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ABSTRACT 

A weather- influenced Maxwell's electromagnetic model for lightning activities has been 

considered.  Three governing equations were stated for further analysis. The charge dynamics, 

lightning branches and atmospheric factors were analyzed. The model was validated by 

analyzing ground data from the Davis-Pro weather station. The data collected was targeted for 

the month with the highest lightning activity. It was discovered that lightning occurs at the 

upper pressure level (under certain conditions that are stated in the thesis) while the low 

pressure level initiates an updraft, i.e. air rises and condenses into a cumulonimbus cloud. These 

findings present the keys to considering a lightning system as a source of alternative energy. 
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1. INTRODUCTION 

An in-depth analysis of lightning electric and magnetic fields have been explained by a few 

models like gas-dynamic models, electromagnetic models, distributed-circuit models, 

engineering models, etc. However, the errors noticed in the various models have informed a 

proactive effort to address the shortcomings of these models in practical applications. Many of 

the anomalies in lightning models have been due to aerosol loadings (Emetere et al., 2015a). 

Primarily, most lightning electromagnetic models involve a numerical solution of Maxwell’s 

equations to investigate its magnetic effects and the corresponding change in the current 

distribution along the lightning channel. The validity of the current distribution has attracted 

further arguments (Baba et al., 2005) especially as regards to the transverse electromagnetic 

(TEM) and the non-transverse electromagnetic (NTEM) data. One of the vital advantages of the 

current distribution along the lightning channel is the investigation and prediction of deleterious 

coupling of lightning fields, as it has-over the years affected various electric systems.  

Understanding the deleterious coupling of lightning fields is practically synonymous to the 

return stroke concept. 

From basic knowledge of lightning, the return stroke travels via a path known as channel. The 

return stroke channel acts as a conducting pathway for the current wave propagation, with the 

source being located at the ground. The theory of the return stroke concept has deluded most 

experimentalists as different measuring devices (Hussein et al., 2007; Rachidi et al., 2004; 

Tatematsu et al., 2004; Emetere et al., 2015a) had shown varying results. The sensitivity of the 

measuring devices are in no way relevant anymore as the prevailing global weather change 

alters charged particulate mobility both in the atmosphere and near earth surface (Emetere et al., 

2015a; Emetere et al., 2015b). 
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Therefore, the ab-initio concept of electromagnetism i.e. the Maxwell's equations needs to be 

revised to incorporate some salient global weather terms to capture-adequately the concept of 

return stroke (Emetere et al., 2015a). The objective of this paper is to show both mathematically 

and experimentally the abnormalities in the return stroke concept. The advantage of the paper is 

to initiate the mathematical framework of a lightning tracker panel. 

In the past, cogent work has been done by solving Maxwell's based model (Miller et al., 1973; 

Rakov & Uman, 1998) to dissolve a few of the mysteries of the return stroke concept. For 

example, the transmission line (TL) model was used to demonstrate the reproducibility of return 

strokes within microseconds (Schoene et al., 2003). The transmission model, as explained by 

Uman and McLain (1969) entails monitoring current wave injected at the bottom of the 

lightning channel that is traveling upward (return stroke) at constant velocity without signal 

scattering, attenuation or distortion, though in fact many authors have worked on the 

assumption-that the current wave signals do not attenuate (Lupo et al., 2000; Schoene et al., 

2003). In this paper, the theories of cloud-to-ground lightning were discussed so as to provide a 

mathematical framework of harnessing the potential of lightning as an alternative energy 

source. 
 

2. THEORIES OF CLOUD-TO-GROUND LIGHTNING 

The ab-initio calculations of Uman and McLain (1969), the horizontal, vertical and azimuth 

magnetic fields of the electromagnetic model are given in integral form in Equations 13, 

respectively below. 
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(3) 

 

r, is the horizontal distance between the channel and the observation point ;  is the 

permittivity of the vacuum; c, is the speed of light;  is the permeability of the vacuum; R, is 

the distance from the dipole to the observation point,  is the front time constant and  is 

the current carried by the dz’ dipole at time t. 

