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ABSTRACT 

Ground moving radar target classification is one of the recent research issues that has arisen in 

an airborne ground moving target indicator (GMTI) scenario. This work presents a novel 

technique for classifying individual targets depending on their radar cross section (RCS) values. 

The RCS feature is evaluated using the Chebyshev polynomial. The radar captured target 

usually provides an imbalanced solution for classes that have lower numbers of pixels and that 

have similar characteristics. In this classification technique, the Chebyshev polynomial’s 

features have overcome the problem of confusion between target classes with similar 

characteristics. The Chebyshev polynomial highlights the RCS feature and is able to suppress 

the jammer signal. Classification has been performed by using the probability neural network 

(PNN) model. Finally, the classifier with the Chebyshev polynomial feature has been tested 

with an unknown RCS value. The proposed classification method can be used for classifying 

targets in a GMTI system under the warfield condition. 
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1. INTRODUCTION 

In automatic target recognition (ATR), one of the significant aims is to separate the different 

target types (Kubrusly & Levan, 2009; Nejad & Zakeri, 2011). Van Dorp and Groen (2008) 

used radar echo signals as characteristic features for target recognition. Over the past few years, 

technologies for target identification, border security, and controlled access to critical 

infrastructures have become very important issues. In this paper, we focus our attention on the 

classification of radar targets after clutter and jammer suppression in an airborne radar scenario. 

A simulated environment has been developed for capturing radar data. The simulation of the 

flying radar is done with the consideration of a ground clutter. The clutter is generated near the 

target zone, and the existence of a wideband Gaussian-distributed barrage-jammer is 

introduced. For clutter and jammer suppression, the sample matrix inversion (SMI) method has 

been used; this includes the clutter and jammer covariance matrix with the subspace-based 

Digital BeamForming (DBF) algorithm (Guerci, 2013). The DBF algorithm is employed to 

cover a detection area of a long range (2000 m) and an angular orientation of [90
o
, 35.26

o
] with 

respect to the RADAR platform flying in an airplane under the airborne scenario. The airplane 

actually carries spaceborne radar with its baseband source using a linear frequency-modulated 

(LFM) waveform. The radio frequency (RF) carrier is used as a single 3 GHz oscillator. The 

proposed target classification can be used in airborne radar for a ground moving target indicator
                                                      
*Corresponding author’s email: mousumi.g@smit.smu.edu.in, Tel. +91-9832076423 
Permalink/DOI: http://dx.doi.org/10.14716/ijtech.v7i5.2925 



Gupta et al. 841 

 

(GMTI) system under the warfield condition. In this paper, an ancient approach for the 

automatic classification of radar emitter signals is proposed. The targets are classified on the 

basis of returned energy to the radar cross section (RCS) values, which are taken at different 

aspect angles. The feature extraction stage is the most important (Zhang & Zhou, 2011; Zhang 

& Lei, 2011) in classification. In general, the Fourier transform has been used for some expert 

radar target recognition applications. Some authors (Golub et al., 1999) show the use of discrete 

wavelet transform in expert radar target recognition and suggest that this technique is very 

useful because the original feature space can be augmented by discrete wavelet transform 

coefficients. The proposed approach measures the features by using the Chebyshev 

polynomials. The coefficients of the Chebyshev polynomials are obtained by recurrence 

relation. Here, in this method, we have used first-order polynomials. The order of the 

polynomials controls the curvature of the surface, and in this paper, the polynomial 

interpolation technique is used to obtain general geographic patterns of change in a variable. 

Thus, we cannot use a higher-order polynomial for the feature value; otherwise, the general 

pattern of the target will be hidden. The proposed approach can easily be applied to any number 

of emitters and any number of measured features without the exponential growing of the 

required computations. The final results show the feasibility and effectiveness of the proposed 

classification approach. 

