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ABSTRACT 

The use of composite materials with continuous fibers in the aircraft and aerospace industries 

requires a thorough knowledge of behaviors of these laminate composites under various loading 

conditions. Indeed, the aim of this work is to simulate linear and nonlinear behavior of a 

symmetric laminated composite under three-point bending tests. The modelization used is based 

on an analytical approximation that has been recently developed for isotropic materials. This 

approximation is still valid for the studied quasi-isotropic laminated composite because it is 

symmetric with a specific layer sequence. The overall response of laminate composite is 

determined from the behavior of each ply outside of their orthotropic axis. Two methods are 

used to calculate the equivalent longitudinal Young-modulus of the laminate. The result shows 

that when the deflection of the specimens is less than 2.5 times the thickness, the difference 

between the experimental and analytical curves is about 1% for the average global stresses 

method, and about 7.5% for the apparent bending modulus method. For large deflections, the 

difference relative to the first method remains less than 11% and the second method is about 

20%. 
 

Keywords:  Analytical model; Graphite-epoxy composite; Large deflection; Linear and 

nonlinear behavior; Three-point bending test 

 

1. INTRODUCTION 

Laminated composites are now widely used in advanced fields where greater accuracy 

requirements for modeling the mechanical behavior and design are increasingly required. 

Accurate knowledge of mechanical properties of a laminate structure is therefore fundamental. 

Indeed, the reinforcement-matrix mixture represents the basic structure of laminates, and there 

are several relationships for calculating the elastic constants of the laminate structure. Such 

characteristics are very sensitive to conditions for carrying out the testing of composite parts. It 

is therefore necessary to have data provided by suppliers of reinforcements and matrices, or to 

have obtained on par experimental tests conducted in the laboratory. The biaxial test is the ideal 

to validate the macroscopic behavior of composite structures. However, this type of testing is 

used less often because it is difficult to achieve and very expensive. An alternative way to 

biaxial testing is the three-point bending test that allows, in the case of some configurations, 

tracking the damage progression of a given specimen to the final failure point. Many authors, 

such as Vargas and Mujika (2011), Xiwen et al. (2013) and Moreno et al. (2016) were 
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interested in this kind of testing. In our case study, we use the experimental results developed 

by Echaabi et al. (1996). The latter observed various behaviors by varying the distance between 

the supports and the geometrical dimensions of the specimens in three-point bending tests. The 

non-linearity depends on the thickness ratio l/h effect, the orthotropy (having elastic properties 

in two or three planes, perpendicular to each other), the boundary conditions and the number of 

layers in the laminate. Our study is limited only to the thickness ratio l/h. A small ratio l/h leads 

to a linear behavior, whereas a larger ratio l/h presents a non-linear response (Dash & Singh, 

2010). 

Irhirane (Irhirane, 2007; Irhirane et al., 2010) used two formulations: an analytical method with 

transverse shearing and a finite element method. The first-order shear deformation theory 

(FSDT), which takes into account the transverse shearing strain with the implementation of 

corrective co-efficients, remains the best approach to characterize and simulate analytically the 

macroscopic curves and the sequences of failure for the two specimens ‘A’ and ‘D’ tested 

(Echaabi et al., 1996). Moreover, the use of the finite element method improves significantly 

the results on the level of breaking loads and flexural stiffness (Irhirane, 2007). The results of 

Irhirane’s work permit obtaining a good correlation with experimental curves in the linear 

behavior. The present work is focused on modeling the behavior of specimens with a non-

linear response which has not been studied as yet. 

The work of Werren and Norris (1959) concerned a quasi-isotropic composite laminate 

composed of glass fabric and polyester resin in which the sequence contained directions of 0°, 

±60°, 120°.  Moreover, for membrane isotropy, the number of layers at 60° must be equal to 

that of 60° and the same in each direction. These laminates are widely used, especially in 

aerospace because, by definition of isotropic, they offer good uniformity in stiffness and 

strength in all directions, and also a good opposition to the propagation of cracks (Vannucci & 

Verchery, 2001a). Furthermore, Werren and Norris (1959) gave the first, simple rule, 

sufficient, but not necessary for the isotropic laminates, if layers are to have uni-directional 

reinforcement, the laminate must have the same number q of layers in m different orientations, 

with m≥ 3, offset by a constant angle equal to π/m. Also, Vannucci and Verchery (2001b) gave 

other additional conditions to construct isotropic laminates by a polar method. Some exact 

solutions were given by Vong and Verchery (1986) with a piling sequence of 48 layers. 

