithm shown in Figure 1a starts the process of the digits of m, from the less 

significant digit (right-to-left approach) and the one shown in Figure 1b performs the process 

from the most significant digit of m (left-to-right approach).  

 

  

Figure 1a Right-to-Left radix-r method of 

computing mP (Muir, 2007) 
Figure 1b. Left-to-Right radix-r method of 

computing mP (Muir, 2007) 
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Since these two algorithms are not merely limited to some specific signed radix-r 

representations of m, there is no specific limitation in using other representation method. 

However, choosing a minimal weight representation can improve the algorithms’ efficiency. 

The reason is that for each non-zero digit in m, an elliptic curve addition (or subtraction) should 

be performed, so less Hamming Weight means a fewer number of additions (or subtractions). 

The algorithm which performs from left-to-right (Figure 1b), is generally preferred because in 

this approach, if a pre-computed mP is required for different values of m, then the values of Pi, 

which will be set in the first loop, can be pre-computed and stored in advance. 

Joye and Yen (2002) proposed a representation method which is carried out from left-to-right. 

Although their work has the same Hamming Weight result as G-NAF (Clark & Liang, 1973), 

the outputs are slightly different. In 2015, their method was used by Eghdamian and Samsudin 

to propose a modified left-to-right radix-r representation (Eghdamian & Samsudin, 2015a). 

Later on, MGSDNAF (Eghdamian & Samsudin, 2015b) which was an improved version of G-

NAF and MGNAF (Eghdamian & Samsudin, 2014) was presented. This method can represent 

radix-r integers with less Hamming Weight than a Generalized Non-Adjacent Form. 

 

2. MGSDNAF 

The proposed method by Eghdamian and Samsudin (2015b) is called Modified Generalized 

Signed Digit Non-Adjacent Form or MGSDNAF. Since the main weakness of MGNAF is the 

size of its digit set, MGSDNAF was designed to reduce the size of MGNAF’s digit set, while 

keeping it as efficient as the original MGNAF (Eghdamian & Samsudin, 2014). During 

MGNAF recoding process of an integer in radix , a sequence of one non-zero digit (i.e. ) with 

length of n as shown in Equation 2: 

 

 
(2) 

 

will change as shown in Equation 3 to: 

 

 
(3) 

 

Based on MGNAF method the , would be added to the first digit, next to this sequence 

(left side) we consider as . This addition results in the new digits in MGNAF’s digit set. 

Therefore, the possibilities of  should be calculated in order to have the number of new 

extra digits created by MGNAF as shown in Equation 4:  

For radix : 

 

 (4) 

 

so  can be  different numbers, but if , then  would become , and adding 1 to 

any digit of the G-NAF’s digit set will not create any new digit which is not already in this set. 

In addition, if ,  would become , no new digit will be created by . For that 

reasons,  will have  new results and these results would be added to a digit which is  in 

Equation 2. The  ranges from 0 to  and because  is the first non-  digit next to the 
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sequence of s,  should be excluded from this range, so  can obtain  different values.  In 

conclusion, the number of new digits in the digit set can be calculated based on the possible 

values of  multiplied by possible values of . Therefore,  new digits would be 

created for the MGNAF algorithm for radix  in comparison with G-NAF. 

To reduce the digit-set size, the third step of MGNAF recoding method is modified and 

improved. In the proposed algorithm (MGSDNAF), after recoding a sequence of non-zero 

digits and adding  to the next digit y, the newly created digit ( ) will be checked in 

order to see whether it is greater than  or not. If so, the number will be deducted by  (i.e. 

radix) and the next digit will be increased by 1. With this new step, the number of extra digits in 

the digit set of MGSDNAF will be half of the numbers in MGNAF. 

For example, the following sequence (5) can be a part of an integer number in radix r as shown 

in Equation 5: 

 

 
(5) 

 

as it was mentioned before, the sequence (5) in MGNAF would be recoded to sequence (6) as 

shown in Equation 6: 

 

 
(6) 

 

This is considered as the last step for MGNAF. After that, the next digit ( ) would be checked 

for possible recoding while in MGDSNAF, the newly created digit ( ) would be checked 

and if it is greater than , then the sequence (6) would be recoded to sequence (7) as shown in 

Equation 7: 

 

 
(7) 

 

In terms of Hamming Weight, the experimental results show that the proposed method has 

similar Hamming Weight to MGNAF which is lower than G-NAF (see Table 1). 

 

Table 1 Hamming Weight comparison of G-NAF and the proposed method 

Radix G-NAF MGSDNAF 

2 33.33 33.33 

3 50 45.09 

4 60 53.38 

5 66.67 59.63 

6 71.43 64.61 

7 75 68.39 

8 77.78 71.47 

9 80 73.78 
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3. THE PROPOSED WORK 

Joye and Yen (2000) proposed a new recoding algorithm for radix 2 and higher. In fact, it was 

an extension of their own left-to-right NAF recoding algorithm (Joye & Yen, 2000). In this 

paper, the idea of Joye and Yen’s method (Joye & Yen, 2002) is adopted in order to propose a 

new left-to-right method for Modified Signed Digit Generalized Non-Adjacent Form (i.e. 