Chebyshev polynomials are computationally more efficient than other trigonometric functions, 

with very powerful non-linear approximation capacity for classification in the higher 

dimensional plane (Parikh et al., 2010). The Chebyshev polynomial has been used to find out 

the polynomial that passes through the points of the given radar captured data. Here, the dataset 

has a high degree of precision, so to approximate the function, we have chosen the collocation 

method to find the Chebyshev polynomial approximation. For accurate polynomial 

approximation, it is most important to find the exact boundary value for the function. The 

Chebyshev polynomial approximation is for the function f(x) over the interval [-1,1]. One of the 

distinguished properties of the Chebyshev polynomial is that it preserves the properties of the 

nodes because the error for approximation is a lot less. Chebyshev polynomial expansion 

efficiently approximates the application of a spectral graph wavelet transform, which is a 

specific example of a union of graph Fourier multipliers. In this paper, we have used the 

Chebyshev polynomial approximation method for evaluating the features of targets and show 

how this property can be used for radar target classification. After the feature extraction phase, 

a classification procedure follows. An artificial neural network (ANN) algorithm is employed to 

serve as a classifier. ANNs have recently been applied for various categories of data analysis. 

Commonly used network models and some extended forms include the multi-layer perceptron 

(MLP), Bayesian neural network (BNN) (King & Sinha, 2001), time adaptive self-organizing 

map (TASOM) (Shah-Hosseini & Safabakhsh, 2003), self-organizing tree algorithm (SOTA) 

(Mateos et al., 2002), etc. The probabilistic neural network that Specht (1998) introduced is 

often an excellent pattern classifier in practice. The network model is commonly regarded as 

one variant of radial basis networks due to the adopted radial transfer functions in the hidden 

layer, and it is essentially based on the well-known Bayesian classification technique. We have 

trained the probabilistic neural network (PNN) classifier with the Chebyshev polynomial 

feature set, and we form a practical automatic radar target classification scheme after the 

suppression of clutter and jammer in the airborne scenario. Figure 1 represents the block 

diagram for target detection in a GMTI scenario. 
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Figure 1 Block diagram for target detection in GMTI scenario 

 

2. RADAR SYSTEM DESIGN 

DBF technology (Guerci, 2013) has been designed for jammer and clutter suppression with 

uniform rectangular phased-array antennas in the MATLAB simulation model. The DBF 

algorithm is employed to cover a detection area of a long range (2000 m) and an angular 

orientation of [90
o
, -35.26

o
] with respect to the RADAR platform flying in an airplane under the 

airborne scenario. Utilizing the MATLAB object “phased.IsotropicAntennaElement,” the 

antenna elements are designed. Each antenna element has its operating frequency range [0.3 

GHz to 5 GHz]. However, the proposed spaceborne radar operates at RF = 3 GHz. The radar 

platform is located at a height of 1000 m above the battleground. Another object, 

“phased.LinearFMWaveform,” is used to design the baseband source of the airborne radar. The 

MATLAB object “phased.URA” (object constructs a uniform rectangular array) is used to 

construct the uniform rectangular array of a [10×10] dimension having an element spacing of 

0:05 m. The “phased.Radiator” object implements a narrowband signal radiator that up-converts 

the baseband signal to the RF of 3 GHz. Similarly, the “phased.Collector” object implements a 

narrowband signal collector, which collects the RF stimuli from each of the 100 elements of the 

URA and finally down-converts them to the baseband waveform. The input signals to the radar 

collector are multiple plane waves impinging on the entire array this way all collecting elements 

receive each plane wave. The target is designed to operate at 3 GHz, and its type is non-

fluctuating, having a mean RCS of 1 m
2
. The target platform is located at the coordinate of 

[1000, 1000, 0] in the ground plane. The target moves with a velocity of 30 m per sec. The 

presence of the Gaussian distributed jammer is considered in this scenario, and the location of 

the jammer is taken in the first case at [Azimuth=90
0
, Elevation=0

0
], in the second case at 

[Azimuth = 120
o
, Elevation = 0

o
], and similarly, in the third case at [Azimuth = 60

o
, Elevation = 

0
o
]. The sample matrix inversion method under a heavy jammer and clutter scenario gives rise 

to a signal-to-clutter and jammer ratio (SCJR) of 21.7 dB. Figure 2 shows the clutter and 

jammer condition in a GMTI scenario (Bhaskar et al., 2015). 

