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ABSTRACT

This paper presents an application of the Discrete Kirchhoff-Mindlin Triangular (DKMT)
element for error estimation in composite structures. The DKMT element passed the patch tests
and gave good results in many plate bending applications. The DKMT element formulation in
composite application uses the same technique as the Discrete Kirchhoff-Mindlin Quadrilateral
(DKMQ) composite introduced. The benchmark tests for composite plates have been analyzed,
as validation, using the methods employed by Srinivas (1973) and Pagano (1970). The DKMT
plate bending element gave a good performance in convergence tests and can be used as one of
tools in analyzing composite structures. Moreover, error estimation using various recovery
methods such as Averaging, Projection and Superconvergent Patch Recovery (SPR) has been
studied. All recovery methods used give similar results.
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1. INTRODUCTION

The development of modern technology is centered on composites as the main materials.  In
civil, mechanical and aerospace engineering applications, composite structures are widely used.
They provide a stiffness maximum with a minimum of weight. The researches in experimental
and numerical analysis of composite structures are still being conducted. Compared to other
materials, composite materials are very light, yet very strong. Composite agro-material, made
from renewable materials, now has been developed and can be used in large a number of
construction projects. A sustainable future will be achieved by using composites as the main
material in engineering construction. For this reason, a computational method is required to
support the analysis of composite structures. Moreover, good precision computational methods
in composite structures are crucial.

The Finite Element Method (FEM) is a numerical method used to solve various problems in
structures, soil mechanics, fluids, etc. Since FEM is an approximation method where the exact
solution is estimated using repetition in the discretisation process by increasing the number of
elements or refining the element size, a discretisation strategy must be taken into account for
each mesh refinement process. The margin of error at each mesh size can only be estimated,
since no exact solution exists.

A complex problem usually has no exact solution; therefore, the error produced is also difficult
to determine. An error estimator has been developed to gain a solution as close as possible to
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the exact solution.

Zienkiewicz and Zhu (1987) have introduced an error estimator, known as ‘Z2’, which is simple
and can be applied easily in FEM programs. Moreover, they also presented a recovery method
for averaging and projection. Zienkiewicz and Zhu (1989) have applied the error estimator Z2 in
plate bending problems. Using triangular elements with uniform and adaptive meshes, they
found that error estimator Z2 is very effective. The first superconvergent method is the
Superconvergent Patch Recovery (SPR) method, which was developed by Zienkiewicz and Zhu
(1992a; 1992b; 1992c). The basic principle of this method is about recovering element modal
forces by the least square fit. Boroomand and Zienkiewicz (1997a; 1997b). Boroomand et al.
(2004) have proposed another superconvergent method called Recovery by Equilibrium in
Patches (REP). This method is based on equilibrium of the solution to produce recovered
internal forces. A recovery method called Recovery of Stresses by Compatibility in Patches
(RCP) has been introduced (Ubertini, 2004).

DKMT and DKMQ elements which are able to analyze thick to thin plate bending problems
have also been introduced (Katili, 1993a; 1993b). The formulation of DKMQ and DKMT plate
elements are based on the Reissner-Mindlin hypothesis which only require C0 continuity,
(Reissner, 1943; Mindlin, 1951). DKMQ and DKMT elements are free of shear locking and
their capability has been tested (Katili, 1993a; 1993b). They give a good result for the problems
of thin to thick plate. Therefore, there is a great interest in applying the formulation of the
DKMT element for composite structures.

In this paper, we will analyze the application of the DKMT element for composite plate
structures. The same technique as used in the DKMQ element for composite applications that
will be used for the DKMT element (Katili et al., 2015). The results proposed by Pagano
(Pagano, 1970; Pagano & Hatfield 1972) and Srinivas, (1973) will be used to validate this
formulation. And then, error estimation for composite plate structures will be analyzed using
the error estimator Z2. Averaging, projection and SPR methods will be addressed as a recovery
method in this paper.

