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ABSTRACT 

A ship usually performs maneuvers under the influence of external forces and moments, such as 

wind, waves, and current. Therefore, it is important to understand the maneuvering behavior of 

ships under the action of external forces. This paper discusses the turning maneuvers of an 

Indonesian roro ferry under the combined influence of constant wind and regular waves using 

the mathematical modelling group (MMG). The ship’s position relative to the wave trough is 

added to the original MMG model to estimate the exciting forces and moment induced by the 

waves. The results of a numerical simulation show that the effect of wave height on turning 

ability is more significant for a small wavelength; this effect decreases as the wavelength 

increases. The effect of wavelength on the sway force and yaw moment is more significant 

compared with its effect on the surge force. The ship’s initial position relative to the wave 

trough does not have a significant effect on the turning characteristic and it can be neglected for 

the present study’s subject ship. Overall, the results of the present work compare well with 

published data. 
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1. INTRODUCTION 

The maneuvering performance of a ship during the initial design stage is typically predicted in 

calm water conditions. However, ships usually maneuver in the presence of external forces, 

such as wind, waves, and current. Therefore, it is important to understand the maneuvering 

behavior of a ship under the combined actions of the environmental forces. 

Some mathematical models for predicting the maneuvering of a ship in conditions of wind and 

waves have been developed by several authors. Fang et al. (2005) used a 6 degree of freedom (6 

DOF) nonlinear mathematical model to simulate a ship’s turning maneuver in waves by taking 

into account the effect of the wave encounter frequency on the inertia, damping, and linear 

hydrodynamic derivative of the forces and moments acting on the ship’s hull. A similiar 

approach was used by Zipfel and Maksoud (2011) to determine a ship’s maneuvering motion in 

regular waves. The frequency-dependent hydrodynamic coefficients were transferred to the 

time-domain using the impulse response function. A unified seakeeping and maneuvering 

theory with second-order regular waves was proposed by Skejic and Faltinsen (2008) to analyze 

the behavior of a ship in waves. Here, the wave drift force was estimated using a two-time scale 
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model to separate the low-frequency motion (maneuvering motion) and the high-frequency 

motion (seakeeping motion). The same method for estimating the wave drift force was used by 

Seo and Kim (2011) to predict ship maneuvering in waves using a combination between the 

mathematical modelling group (MMG) and seakeeping mathematical model. The second-order 

wave force was also used by Chroni et al. (2015) to investigate the effect of environmental 

forces on ship maneuvering with a 4 degree of freedom (4 DOF) mathematical model. Skejic 

(2013) also used the second-order wave force to simulate ship maneuvering in irregular waves. 

However, the two-time scale method seems to be inefficient because the solution to the 

seakeeping motion can be obtained after the maneuvering motion has been solved. 

The most practical method for predicting the maneuvering behavior of a ship in the initial 

design stage may be the MMG model because empirical formulas for estimating the 

coefficients of the hydrodynamic derivatives have been developed (Yoshimura & Masumoto, 

2012). Even the original MMG model is a pure maneuvering motion problem with a 3 DOF 

mathematical model; some researchers included the roll or heeling effect using a 4 DOF model. 

Fujiwara et al. (2006) and Paroka et al. (2015) used the MMG model to investigate the steady 

state equilibrium of a ship maneuvering in wind and waves. 

The discrepancy between the MMG model and the previously mentioned methods is the 

encounter frequency of forces and moments induced by the ship’s hull. In cases of long 

wavelengths in which the length of the wave is larger than the length of the ship, some authors 

neglected the effect of the encounter frequency on hydrodynamic forces and moments induced 

by the ship’s hull, although it was taken into account for the forces and moments induced by 

the waves (Munif & Umeda, 2000; Umeda & Hashimoto, 2002). Munif and Umeda (2000) 

showed that with long waves, the heave and pitch motion may not be significant . Following 

this assumption, the MMG model seems to be able to predict the turning characteristics of 

ships in waves. However, it is necessary to add a mathematical equation to the MMG model to 

describe the ship’s position relative to the wave. This is important because the forces and 

moments induced by the wave depend on the ship’s position in the wave surface. 