 

3. FEATURE EXTRACTION BY CHEBYSHEV POLYNOMIAL 

The range of values for radar raw data varies widely due to pulse repetition frequency and the 

wavelength of the radar, so it is always necessary to scale the data for further computation. In 

this paper, the raw data are first scaled, as feature extraction for the scaled data reduces the 

computational time and minimizes the error rate for polynomial approximation. Scaling has 

been done by dividing the whole dataset with the mean value. Figures 2, 4, 5, and 6 are figures 

for the scaled data. The scaled-data feature has been evaluated by using the Chebyshev 

polynomial technique. 
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Figure 2 Clutter and jammer condition in airborne scenario (Bhaskar et al., 2015) 

 

The Chebyshev polynomial has been generated by using the recurrence relation: 
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Since the Chebyshev polynomials are exactly orthogonal in the discrete coordinate space of the 

image, for an N×N image, we first seek discrete orthogonal polynomials tn(x) that satisfy the 

condition: 
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where m, n = 0,1,2,….N-1 and ).( mn is the squared norm of the polynomial set tn. The 

classical discrete Chebyshev polynomial (3) satisfies the property of orthogonality (1) with 
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where n= 0, 1, 2,..N-1 and have the following recurrences: 
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However, the Chebyshev polynomials as defined above, together with their norms, become 

numerically unstable for large values of N. Also, it can be easily verified that the magnitude of 

tn grows at the rate of N
n

. 

We therefore further scale the Chebyshev polynomials tn(x) by a factor N
n
, and in this way, it is 
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suitable for image analysis. Then, the Chebyshev polynomial can be defined as: 
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where p, q=0,1,2…..N-1 and 
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The image intensity function ),( yxf has a polynomial representation given by: 
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The coefficients pqT are the Chebyshev coefficients defined in Equation 4. The above result 

follows when the left-hand side of Equation 1 is applied as an operator to both sides of 

Equation 4. Here, the feature has been evaluated by the Chebyshev polynomial for several 

reasons: (i) Chebyshev polynomials are sequences of orthogonal functions defined for x [0,1], 

and (ii) the above recurrence relation for Chebyshev polynomials is readily amenable to 

efficient computation.  

The radar signal is nothing but the measurement of the Doppler of a signal. Due to the 

scattering of the atmospheric elements, the returned signal from atmospheric layers is very 

weak in terms of power. The received backscattered signals, called radar returns, are associated 

with a lot of noise. In this paper, we demonstrate how the Chebyshev polynomial co-efficient 

has been used as a feature extraction method. The optimality of the Chebyshev polynomial is 

that it preserves all theoretical properties, as it does not involve any kind of approximation. The 

optimality criterion of the Chebyshev polynomial with the Fourier transform is that it exhibits 

the narrowest main-lobe width for a selected/given side-lobe level. Also, the Chebyshev 

polynomial coefficient exhibits equal ripple for the specified side-lobe level. In the presence of 

the Gaussian distributed jammer, false targets are generated, and it is difficult to suppress or 

identify by radar, especially when the main-beam false target occurs. In this case, the 

distributional characteristics of the true and false targets are similar. Based on the recurrence 

relation, the Chebyshev polynomial is used. The novelty is its simple non-parametric technique 

for the identification of the true target. Chebyshev polynomials are used to construct new 

kernels and show their computational efficiency with the probabilistic neural net (PNN) 

classifier. 

 

4. PNN CLASSIFIER 

The PNN classifier uses the following estimator for the probability density function: 
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Equation 10 (Fausett, 2006) represents the estimation of the probability density functions of 

Af (x) and )(xfB  from the training patterns. In Equation 10, Aix  is the ith pattern from class A, n 

is the dimension of the input vectors, Am is the number of training patterns in class A, and σ is 

the smoothing parameters, which is equal to the standard deviation of the Gaussian distribution. 