2. METHODOLOGY

2.1. Formulation of DKMT Orthotropic
The DKMT element was developed by Katili (1993a). It has three nodes and three d.o.f per
node only. The DKMT is a very good triangular element which can take into account the
transverse shear strain. It gives a good result in isotropic plate problems.  It passed the patch
test and gave good results in thin to thick plate problems.

In the composite laminated plate structures, the material is formed by orthotropic layers with
orthotropic axes L-T-Z and isotropic layers in the plane TZ (See Figure 1). Each layer satisfies
the plane stress assumption (σz = 0).
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In each layer, the constitutive relationships in the orthotropy axes (L-T-Z) are as shown in
Equation 1:

         σ ε ; τ γL L L L L LH G  (1)

where, as shown in Equations 2, 3 and 4:
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EL is the Young Modulus in the fiber direction and ET is Young Modulus in the transverse
direction to the fiber. The variables υLT and υTL are Poissons’ ratio in the L-T plane of

orthotropy. The constitutive parameters in matrices [HL] and [GL] can be measured
experimentally. The orthotropy direction L and T can vary for each layer and are represented by
angle θ between the global axis X and the directions Li of the ith layer (Figure 1). The matrix
transformation from Orthotropic to Cartesian coordinates is shown in Equation 5:
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Finally in the Cartesian coordinate systems (X-Y), we can write the Constitutive Law for i-th

layer  as shown in Equation 6:

           σ ε ; τ γ 
i i

H G (6)

where stresses and strains are shown in Equation 7:
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[Hb] and [Hs] matrices homogenized using the layering technique will be given by Equations 8
and 9:
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where nl is the number of layers in the structures. [H]i is the in-plane constitutive matrix for i-th

layer and [G]i is the out of plane constitutive matrix for i-th layer, as given by Equation 7.

Matrix [Hs] is defined so that the shear strain energy density obtained for an exact 3D
distribution of the transverse shear stresses x and y, which is identical to the shear energy
associated to the Reissner-Mindlin plate model. The aims are that the transverse shear stiffness
of the plate model corresponds as much as possible with that deduced from 3D analysis. We
have [Hs] for the constitutive equation for the shear forces in Equation 7.
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(10)

where: the variables k11, k12 and k22 identify the transverse shear correction parameters, and  bH ,

sH   and  sH are the symmetric matrices.

The method for computing the transverse shear correction parameters in Equation 10 is based
on considerations of static equivalences described in Batoz & Dhatt, (1990) and Oñate, (2012).
In the case of an isotropic material, the DKMT element uses a shear influence factor ( k ) as

shown in Equation 11 (Katili, 1993a):
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The factor k maintains the consistency of the element. The factor h2/Lk
2, in Equation 11

explains why the DKMT element behaves as described in the Reissner-Mindlin theory for thick
plates and as in the Kirchhoff-Love theory for thin plates. In the latter case, the factor h2/Lk

2 is
close to zero, so that the transversal shear deformation is automatically ignored, as a result, the
shear locking is resolved by this method. For composite applications, we used the modified
shear influence factor ( k ) as follows in Equation 12:
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with : Lk as the length of the side k,       T

bk bH QE H QE and       T

sk sH Q H Q where

[Hb] and [Hs] are defined in Equations 8 and 10, respectively and shown in Equation 13:
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Figure 2 Geometry and local tangential coordinates on side k

We will use this new shear influence factor ( k ) shown in Equation 12 for the application of the

DKMT element in composite plate structure. With these methods, we are able to compute the
composite structure for thick and thin plate problems. Also, it will become a tool for
computation in modeling the structure with composite materials.

2.2. Recovery Methods and Error Estimator Z2

While the FEM solution has been known to give continuity in displacement at nodal points, it
yields discontinuity and inaccuracy problems when used to calculate internal forces at joined
sides of the boundary elements. Yet, the nature of FEM solution, which calculates internal
forces using the derivation of the displacement function, has created such a problem. This
problem occurs in the finite element method that later on is the basic approach for estimating
the error of finite element calculation.