MGSDNAF (Eghdamian & Samsudin, 2015b). 

In the proposed algorithm, variable n indicates the length of the integer M. Moreover, bi shows 

the value of carry (i.e. borrow) that would be passed from the i-th digit M (which is shown as 

ai) to the next digit (ai+1). So the amount of the i-th digit of the new representation of M, is 

calculated based on bi (the carry that it will pass to the next digit), bi-1 (the carry that it will 

receive), and its current value. 

Algorithm: Given integer ,  , , this algorithm computes an 

integer representation with the same Hamming Weight as MGSDNAF for M in three main 

steps. 

Step 1: Set  ; Set ; Set ; Set ; Set ; Set ; Set 

; 

Step 2: Do step 3 while ; then the algorithm terminates with  as the new 

representation for M. 

Step 3: If , then 

  If , then  and ; 

  Else  and ; 

 Else consider the following cases. 

1) : Set , Set , Set  and Set 

 

2) : Set  and Set  

3) : Set  and Set  

4) : If ,  and  

then Set ; Set  if ,  and 

; otherwise Set  

5) : Set  and Set  

6) End case and Set  

 

4. RESULTS AND DISCUSSION 

Similar to the Left-to-Right MGNAF, this study also uses the main idea of Joye and Yen’s 

work in (Joye & Yen, 2002) to propose a new left-to-right method for MGSDNAF recoding. 

This left-to-right algorithm also finds the same non-zero digit sequences and recodes them with 

new method which is the modified version of Joye and Yen’s (2002) work. The result would be 

similar to the MGSDNAF recoding. The rest digits would be transformed with the same method 

as proposed in Joy and Yen’s method.  

For example: 
 

 (8) 
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In this example (8): all digits are in set of  and  and . In addition, 

four s made the same non-zero digit sequence with a length of four. 

The MGSDNAF algorithm starts from right (the least significant digit) and proceeds in the 

same way that G-NAF and MGNAF do until reaching the sequence of s. In that position, 

MGSDNAF recodes this sequence with a method similar to MGNAF. In the next step, after 

recoding the sequence of s, the MGSDNAF method checks whether the next digit is greater 

than half of the radix or not. If it is so, then the value of the radix would be deducted from that 

digit and the next digit would be increased by 1. Then, the MGSDNAF continues with other 

digits with the same method used in G-NAF and MGNAF until reaching the next same non-

zero digit sequence. So the number can be divided into three parts as follows in Equations 9 and 

10: 

 

 

 

 

(9) 

 

and the middle part would be changed to: 

 

 
(10) 

 

in which  would be added to . Now, if ( ) is greater than , then  would be 

reduced by  and  would be increased by 1. The Hamming Weight of the first and the third 

part would be the same as G-NAF and MGNAF, but transforming the same non-zero digit 

sequence with MGSDNAF method is the key to better Hamming Weight of this representation 

algorithm. 

In the same example, the left-to-right proposed method starts from left-to-right and proceeds as 

the method of Joye and Yen does until reaching the digit exactly before the same non-zero digit 

sequence. So this method checks two digits ahead. In this case, if they are equal, it means the 

current digit is the digit before the sequence and if this digit is greater than ,  would be set as 

1 (it means that this digit would be deducted by r). Then, it stores the value of the first digit of 

the sequence (i.e. ) in . From that point, the proposed method would set the carry for the 

next digit as  (i.e. ), as long as the next digit has the same value as . For 

example, the second x in the sequence would be recoded to: 

 

 (11) 

 

Since it is the second , both  and  are . So the result would be: 

 

 

             

    

                                                                        

                                                                    

(12) 

 

In conclusion, since the Hamming Weight of the same non-zero digit sequences would be 

similar to MGSDNAF and the rest would be similar to Joye and Yen’s method (Joye & Yen 

2002), the total Hamming Weight of the proposed algorithm would be similar to MGSDNAF. 
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5. APPLICATION OF THE PROPOSED METHOD 

To check the application of the proposed method in cryptography, a single scalar multiplication 

based on left-to-right MGSDNAF has been studied. The first step of this study was to calculate 

the frequency (percentage of appearance) of each digit related to the total number of digits in a 

number. This study has been done for normal presentation, G-NAF and the proposed method.  

The second step was calculating the number of operations in a simple single scalar 

multiplication process for each representation followed by comparison of these representations. 

This study only focuses on analysing the impact of Hamming Weight reduction on the number 

of total simple operations in a single scalar multiplication process in these methods. Therefore, 

no customization has been used to improve the operations. For sure, improving the operations 

or using some additional methods like windowing, using lookup tables or even using double 

base or multi base numbering systems can be helpful to increase the efficiency of the 

multiplication, but they might affect the results of the Hamming Weight reduction analysis. 

To apply the proposed method in ECC, radix 3 was chosen for the key size of 256 bits. 