The PNN classifiers use a strategy, is similar with Bayes’ probability strategy for error 

minimization, which allows for a strict mathematical proof of their working mechanics. When 

solving problems related to classification, the classic neural network estimates the density of 

probabilities for every class and by comparing them chooses the most probable class, i.e., the 

classifier applies each observation to one of several classes. 

 

5. EXPERIMENTAL RESULTS 

In the captured data, three classes of targets exist depending on their RCS values. The RCS 

values are: 1 m
2
 is considered class 1, 2.2 m

2
 is considered class 2, and 3.6 m

2
 is considered 

class 3. Figures 3, 5, and 7 contain the data plot for the class 1, class 2, and class 3 targets after 

clutter and jammer suppression. 

 

  

Figure 3 Plot for the original signal (RCS-1m
2
) Figure 4 Plot for the scaled signal (RCS-1m

2
) 

 

Figures 4, 6, and 8 include the plot of scaled data for the target classes 1, 2, and 3, respectively. 

 

  
Figure 5 Plot for the original signal (RCS-2.2m

2
) Figure 6 Plot for the scaled signal (RCS-2.2m

2
) 
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Figure 7 Plot for the original signal (RCS-3.6m

2
) Figure 8 Plot for the scaled signal (RCS-3.6m

2
) 

 

The main goal of this paper is to create a new target classification approach based on supervised 

classification, in which the characteristics of clusters are introduced to the classifier depending 

on their RCS values for classification. In our supervised classifier, sample pixels from the 

targets for three different classes are extracted, and then, Chebyshev polynomial coefficients of 

these pixels are used for training the method. 
 

  

Figure 9 Plot for three feature vectors evaluated by 

using Chebyshev polynomial 

Figure 10 Classification of unknown target via 

PNN classification approach 

 

In the training phase, the RCS data of the training target are collected in the compact range. 

Figure 9 includes the feature plot for three classes determined after evaluating Chebyshev 

polynomial coefficients through recurrence relation. Figure 10 includes the classification result 

obtained after using PNN classifier. The unknown target have the RCS of 1.6 m
2
. In this figure, 

the unknown classified target is shown by the red-colored dot. By visualizing this, it is easy to 

determine that the unknown target falls under the category of RCS 1 m
2
, which is labeled as 

class 1. 

 

6. COMPARISON WITH OTHER METHOD 

A comparison analysis with two different feature evaluation methods has been done on the 

same data. Ahmad and Sha'ameri (2015) proposed the ARTAC system by analyzing energy and 

frequency for various signals. They used the Monte Carlo simulation model. Du et al. (2016) 

proposed a micro-Doppler feature for discriminating between the targets. Table 1 shows the 
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classification accuracy with ARTAC, micro Doppler, and the Chebyshev polynomial feature 

extraction methodology, and a significant improvement was found with the Chebyshev 

polynomial feature. This shows the effectiveness of the proposed feature evaluation technique. 

 

Table 1 Comparison analysis with two different feature evaluation techniques 

Feature extraction method 
Signal-to-Noise 

ratio 
Classification accuracy 

ARTAC, energy, Frequency ≥13 dB 98.23% 

Micro Doppler ≥13 dB 98% 

Chebyshev Polynomial ≥13 dB 100% 

 

7. CONCLUSION 

In this paper, we have proposed a feature extraction method by using the Chebyshev 

polynomial technique for an airborne radar target. This method can be used for the automatic 

classification of an airborne radar target in a GMTI scenario when intra-class variances between 

the targets are significantly small. The translation trajectory is approximated by the Chebyshev 

polynomial as a feature and improves the approximation accuracy. The proposed methodology 

can be applied in a warfield GMTI scenario for the classification of targets depending on their 

RCS values. The method automates the entire radar target classification system in a GMTI 

scenario. The RCS feature represented by the Chebyshev polynomial coefficient provides a 

robust classification system for radar targets. 
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