Our work consists of the following steps:  first, to calculate the equivalent longitudinal elastic 

modulus of an isotropic laminate by the global average stresses method and the apparent 

flexural modulus method (Gay, 1997). Thereafter, this modulus is substituted in equations 

describing approximately the center-deflection of the homogeneous isotropic specimens under 

large deflection. This approximate approach, developed by Venetis and Sideridis (2015), 

describes correctly the center-deflection of three-point bending specimens using formalism 

reduced to two equations. It also has the advantage of being easy in application and perfectly 

suited to the usual engineering practices. 
 

2. METHODOLOGY 

2.1. Basic Formulations and Behavior Law 

A typical graphite/epoxy composite beam with n layers is shown in Figure 1 below. 

In the literature, there are many theories for modeling the non-linear behavior of laminated 

composite. These theories can be divided into three main categories (Thai & Kim, 2015): the 

Equivalent Single Layer (ESL), Layer-Wise (LW) and Zig-Zag (Fares & Elmarghany, 2008). 

Three other theories can be deduced from ESL: the classical plate theory (CPT), the first-order 

shear deformation theory (FSDT), which takes into account the transverse shearing strain (TSS) 
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and higher-order shear deformation theories (HSDT). Other simplified theories have been 

recently developed with fewer variables (Thai & Choi, 2013).  

 

 

Figure 1 A graphite-epoxy beam with n layers 
 

The previous theories are usually sufficient to analyze the elastic behavior of industrial 

structures. In our case, we used a modeling based on a first degree scheme which takes into 

account the transverse shearing strain and the correction of coefficients (Thai & Kim, 2015; 

Aydogdu, 2009). The displacement is given by Equation 1. 
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where u, v and w are displacements of the specimen in directions x, y and z respectively. u
0
, v

0
 

and w
0
 are displacements of the mid-plane and x , y are rotations around axes x and y. 

The strain field is given by the following Equation 2. 
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Substituting Equation 1 into Equation 2, the strain field can be expressed as shown in Equation 

3. 

 

bm z   (3) 

 

where the membrane strain and the bending strain fields are defined by Equation 4. 
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The transverse shear is given by Equation 5. 
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The macroscopic behavior law of laminate is given by the following Equation 6 (Irhirane, 2007; 

Irhirane et al., 2010). 
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Aij (i, j = 1, 2, 6) : the membrane stiffness matrix, 

Dij (i, j = 1, 2, 6) : the bending stiffness matrix, 

Bij  (i, j = 1, 2, 6) : the membrane/bending coupling stiffness matrix, 

Fij (i, j = 4,5)   : the transverse shear stiffness matrix, 

Mx , My  et Mxy  : the bending moments, 

Nx , Ny et Nxy  : the membrane forces, 

Qx et Qy  : the transverse shear forces 

2.2. Experimental Procedure 

In this study, the material used is a graphite-epoxy laminate with a layer sequence of [[+45/-

45/90/0]3]s (Figure 1). Dimensions of the test specimens and their mechanical properties are 

given respectively in Table 1 and Table 2 (Figure 6a). 