Applying new methods for radixes higher than 3 in ECC might be more effective, however it 

needs more operations to be defined, while all needed operations for radix 3 are already 

available. About the key size, 256 bits is the current standard key size for Elliptic Curve 

Cryptography. Therefore, 1000 different random numbers with length of 256 bits were 

generated and all the results are the average results for these 1000 numbers. 

Then, the number of each digit of the digit set, ignoring their sign (for this example 
 0,
1

2
, 1, 2  

) 

for normal representation were counted and the frequency of each digit related to the total 

number of digits were calculated. After that, each of these 1000 random numbers were recoded 

with both methods, namely G-NAF and left-to-right MGSDNAF and same studies were applied 

on them again. The results are shown in Table 2. 

 

Table 2 The frequency (percent of appearance) of each digit related to the total 

number of digits 

Digit Normal (%) 
G-NAF 

(%) 

Left to Right 

MGSDNAF (%) 

0 33.3 50 55 

1/2 0 0 13.5 

1 33.3 33.5 20.5 

2 33.3 16.5 11 

 

In all implementation of ECC primitives, scalar multiplication is the computationally dominant 

operation. Several methods have been proposed to speed-up point multiplication. These 

methods use various representations of the base point (e.g. affine coordinates, projective 

coordinates), various representations of the scalar (e.g. binary, ternary, NAF, w-NAF), and 

various curve operations (e.g. additions, doublings, halvings, triplings) (Ciet et al., 2006). The 

computational cost (timing) of these curve operations depends on the cost of the arithmetic 

operations that have to be performed in the underlying field. In general, addition and 

subtraction in the underlying field are operations of negligible cost. 

First, randomly generated integer numbers were recoded with each method and the number of 

each digit of these numbers were counted. Then, the number of arithmetic operations used in a 

single scalar multiplication of an Elliptic Curve Cryptography process was calculated. To be 

more precise, the number of inversions, squarings and multiplications (that denote by [i], [s] 
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and [m], respectively) was taken into account for scalar multiplication based on normal 

presentation, G-NAF and the proposed left-to-right MGSDNAF. 

 

Table 3 Number of inversions [i], squarings [s] and multiplications [m], for 

different curve operations over F2
m

 using affine coordinates 

Curve operation Binary field 

P 2[m] 

P + Q 1[i] + 1[s] + 4[m] 

P + Q 1[i] + 1[s] + 2[m] 

2P 1[i] + 1[s] + 2[m] 

2P + Q 1[i] + 2[s] + 9[m] 

3P 1[i] + 4[s] + 7[m] 

3P + Q 2[i] + 3[s] + 9[m] 

 

The choice of parameters used for a specific implementation mostly depends upon the ratio, 

[i]/[m], between one inversion and one multiplication. In binary fields, it is assumed to be 

between 3 and 8 (Hankerson et al., 2000), whereas in prime fields it is between 30 and 50 (Fong 

et al., 2004). Furthermore, a squaring [s] is generally assumed to be roughly equal to 0.8[m] in 

prime fields and almost free in binary fields (see (Hankerson et al., 2000) for more details). 

Table 3 demonstrates the costs of the curve operations which are used in analysis. More details 

can be found in (Eisentrager et al., 2003; Ciet et al., 2006). 

Therefore, based on the number of operations (Table 2) and their costs (Table 3), the cost of 

doublings and additions in ECC process for each method is calculated under the assumptions 

that a field division costs roughly the same as inversion and i = 8m, s = free and Halving = 2m. 

As it is shown in Table 4, left-to-right MGSDNAF can increase the number of “deducted 

underlying arithmetic operations” from 276 for G-NAF to 337. This means that left-to-right 

MGSDNAF recoding can decrease the number of operations needed for a single scalar 

multiplication at about 14.1% in comparison to normal presentation. 

 

Table 4 Number of curve and field operations for 100-bit example in binary field 

 Normal G-NAF Left-to-Right MGSDNAF 

Operations [i] [s] [m] ≈Total
*
 [i] [s] [m] ≈Total [i] [s] [m] ≈Total 

Additions 66 99 363 891 50 66.5 215.5 615 45 56 194 554 

Triples 100 400 700 1500 100 400 700 1500 100 400 700 1500 

Total 166 499 1063 2391 150 466 915 2115 131.5 442 1002 2054 

*
All operations converted to [m]       

 

6. CONCLUSION 

This paper introduced a new algorithm for representing the radix-r integers with the intention of 

reducing the hamming weight and improving the efficiency of point multiplication in pairing-

base cryptosystems. In the proposed algorithm, the integer numbers will be recoded from left-

to-right (from the most significant digit to the list significant one) to a new form which has the 

same Hamming Weight as MGSDNAF. This approach is beneficial in terms of decreasing time 

and space complexities of some public-key cryptosystems such as ECC. Finally, the application 
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of the proposed algorithm on single scalar multiplication in Elliptic Curve Cryptography over 

binary fields was examined. 
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