Recovery methods that will be used in this paper have been detailed in Katili (2009). Since
calculation will never stop if the element size is close to zero, we need an effective condition as
criteria to terminate the discrete process. The factor for the relative error * of a structure with
the recovery method is shown in Equation 14:

*

*

*
100%

e

u
    (14)

The error indicator represents value, used as criteria to terminate the refinement process, where
usually we take *= 5 % as a limit.

3. RESULTS AND DISCUSSION

3.1. Simply Supported (SS) under Uniform Loading of a Sandwich Plate
In this test, we will analyze a simply supported, square sandwich plate (hard support conditions:
w=βs=0) under uniform loading fz. We can see the details of this test in Figure 3. Because of
symmetry, we will only analyze area ABCD.

Data material (skin and core orthotropic) are: EL =3.4156 MPa; ET =1.7931 MPa; υLT = 0.44;
GLT =1 MPa; GLZ =0.608 MPa; GTZ=1.015 MPa; Stratification: sandwich; 3 layers 0/0/0
symmetrical. The skin (Layers 1 and 3 in Figure 3) and the core are formed by orthotropic
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material with the same axes for the orthotropic. While the Layer 2 (core) properties are
proportional to those of Layers 1 and 3, the E and G values of the core are C times weaker than
those of the skin. In this test we will use C = 1, 10, and 50, respectively. For C = 1, the structure
corresponds to the orthotropic plate, while for C = 10 and C = 50, it corresponds to the
sandwich structure. The results of central deflection at point C are reported in Table 1.  Srinivas
(1973), reported on an analytical solution using 3D elasticity theory. The central displacement
is expressed in the form of Equation 15:

 Core
 C LT

C
z

w G
w

h f
(15)

Figure 3 Simply supported square sandwich plate under uniform loading

Table 1 presents the central deflection of wC for C = 1, 10 and 50 by using a uniform mesh. We
use N×N = 2×2, 4×4, 8×8, 16×16, 32×32, 64×64 and 96×96. We found accordance in the results
and they are very close to the reference solution. For the mesh N×N= 96×96, we found an error
of 0.15% for C = 1; 0.2% for C = 10 and 0.5% for C = 50, respectively. It shows that a good
behaviorial convergence is given by the DKMT element in a composite structure.

Table 1 Convergence of central deflection wC (uniform mesh)

N×N
C = 1 C = 10 C = 50

k11=k22=0.8333;k12=0 k11=k22=0.3521;k12=0 k11=k22=0.0938;k12=0

2×2 161.920 36.257 14.172

4×4 175.200 39.886 15.962

8×8 178.950 41.276 16.579

16×16 180.500 41.790 16.767

32×32 181.110 41.943 16.819

64×64 181.290 41.984 16.833

96×96 181.330 41.992 16.835

Srinivas (1973) 181.050 41.910 16.750

Figure 4 shows the distorted mesh used in this study as the mesh N×N = 4×4. The results for
distorted mesh are presented in Table 2. We can see that the results for the mesh N×N = 96×96



786 Development of the DKMT Element for Error Estimation in Composite Plate Structures

4 × 4A B

CD

L/3

L/3

X

L/6

L/6

Y

2

1

3 0.1 h

0.8 h

0.1 h

h=100

are similar with that given by the uniform mesh. Moreover, this test reveals that DKMT
element in a composite application is not sensitive to distortion.

Figure 4 Distorted mesh (mesh 4×4)

3.2. A Simply Supported 9-layer Square Plate under a Sinusoidal Pressure Load
In this test, we will analyze a simply supported 9-layer unidirectional square laminated with
L=1000 and the thickness varies (h = 250, 100, 20 and 10). We will use DKMT plate element
with 6×6 and 10×10 mesh size. This test was proposed by Pagano and Hatfield (1972).

The sum of thickness of 0° layer (h1+h3+h5+h7+h9) is equal to the sum of thickness of 90° layer
(h2+h4+h6+h8) whereas a layer in the same direction has similar thicknesses (h1=h3=h5=h7=h9)
and (h2=h4=h6=h8), (See Figure 4).