The mixing ratio (qx) of the cloud microphysics particles (x) are governed by the continuity 

equation of mass, which can be expressed as a balance of the advection (qxa), turbulence (qxt), 

sources (qxs) and sinks (qxd) of the hydrometeors. We shall be considering the one-dimensional 

cloud microphysics model, as shown in Equation 4, where: 
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(4) 

 

Also, the electric charge density mixing ( ) for the different parameters listed above is given 

as shown in Equation 5: 
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(5) 

 

The neutralization of the charges from these sources had already been reported by Ziegler and 

MacGorman (1994) as shown in Equation 6: 
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(6) 

 

where  is the net rate of charge density before the lightning,   is a threshold,  fp is 

the fraction to be neutralized and  is a correction to guarantee that same amount of negative 

and positive charges are neutralized as shown in Equation 7: 
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where  represents the spheres of the charged particulate and given as .  is the radius 

of the sphere. The production of positive and negative charged particulates in the atmosphere is 

mathematically represented by Srivastava and Tripathi (2010). The time dependent 

conservation equation for positive ions and negative ions are represented, respectively in 

Equations 8a & 8b as shown below: 
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where  are positive (negative) ion concentrations,   are positive (negative) ion attachment 

coefficients with droplets,  that are charged droplet concentrations having unit positive 

(negative) charge, S is the neutral droplet concentrations, e is the electronic charge, q is the ion 

production rate, α is the ion–ion recombination coefficient and  is vertical current density. 

The charge dynamics between the cloud and ground is adopted from the Navier-Stokes 

equation, i.e. as shown in Equation 9: 

 
𝜕𝑢

𝜕𝑡
+  𝑢. ∇ 𝑢 + ∇p = v∇u + ℱ 

 
(9) 

 

where u is the fluid velocity, v is the fluid viscosity, p is pressure and  is external force. 
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The idea of Navier-Stokes equation is that the earth is entirely dependent on the tenuous multi-

layers of gas that cling to the surface of the globe. Variations of temperature, pressure, and 

moisture content in the layers of air near the earth’s surface give rise to the dynamic effects 

known as weather. 

 

3. MATHEMATICAL FORMULATION OF A MODIFIED MAXWELL'S 

ELECTROMAGNETIC MODEL 

The weather-influenced Maxwell's electromagnetic model hinges on the following salient 

assumptions: 

a) The particles in each layer absorb energy, transform (electrical to kinetic energy) and 

excite more charges downward and 

b) The number of main channel from cloud to ground is negligible. 

The charged molecules are believed to spin. We propose that the nature of excited charge spin 

initiates the preliminary events of lightning. We therefore introduce the time-independent 

Schrödinger equation to account for its spin as follows in Equation 10: 

 

𝑖ℏ
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2𝑚
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(10) 

 

We applied the Navier-Stokes equation into the Schrödinger on the assumptions that  is 

insignificant and  as shown in Equation 11: 
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Here   , ,  

The langrangian density related to Equation 11 is given as shown in Equation 12: 
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We apply the minimum coupling rule to describe the interaction of  with the electrostatic 

Field,  

i.e.                                 where  

where  is the potential across atmospheric surfaces, A is potential across charged molecules,  

the total potential in the system, Vo is the potential on the surface of the charged air, Eo is the 

electric field and  is the width of the lightning strokes,  is the lightning potential,  is 

the Dybe length. Equation 12 transforms into Equation 13: 
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We apply the solution of the standing wave      in Equation 14 where E, B 

: , the lagrangian density takes the form in Equation 15: 
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Considering the lagrangian density of the particle in an electrostatic fields E1-E2 field of the 

atmospheric influence where   and  as shown in Equation 16: 
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(16) 

 

Here the total action of lagrangian density is a linear combination given as shown in Equation 

17: 

 

𝐷 = ℒ1 + ℒ𝑜   (17) 

 

From the basics of moving charge and the corresponding magnetic field they produced, we 

assumed that the charges mobility is maximum within the lightning channel i.e.   

and . As shown in Equation 18: 
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(18) 

 

Since lagrangian density is calculated as the difference of kinetic and the internal energy 

densities (Alejandro, 2003) i.e. , therefore Equation 18 becomes 
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(19) 

 

The calculation is as indicated in Equation 19, shown above. 