This paper discusses the turning maneuverability of a small Indonesian roro ferry under the 

combined action of wind and waves using the modified MMG model. The effect of the 

characteristics of the waves, such as wave height, wavelength, and the initial position of the 

ship relative to the wave, was investigated. For small ships, these wave characteristics may have 

a significant effect on the maneuvering performance as indicated by Fang et al. (2005). The 

wind velocity is assumed to be constant and to be uncorrelated with the wave characteristics. 

 

2. RESEARCH METHODOLOGY 

To describe the present mathematical model, two coordinate systems are used as shown in 

Figure 1. The first coordinate system, o-xoyozo, is fixed on the calm water surface and is used to 

describe the coordinates of the ship’s position and wave propagation, respectively. The second 

coordinate system, G-xyz, has its origin on the ship’s center of gravity, G, and moves with the 

ship’s motion. The symbols u, v, and r indicate the surge, sway, and yaw velocities, 

respectively. The drift angle is designated by β, and δ is used for the rudder angle. The propeller 

thrust is indicated by Tj and the heading angle is indicated by ψ. The angle of the wave direction 

ψW is assumed to be the same as the wind angle. 
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Figure 1 The coordinate systems 

 

According to Newton’s second law of motion and following the MMG model, the equation for 

a ship maneuvering in the combined action of wind and wave according to Fujiwara et al. 

(2006) is written as: 

 

 (1) 

 (2) 

 (3) 

 (4) 

 

Here, m, mx, and my indicate the ship’s mass, the added mass in the surge, and the added mass 

in the sway, respectively, while , and  are the surge, the sway, and the yaw accelerations, 

respectively. The subscripts H, P, R, A, and W indicate the hull, propeller, rudder, wind, and the 

wave forces and moments in the surge, sway, and yaw directions. Equation 1 is added to the 

MMG model (Equations 2 to 4) to take into account the effect of the ship’s position relative to 

the wave surface on the wave forces and moments. This equation was used by Fang et al. 

(2005) and Umeda and Hashimoto (2002) to estimate the wave forces and moments acting on a 

ship’s hull. Integration of Equation 1 over time results in the relative position of a ship’s center 

of gravity relative to the wave trough. Therefore, Equations 1 to 4 can be solved at the same 

time without separating the seakeeping and maneuvering motions. The symbol χ in Equation 1 

indicates the angle of the wave encounter relative to the ship heading angle. 

The forces and moments of the hull in Equations 2 to 4 are empirically estimated using the 

polynomial regression of the nondimensional hydrodyanmic derivatives (Yoshimura, 2005; 

Yoshimura & Masumoto, 2012). The ship’s resistance is estimated using a method developed 

by Holtrop and Mennen (1982). The propeller thrust is estimated using the equation proposed 

by Kijima et al. (1990). The thrust coefficient as a function of the advance coefficient are 

estimated based on statistical data of the open water test for B series propeller (Carlton, 2007). 

The rudder forces and moments are calculated using a formula proposed by Kijima et al. (1990) 

for a twin propeller and twin rudder. 

The forces and moments induced by the waves are estimated using formula proposed by Umeda 

and Hashimoto (2002). A correction factor, which depends on the block coefficient, is used to 

estimate the wave force in the surge direction (Ito et al., 2014). The equation for estimating the 

wave force in the surge and sway directions, as well as the wave moment in the yaw direction 

are shown in Equations 5 to 7. 
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(5) 

 

 

 

(6) 