Material properties: EL = 25 MPa ; ET = 1 MPa ; υLT = 0.25 ; GLT = 0.5 MPa ; GTZ = 0.2 MPa ;
k11 = 0.670 ; k22 = 0.666 ; k12 = k21 =  0 ; Stratification : 9 layers 0/90/0/90/0/90/0/90/0
symmetrical ; fz = f0 sin(πx/L)sin(πy/L).

The solution can be expressed with the following form in Equation 16:
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(16)

We can see in Table 3 the central displacement and stresses at point C compared with the
solution given by Pagano and Hatfield (1972). We found a good correlation between the DKMT
element and the reference solution by using a very few elements.

Table 2 Convergence of central deflection wC (distorted mesh)

N×N
C = 1 C = 10 C = 50

k11=k22=0.8333;k12=0 k11=k22=0.3521;k12=0 k11=k22=0.0938;k12=0

2×2 168.170 38.123 15.266

4×4 176.920 40.512 16.317

8×8 179.570 41.488 16.685

16×16 180.710 41.851 16.796

32×32 181.170 41.959 16.827

64×64 181.310 41.988 16.835

96×96 181.330 41.993 16.836

Srinivas (1973) 181.050 41.910 16.750
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Figure 5 Simply supported 9-layer (0/90/0/90/0/90/0/90/0) square plate under sinusoidal
pressure load

Table 3 Convergence of the deflection at point C for 9-layer (0/90/0/90/0/90/0/90/0) square
plate

L/h 4 10 50 100

w
Mesh 6×6 3.906 1.423 0.962 0.948

Mesh 10×10 4.028 1.464 0.988 0.973

Pagano and Hatfield (1972) 4.079 1.512 1.021 1.005

3.3. Error Estimation Simply Supported (SS) of a Sandwich Plate
This test has been analyzed in (3.1); in this test we will analyze error estimation using various
recovery methods and the error estimator Z2. We use the relative error factor * = 5 % as a limit
to terminate the refinement process.  Mesh N×N = 4×4, 8×8, 16×16 and 32×32 are employed.
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For the mesh 32×32, we can see in Figure 6 the results of relative error * which passed the
limit of 5%. All recovery methods give the similar results for the problem analyzed. Table 4
presents the result of σXC, as expressed in Equation 17 for various recovery methods. For C=1,
we found Averaging (AVER) method gives the results superior to the SPR and Projection
(PROJ) methods. However, for C=10 and C=50, the recovery methods used give similar results.

σσ = XC
XC

zf
(17)

Table 4 σXC from different recovery methods

C Method σXC(-2h+/5) Error(%) σXC(-2h-/5) Error(%) σXC(-h/2) Error(%)

1

AVER 28.545 0.001 28.545 0.001 35.681 0.721

PROJ 28.539 0.020 28.539 0.020 35.674 0.740

SPR 28.594 0.170 28.594 0.170 35.742 0.551

Srinivas (1973) 28.545 28.545 35.940

10

AVER 5.062 4.152 50.618 4.131 63.273 2.777

PROJ 5.061 4.134 50.609 4.113 63.261 2.794

SPR 5.072 4.354 50.716 4.332 63.395 2.589

Srinivas (1973) 4.860 48.610 65.080

50

AVER 25.795 46.544 25.288 58.180 13.034 25.795

PROJ 25.762 46.532 25.254 58.165 13.057 25.762

SPR 26.038 46.634 25.529 58.292 12.866 26.038

Srinivas (1973) 0.740 37.150 66.900

4. CONCLUSION

The application of the DKMT element for error estimation in composite structures has been
presented. We found results which are very close to the reference solution (the relative error is
under 5% for a few elements) for all proposed tests to validate the composite structure. The
DKMT element affords good convergence behavior and it is not sensitive to distortion.
Recovery methods used in this paper give similar results and are close to the reference solution
for C=1 and C=10 (with a relative error under 5%).  However, for C=50 we found an important
error.  Finally, the DKMT plate bending element can be used as a tool to analyze composite
structures.
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