This yields three governing equations as shown in Equations 2022. 
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(22) 

 

Equations 2022 represent the linear form of electromagnetic model and it is synonymous with 

Equations 13, i.e. the horizontal, vertical and azimuth magnetic fields of the electromagnetic 

model. The internal energy is the varying energy, which is influenced by atmospheric 

disturbances, (e.g. air pressure, temperature, energy conversion due to collision of particulates, 
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etc.) from the cloud through the branching point or layers (as proposed in our model) to the 

ground. We propose that this process be translated to the magnitude of the momentum of the 

return stroke. Equation 20 represents the magnetic induction as a result of the atmospheric 

particulate charged dynamics. It also represent the effect of the spin factor ( ) on the general 

lightning system. We propose that the spin factor of each particulate defines the lightning type 

(e.g. cloud-cloud or cloud-to-ground) and the frequency of branching from the lightning 

channel. Equation 21 reveals the effect of the electrical pressure on lightning transmission. This 

electrical pressure in this context is almost synonymous to the atmospheric pressure. An 

increase in the electrical pressure in the channel increases the atmospheric pressure. Perhaps the 

difference between both pressures is that electrical pressure is triggered by high return stroke 

current which heats up the channel, while the atmospheric pressure is triggered by external 

factors like electrical pressure, differential heating, and convective activity, etc. The 

atmospheric pressure initiates an increase in the number of molecules, though it occurs when 

the electric field exceeds the threshold energy. Electrical pressure initiates the production of 

new electrons in the atmosphere which exceeds their recombination rate, leading to atmospheric 

electrical breakdown. The potential  expresses the potential at different layer heights 

(H) as proposed by our model. Here, we adopt a polynomial scheme, i.e. the basic Taylor's 

series. Our choice of Taylor's series is based on the reliable application of the scheme in various 

theoretical meteorological researches (Baer & Zhang, 1998; Randall & Konor, 2008) as shown 

in Equation 23: 
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Here   
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Equation 21 can be used to characterize electrically atmospheric pressure on the conditions that 

other weather factors, e.g. Coriolis, convective updraft, etc., are stable. Then, classical 

mechanics is applied as shown in Equation 24: 

 

−𝑞𝑉 = 𝑎 𝑉𝑜𝑒 2𝐸𝑟
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2

≈ 𝐻𝜌𝑔  (24) 

 

H is the vertical height from cloud to ground,  is the density across air layers (see Figure 1) 

and g is the acceleration due to gravity. Further on Equation 24, classical relationship is given 

as Equation 25. 

 

𝐻 ≈ 𝑉𝑜 ;  𝜌 ≈ 𝑒2𝐸𝑚𝑎𝑥
2𝐸𝑟

2
;  𝑔 ≈ 𝑎.  

(𝐻𝜌𝑔)1 +
2𝐸𝑜

𝑉𝑜
(𝐻𝜌𝑔)2 ≈ 𝐻𝜌𝑔 

 

(25) 

 

We assumed that the lightning channel is cylindrical and the values of electric and magnetic 

were adapted from the literature (Emetere, 2015; Glenn, 1977), i.e. as shown in Equations 

2627: 

 

𝐸1 = 𝛽𝐸𝑟𝑒𝑟𝑒
−𝑗𝛽𝑟 𝑠𝑖𝑛𝜃  (26) 

𝐸2 = 𝛽𝐸𝑟𝑒𝑟1𝑒
−𝑗𝛽𝑟 𝑐𝑜𝑠𝜃  (27) 
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Here, ,  is the spin factor which determines the electron spin along the 

horizontal component of the channel,  is the frequency of excited power,  represents the 

electrical permittivity;  represents the magnetic permeability, represents the radius or 

horizontal component of the channel, m is the mass of the charged particulate in the 

atmosphere. 

The boundary conditions for Equation 26 are shown in Equation 28: 

 

 
𝐸1 𝑟 = 𝐸𝛼 𝐻 . 𝛼

𝐸1 ∞ = 0
  
 

(28) 

 

The boundary conditions for Equation 27 are shown in Equation 29: 

 

 
𝐸2 𝑟 = 𝐸𝛾 𝐻 . 𝛾

𝐸2 ∞ = 0
  

 
(29) 

 

 and  are the attenuation factors of the electrical fields. 
 

4. GROUND DATA VALIDATION OF THE MODEL 

In this section, the Davis Vantage Pro2 weather station was used to validate Equation 25 using 

the month of May for 2012 and 2013. Past research in the same location (coastal region of 

South-West Nigeria) where the Davis weather station is located had shown that the highest 

number of lightning strikes occurs in the month of May within the years ranging from 2006-

2009 (Mowete & Adelabu, 2009). Figures 1a & 1b show the pressure profile, while Figure 2 

show the temperature profile. Figure 3 represents the air density for the month of May for 2012 

and 2013. 
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Figure 1a Pressure profile-air layers Figure 1b Pressure profile-active-site 
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Figure 2 Temperature profile-active-site Figure 3 Air density for May, 2012 and 2013 
 

Before lightning strikes, the temperature is inversely proportional to the pressure. This is 

evident in the patterns shown in Figure 1b & Figure 2 (compare the red circles on both figures). 