 

Table 1 Geometrical characteristics of specimens in mm 

Specimen 
Length 

l 

Distance l between 

supports 

Width 

b 

Thickness 

h 

Thickness ratio 

l/h 

A 75 57.5 25 3.6 16 

B 150 115.0 25 3.6 32 

C 150 136.5 25 3.6 38 

D 75 57.5 10 3.6 16 

E 150 115.0 10 3.6 32 

F 150 136.5 10 3.6 38 

 

Table 2 Mechanical properties of the laminate 

Longitudinal elastic modulus ELL (MPa) 116000 

Transverse elastic modulus ETT (MPa) 6900 

Poisson’s ratio νLT 0.3 

Shear modulus GLT (MPa) 5600 

 

3. RESULTS AND DISCUSSION 

3.1. Linear Behavior 

The support span length-to-specimen thickness ratio l/h = 16 for Specimens A and D allows us 

to predict a linear behavior of the variation of the center-deflection wc depending on the load P 

(Echaabi et al., 1996; Dash & Singh, 2010) (Figure 2). The Modeling is based on a first degree 

scheme which takes into account the transverse shearing strain and the correction of 

coefficients. The center deflection is given by the following relationship (Irhirane 2007; 

Irhirane et al., 2010) (Figure 2), which is shown in Equation 7. 
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 : the center deflection, 

P     : the applied load, 

b     : the width of the specimen, 

l      : the length of the specimen, 

  : element of the inverse of the laminate flexural stiffness matrix, 

  : element of the inverse of the transverse shear stiffness matrix 

 

 
Figure 2 Variation of the center-deflection wc according to the load P of the test specimen A 

3.2. Nonlinear Behavior 

The Specimens E and F, with a relatively large ratio l/h = 32 and l/h = 38, allow us to predict a 

non-linear behavior of the variation of the center-deflection wc depending on the load P 

(Echaabi et al., 1996; Dash & Singh, 2010). The center-deflection of specimens is analytically 

determined by an approximate approach. This approach is based on two equations linking the 

intrinsic characteristics of homogeneous isotropic beams and the angle α (α is the angle of 

rotation of the mid-plane with respect to the y axis at supports). First, we calculated the 

equivalent longitudinal modulus of the laminate considered as isotropic by two different 

methods (Gay, 1997) as shown below.   

3.2.1. Method of the average global stresses (E1) 

The law of membrane behavior is determined from the general law of the laminate as shown in 

Equation 8. 
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It is possible to replace the force flows Nx, Ny and Txy by average global stresses. Then we can 

deduce from Equation 8 the law of laminate membrane behavior made "homogeneous" as: 
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Terms of the above matrix l/h[A] can be written as shown in Equation 9 and below as in 

Equation 10. 
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The ratios hek  can be re-arranged to form the proportions 
P  of layers having an orientation 

. In our case, the layer sequence used is [[+45/-45/90/0]3]s (Figure 3) and as shown in 

Equation 11. 
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Knowing that the longitudinal elastic modulus 


11'E  of a layer out of these axes of orthotropy is 

given by (Gay, 1997) in Equation 12, (See Figure 4). 
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Figure 3 Laminate symbolization Figure 4 Main axes of laminate and orthotropic 

axes of a layer 

3.2.2. The apparent bending modulus method (E2) 

The apparent bending modulus is obtained from comparison with the constitutive relations of a 

considered isotropic and homogeneous laminate. Let us consider two beams: the first is from 

homogeneous and isotropic material and the second is from graphite-epoxy laminate with n 

layers such as illustrated in Figures 5a and 5b. The deflection is given by the following 

Equations 13a, 13b, and 14. 
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Figure 5a Homogeneous and isotropic beam Figure 5b Graphite-epoxy laminated beam 

3.2.3. The approximate approach describing the center-deflection of three-point bending test 

The non-linearity observed for high values of the thickness ratio l/h is mainly generated by the 

lateral component of the reaction X' (Figure 6b). Indeed, this component depends on α which is 

the angle of rotation of the mid-plane with respect to the y axis at supports. This normal force of 

compression X' tends to emphasize the deflection by deforming the beam in a direction 

perpendicular to the compression axis. However, for a small deflection or a small ratio l/h the 

angle α is still low and the reactions can be considered perpendicular to the beam, this leads to a 

linear behavior. The work of Venetis and Sideridis (2015) consists of introducing this buckling 

effect in an analytical model. By studying the equilibrium of a beam subjected to the three-point 

bending test, as shown in (Figure 6a), these authors developed two main Equations, first based 

on Equation 15 giving the center-deflection wc and the corresponding load P as a function of the 

angle α and two integrals that are solved approximately. Thus, these authors arrived at a final 

model reduced to two Equations 16 and 17, which are easy to apply as shown below. 