𝑁𝑊 = 𝜌𝑔𝜁𝑊 sin 𝜒 𝐶1 𝑥 
𝐹𝐸

𝐴𝐸

𝑆 𝑥 𝑒−𝑘𝑑 𝑥 2 × 𝑥 sin 𝑘 𝜉𝐺 + 𝑥 cos 𝜒  𝑑𝑥 + 𝜁𝑊𝜔𝜔𝑒

× sin 𝜒 𝜌
𝐹𝐸

𝐴𝐸

𝑆𝑦 𝑥 𝑒
−𝑘𝑑 𝑥 2 𝑥 sin 𝑘 𝜉𝐺 + 𝑥 cos 𝜒  𝑑𝑥

+ 𝜁𝑊𝜔𝑢 sin 𝜒 𝜌
𝐹𝐸

𝐴𝐸

𝑆𝑦 𝑥 𝑒
−𝑘𝑑 𝑥 2 × cos 𝑘 𝜉𝐺 + 𝑥 cos 𝜒  𝑑𝑥

− 𝜁𝑊𝜔𝑢 sin 𝜒  

 

 

(7) 

 

Here, α is the correction factor dependent on the block coefficient, and ζW, k, , and  are 

the wave amplitude, wave number, area, and draught of section at a longitudinal distance x from 

the midship, respectively. The symbols ω, ωe, and  indicate the wave frequency, wave 

encounter frequency, and added mass of section in the sway direction, while xR, xH, aH, and AR 

are the longitudinal position of the rudder from the midship, the longitudinal position of the 

center of the interaction force between the hull and the rudder, the interaction factor between 

the hull and the rudder, and a the rudder area, respectively. The rudder coefficient is indicated 

by fα and the effective propeller wake fraction is designated by wp. The symbols εR, κp, J, and KT 

are the wake ratio between propeller and rudder, the interaction factor between propeller and 

rudder, the advance coefficient, and the thrust coefficient, respectively.  and  are 

calculated using Equation 8 and Equation 9, respectively. 

 

 
(8) 

 (9) 

 

Here, , zR, and λ are the breadth of section, the center of the rudder from the baseline, and 

the wavelength, respectively. 

The wind forces and moments in the surge, sway, and yaw directions are calculated using the 

empirical formula proposed by Fujiwara et al. (2006). The angle of wind attack is determined 

by the wind direction and the ship heading angle. The wave angle is assumed to be the same as 

the wind angle. 
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2.1. Ship Data 

The ship used in the numerical simulation is an Indonesian roro ferry with the principle 

dimensions shown in Table 1. The dimensions of the propeller and the rudder are shown in 

Table 2. 

 

Table 1 Principle dimensions of the subject ship 

Items Dimension 

Length overall (LOA) 36.40 m 

Length between perpendicular (LBP) 31.50 m 

Breadth (B) 8.70 m 

Height (H) 2.65 m 

Draught (T) 1.65 m 

Ship speed (VS) 10.5 knot 

Lateral projected windage area (AL) 36.40 m
2 

Transverse projected windage area (AF) 93.61 m
2 

Lateral projected area of superstructure (AOD) 187.21 m
2 

Center of windage area from midship (C) -0.558 m 

Vertical center of AL (HC) 0.720 m 

Vertical center of AOD (HL) 4.930 m 

Height of transverse projected area (HBR) 10.73 m 

 

Table 2 Propeller and rudder dimensions 

Items Dimension 

Number of propellers 2 

Number of propeller blades (Z) 4 

Propeller diameter (DP) 1.10 m 

Propeller revolution (n) 8.58 rps 

Transverse position propeller (yP) ± 2.55 m 

Longitude position propeller (xP) 15.50 m 

Rudder area (AR) 2.08 m
2 

Rudder coefficient (fΛ) 2.10  

Transverse rudder position (yR) ± 2.55 m 

Longitude rudder position (xR) 15.75 m 

 

3. RESULTS 

The numerical results of the turning maneuver simulation for a wave height of 0.50 m and 0.75 

m are shown for a wavelength that is the same as the ship’s length (Figure 2a) and for a 

wavelength of 50.0 m (Figure 2b). The wind velocity for all wave characteristics is 6.75 m/s 

(Beaufort scale 4). The turning diameter decreases as the wave height increases. The distance 

between the first and the second turning circles is longer for a larger wave height. A similiar 

result is obtained for a larger wavelength. The distance of the turning circles movement 

becomes smaller as the wavelength increases. These results show that the wave height has a 

more significant effect on the ship turning maneuver for a shorter wavelength compared with a 

longer wavelength. 
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(a) (b) 

Figure 2 Trajectory of the turning circle: (a) Wavelength is the same as the ship’s length; and (b) 

Wave length is 50.00 meters 
 

The surge and sway velocities of the ship during the turning simulation are shown in Figure 3a 

for a wavelength that is the same as the ship’s length for a wave height of 0.50 m and 0.75 m. 