This is the basic reason of greater peaks for May, 2012 than in May, 2013. By observation, the 

peak values do represent the lightning occurrences (Emetere et al., 2014). Therefore, the peak 

of the pressure graph is directly proportional to the number of lightning occurrences.  We had 

earlier proposed the lightning branches are as a result of varying physical parameters in the air 

layer. Using the idea that when three or more peaks pass through the same line (Figure 1b), they 

are perceived to operate at same layer, we found a minimum of ten layers, depicting the 

branching points of the lightning channel. The lower level (L6 to L10 shown in Figure 1a) is 

where the pressure due to the surface of the charged air (  is located while the upper (L1 

to L5 shown in Figure 1a) is where the pressure, due to the charged dynamics ), is 

located. Lightning occurs at the upper pressure level (Emetere et al., 2014; Lee, 1986), while 

the low pressure level initiates an updraft, i.e. air rises and condenses into a cumulonimbus 

cloud (Huffines & Orville, 1999). We tried comparing the red circles in Figures 1 and 2 for 

May, 2012. Atmospheric temperature is not proportional to the pressure during a high 

magnitude lightning stroke (Figure 1b and Figure 2). We considered the air density at the upper 

pressure as shown in Figure 3. This shows the importance of  in determining the leader 

stroke in lightning process. 

The air density reveals the charge dynamics where low air density depicts how the Positive 

upward streamer rising from the ground to meet the stepped leader (see the arrows in Figure 3). 

This shows the importance of  in the electromagnetic model. Its full analysis is 

accomplished, i.e. using Equations 2629, though other conditions could be explored depending 

on the research objective. 

 
5. APPLICATION OF FINDINGS TO ELECTRICITY 

It has been estimated that one stroke of lightning carries very high electricity. Hence, it is 

paramount to our findings how it is possible that the mathematical framework can describe an 

imaginary lightning panel (Emetere et al., 2014). The lightning panel is expected to obey 

Maxwell's electromagnetic model which is hinged on the following salient assumption that 

particulates at each layer of the lightning panel have a medium intermolecular force to allow 

sudden excited particulates in the panel to be translated into electricity.  

Layer 'a' is the transparent coating, layer 'b' is the transparent surface, layer 'c' is the transparent 

anode layer, layer 'd' is the hole transport layer, layer 'e' is the photoactive layer and layer 'f' is 
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the hybridized cathode layer. Each arrangement is inserted into slots within the module-like 

solar cells. The case coating has a high thermal conductivity which harvests the excess heat into 

the water ways. The coordination of the very fast excited particles for layers 'c' to 'f' can be 

demonstrated by Equation 21 as shown in Equation 30: 

 
−𝑞𝑉

𝑎𝑉𝑜𝑒
2𝐸𝑚𝑎𝑥

2𝐸𝑟
2 = −𝑉𝑜 + 2𝐸𝑜  

 
(30) 

 

From the basic concept of electromotive force, Equation 30 is further calculated in Equations 

3131: 

−𝑞𝑉

𝑎𝑉𝑜𝑒2𝐸𝑚𝑎𝑥
2𝐸𝑟

2 = −𝑉𝑜 + 2𝐸𝑜 = 𝐸𝑜 + 𝑉 

 
(31) 

𝐸𝑜 = −𝑉  
𝑞

𝑎𝑉𝑜𝑒2𝐸𝑚𝑎𝑥
2𝐸𝑟

2 + 1  

 
(32) 

 

Equation 32 reveals a very sound mechanism to convey fast excited particulates to generate 

electricity in a typical lightning panel. However, further research maybe done to see the impact 

of the minus sign on the photoactive layer of the lightning panel. 

 

6. CONCLUSION 

The weather- influenced Maxwell's electromagnetic model has enabled the identification of key 

parameters, i.e.   and   which are key factors for building the lightning panel for 

energy production using lightning. Before lightning, the temperature is inversely proportional to 

the pressure. During lightning, the temperature is fairly stable, though it varies between air 

layers. Lightning branches are a result of varying physical parameters in the air layer.  

Lightning occurs at the upper pressure level, while the low pressure level initiates an updraft, 

i.e. air rises and condenses into a cumulonimbus cloud. From the governing Equations 2022, 

we have been able to explore the significance of Equation 21. The essence of the Equations 

2022 is to create a mathematical framework (Equation 32) for the construction of lightning 

tracking panel. Other aspects of the governing equations shall be explored extensively in further 

research. 
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