 

 
 

 

Figure 6 Experimental setup 
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3.3. Application and Analysis 

In our case study, 
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After substituting the equivalent longitudinal modulus E1 or E2 in Equations 16 and 17 and 

resolving them, we deducted the value of the center-deflection , the applied load P and the 

angle α. The result obtained shows a good correlation between the experimental and analytical 

curves for Specimens E and F. This is shown in Figure 7. 

The modulus of elasticity E1, is calculated by assimilating each layer to a spring by neglecting 

the interlaminar cohesion (Equations 10 and 11), which explains the difference observed in a 

large deflection. Hence, the modulus of elasticity E2, is calculated approximately from the 

elementary rigidity relative to each layer (Equation 14). That approximation has generated a 

large difference between the theoretical and experimental curve. 

 

 

 

Figure 7 Variation of the center-deflection wc according to the load P for:              

(a) Specimens E; and (b) Specimens F 

 

Many authors such as Zhang and Kim (2005), Nguyen-Van et al. (2014), Zhang and Cheung 

(2003) and Tran et al., (2015) have developed numerical and analytical approaches to link the 

state of the non-linear behavior bending with the main characteristics of the specimens. These 

(a) 

(b) 
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methods have a large number of unknown parameters to be determined which make it difficult 

to determine how to use it in the present study. We proposed an analytical model of the three-

point bending test of a symmetrical laminated material using a simple approximate approach, 

which accurately describes the center-deflection of specimens in a large deflection. 

Macroscopic experimental curves show linear behavior for the small ratio l/h which was 

modeled by Irhirane (Irhirane, 2007; Irhirane et al., 2010). However, the non-linear behavior 

observed for some values of the thickness ratio l/h has not been modeled until the present time. 

In this work, we applied the theory of Werren and Norris (1959) in order to consider the 

laminate as isotropic. Then by two methods, namely the average global stresses and the 

apparent bending modulus, we deducted the equivalent; then we introduced the analytical 

approach developed by Venetis and Sideridis (2015) for homogeneous beams under wide 

deflection; (This approach is still valid for symmetrical laminates with a quasi-isotropic 

response). The obtained results, by substituting the equivalent longitudinal elastic modulus into 

equations of the approximate approach, predict the non-linear experimental curves with greater 

accuracy. However, this approach remains valid only in those laminates having the same 

number q of layers in m different orientations, with m ≥ 3, offset by a constant angle equal to 

π/m. 

The material undergoes a successive damage before the first macroscopic failure. Indeed, 

microscopic failures may be observed first in the matrix but not in the fiber. The follow-up to 

this work is to introduce failure criteria to predict the failure mode and the stress associated 

with the first macroscopic failure. This would allow studying the impact of material damage to 

the beam’s structural behavior before the first failure. 

 
4. CONCLUSION 

All the results obtained with the proposed approximations, prove the difficulty of modeling 

non-linear behavior of laminated beams in bending. The approximate approach adopted in this 

work improves the results compared to those of the literature search. Furthermore, the thickness 

ratio l/h is a primary factor in geometrically non-linear bending. Indeed, the laminated 

composite beams with a small ratio l/h exhibit a linear behavior. For this case, the first-order 

shear deformation theory which takes into account the transverse shearing strain and the 

correction of coefficients is recommended for modeling the mechanical behavior of laminates. 

However, a laminated composite beam with a relatively large thickness ratio l/h presents a non-

linear behavior. Generally, modelization in this work following this approximate approach is 

strongly recommended, due to its simplicity in application and its admissible results. In 

particular, the average global stresses method calculates the equivalent modulus of elasticity 

with more precision. That explains the small difference from the experimental curve which is 

1%. The results, provided by this analytical model under large deflection, remain admissible by 

representing an error inferior to 11%. Whereas, the apparent bending modulus method presents 

a large difference which is the order of 7.5% in low deflection and 20% in large deflection that 

is justified by the approximations adopted by this method for the calculation of the equivalent 

modulus of elasticity. 
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