The results for a wavelength of 50.0 m with the same wave heights are shown in Figure 3b. The 

yaw rates for a wavelength that is the same as the ship’s length for the same wave heights are 

shown in Figure 3c, while Figure 3d shows the results for a wavelength of 50.0 m. The surge 

and sway velocities oscillate depending on the angle of the wave encounter relative to the ship 

heading angle. The minimum velocity occurs when there is a heading wave in which the angle 

of the wave encounter is 0.0 degrees, while the maximum velocity occurs in a following wave 

in which the angle of the wave encounter is 180.0 degrees. The oscillation of the surge, sway, 

and yaw motions also occur in all conditions of wave height and wavelength. These are purely 

affected by the ship’s position relative to the wave. The oscillation of the surge velocity 

becomes significant in heading and following waves, while the oscillation of the sway velocity 

becomes significant in beam seas. Therefore, the phase between the surge and sway motions 

becomes 90.0 degrees as shown in Figures 3a and 3b. 

An alteration in surge velocity when the ship is in following waves and heading waves 

significantly increases as the wave height increases. However, the effect of wave height on the 

alteration in surge velocity decreases as the wavelengths increase. The same trend is also 

obtained for the sway velocity. The yaw rate is more sensitive to the alteration in wave direction 

compared with the surge and sway velocities. This is because the yaw moment exists even in 

beam seas depend on the position of  longitudinal center of gravity. The minimum yaw rate will 

occur in following and heading waves, although this condition appears in a very short time in 

case of a turning maneuver. 
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(a) (b) 

  
(c) (d) 

Figure 3 Ship motion during a turning maneuver: (a) Surge and sway velocities for wavelength the 

same as ship’s length; (b) Surge and sway velocities for wave length of 50.00 meters; (c) Yaw rate for 

wavelength the same as ship’s length; (d) Yaw rate for wavelength of 50.00 meters 
 

Figures 4a to 4f show the nondimensional forces and moments in the surge, sway, and yaw 

directions at two different wave heights and two different wavelengths. The figures on the left 

are for a wavelength that is the same as the ship’s length, and the figures on the right are the 

forces and moments for a wavelength of 50.0 m. The effect of wavelength on the force in the 

surge direction is not significant compared with its effect on the force in the sway direction and 

on the moment in the yaw direction. Therefore, the characteristic of turning trajectory 

significantly changes as the wavelength increases for the same wave height. The wave height 

significantly affects the forces and moments for a wavelength of 50.0 m. However, the effect of 

wave height on the forces and moments tends to decrease as the wavelength increases. Similar 

to the sway velocity, the force in the sway direction is negligibly small in heading and 

following waves, although it reaches its maximum in beam seas. The same trend is obtained for 

the surge force when the angle of the wave encounter is 90.0 degrees and 270.0 degrees (beam 

waves). The minimum value of the yaw moment occurs in cases of heading and following 

waves. The yaw moment is still significant in a beam wave because of the effect of the 

longitudinal center of buoyancy. 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 4 Resultant forces and moments acting on a ship hull during a turning maneuver: (a) Surge 

force for wavelength the same as the ship’s length; (b) Surge force for wavelength of 50.00 meters; 

(c) Sway force for wavelength the same as the ship’s length; (d) Sway force for wavelength of 50.00 

meters; (e) Yaw moment for wavelength the same as the ship’s length; (f) Yaw moment for 

wavelength of 50.00 meters 

 

4. DISCUSSION 

The obtained turning trajectory for two different wave heights and wavelengths are similiar to 

the results found in previous studies (Fang et al., 2005; Seo & Kim, 2011; Skejick, 2013; 

Chroni et al., 2015). The turning circle becomes smaller as the wave height increases for both a 

wavelength that is the same as the ship’s length and a wavelength of 50.0 m. The turning circle 

for a shorter wavelength is larger than for a larger wavelength. This indicates that the drift 

motion significantly increases when the wave height increases and decreases as the wavelength 

increases. Figure 3 shows that the surge velocity is minimum in beam seas, which produces a 

maximum sway velocity. The yaw moment tends to increase when the wave slope increases. As 

result, the turning motion for a large wave slope is faster than with a small wave slope. These 

turning motion characteristics also induce a longer distance of movement between the first 

turning circle and the second turning circle as shown in Figure 2. 

Fang et al. (2005) showed that the oscillations of both the surge and sway velocities depend on 

the angle of the wave encounter relative to the ship heading angle. The same results are 

obtained in the present study. A more significant amplitude of oscillation of the surge and sway 

velocities has also been identified in the transition from following waves to beam seas and from 

beam waves to heading waves and so on. This phenomenon did not appear in a study conducted 
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by Fang et al. (2005). Skjick (2013) had similar results as this study for a ship turning in 

irregular waves. This phenomenon may depend on the wave characteristics compared with the 

ship geometry. Thus, it may not occur in cases of large ships compared with the wave height, 

although it may be seen in small ships even for a small wave height as seen in this study. 

Figures 3a and 3b show that the oscillation due to the transition from following waves to beam 

waves and so on decreases when the wavelength increases. It may disappear for smaller wave 

slopes. 

The initial position of a ship relative to the wave does not have a significant effect on the 

turning maneuvers of a ship in waves. The same results were obtained by Fang et al. (2005), 

although they stated that the effect of the initial position relative to the wave may be significant 

for small ships. This effect is not obtained in the present study. The initial position of a ship 

relative to the wave surface does not significantly affect the forces and moments induced by the 

wave during a turning maneuver. The initial position only makes the changing phase of the 

forces and moments. Therefore, its effect on the turning maneuver becomes negligibly small. 

The subject ship cannot perform a turning maneuver in a wave height of 1.0 m when the 

wavelength is the same as the ship’s length or is smaller. The numerical simulation can be 

conducted for a wave height of 1.0 m when the wavelength is longer than the ship. However, 

the turning circle becomes very small and it seems to be unrealistic from a practical point of 

view. The very small turning circle occurs due to the large drift motion with a small surge 

velocity in beam seas up to heading waves during the turning simulation. The large drift motion 

may occur due to the small draught of the subject ship so that the hydrodynamic damping force 

in the sway direction becomes smaller compared with a ship with a larger draught. This was 

shown by Chroni et al. (2015) using a wavelength that was half the ship’s length, a wave height 

of 5.50 m, and a wind velocity of 19.0 m/s (Beaufort scale 8). The subject ship used in their 

simulation was larger than that used in the present study. These facts show that the required 

weather conditions to perform a sea trial of small ships should be smaller than that in the 

guidance of the International Maritime Organization (IMO, 2002). 

 

5. CONCLUSION 

The mathematical model for predicting a ship’s turning maneuver in constant wind and regular 

waves has been developed based on the 3 DOF of the MMG model. In order to directly 

calculates wave forces and moment, an equation to describe the ship’s position relative to the 

wave profile as a function of the surge and sway velocities, as well as the heading angle has 

been included in the MMG model. The present mathematical model can be simultaneously 

solved to obtain the maneuvering characteristics. Based on the numerical results for a small 

Indonesian roro ferry, some conclusions can be made as follows: (1) The effect of the wave 

height on a ship’s turning maneuver is more significant for a short wavelength. This effect 

decreases as the wavelength increases; (2) The sway force and yaw moment of a wave 

significantly decrease when the wavelength increases. Alteration of the surge force due to an 

increasing wavelength is smaller compared with the sway force and yaw moment. This means 

that the drift motion may have an important role on ship maneuvering for short wavelengths; 

(3) The initial position of a ship relative to the wave does not have a significant effect on the 

ship’s turning maneuver; its effect can be neglected in the subject ship of the present study. 
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