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ABSTRACT 

Experience in applying a hybrid artificial neural network (ANN)-genetic algorithm for 

modeling and optimizing the Hall-Heroult process for aluminum extraction is described in this 

study. During the stage of modeling, the most important and effective process variables 

including temperature and cell voltage, metal and bath heights, purity of CaF2 and Al2O3, and 

bath ratio are chosen as input variables whilst outputs of the model are product purity, ampere 

efficiency, and product rate. During three years of operation, 19 points were selected for 

building and training, 7 points for testing, and 7 data points for validating the model. Results 

show that a feed-forward Artificial Neural Network (ANN) model with 3 neurons in the hidden 

layer can acceptably simulate the mentioned output variables with the Mean Squared Error 

(MSE) of 0.002%, 0.108% and 0.407%, respectively. Utilizing the validated model and multi-

objective genetic algorithms, aluminum purity and the rate of production are maximized by 

manipulating decision variables. Results show that setting these decision variables at the 

optimal values can increase approximately the metal purity, ampere efficiency, and product rate 

by 0.007%, 0.185%, and 20kg/h, respectively. 

 

Keywords: Aluminum production; Artificial neural network; Hall-Heroult process; Modeling; 

Optimization 

 

1. INTRODUCTION  

Aluminum with a melting point of 2,040°C is a poor electrical conductor and highly reactive. 

The industrial production of pure aluminum is carried out electrochemically in the Hall-Heroult 

process, which was discovered in 1889 and it remains to date the only known viable method for 

the production of aluminum (Prasad, 2000). In this electrolysis process, pure alumina is 

dissolved in an electrolyte of molten cryolite (Haupin, 1995) in large electrolytic furnaces, 

called reduction cells (Keniry, 1994). By means of carbon anodes suspended in the electrolyte, 

the electrical current is passed through the electrolyte mixture causing metallic aluminum to be 

deposited on the carbon cathode at the bottom of the cell. Carbon anodes are a major part of the 

cost of primary aluminum production. Therefore, the focus of industrial plants is to minimize 

the consumption of anode by improving its quality. Hence, the determination of the impact of 

raw materials, and also process conditions on the baked anode property are so important. 

Although sufficient data can be collected from these plants, it is complex and difficult to 

analyze these data using conventional methods such as kinetic-based models, classified as 

deterministic or first principal models. 
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Conversely, to model such complex processes, using an Artificial Neural Network (ANN) 

model, classified as a black box model, this process could be faster and simpler (Sadighi et al., 

2013). ANNs are high performance, non-linear analytical tools which are capable of 

establishing the relationship between the input/output data without prior knowledge (Serra et 

al., 2003); In some cases, they can even provide better results than empirical correlations 

(Perazzini et al., 2013). Additionally, ANNs can be applied as hybrid models. The term hybrid 

modeling is used to describe the incorporation of prior knowledge about the process under 

consideration in a neural network modeling approach (Bellos et al., 2005; Bhutani et al., 2006). 

According to the literature search, research is scarce that aims to develop an ANN model to 

simulate and optimize the Hall-Heroult process. Frost et al. (2000) proposed a Back 

Propogation (BP) neural network to predict electrolyte temperatures. In this work, it was shown 

that careful consideration for training data would give more accurate electrolyte temperatures. 

In another paper, based on the data collected during 659 days of industrial production, an ANN 

model for an aluminum factory was presented (Durici et al., 2012). The fitting level obtained 

using this model resulted in a R
2
 value (coefficient of multiple determinations) of 0.723. 

The current research aims to propose a method according to the ANN modeling approach to 

simulate the output variables (i.e., metal purity, production rate, and ampere efficiency), and 

also optimize the input variables (i.e., temperature and cell voltage, metal and bath heights, and 

bath ratio) of an industrial scale at a Hall-Heroult plant. This work could be considered 

significant, due to presenting a practical approach which can be efficiently utilized to simulate 

and optimize the Hall -Heroult process. 

 

2. PROCESS DESCRIPTION 

In 1889, Hall, (USA) and Heroult, (France) invented simultaneously and independently of each 

other the process to produce aluminum by electrolysis into liquid aluminum in electrolysis cells. 

In these cells, alumina (Al2O3), which is dissolved in a bath of molten cryolite (Na3AlF6), is 

decomposed under the action of a high-intensity (50-300 kA) and a low-voltage (~4V) DC 

current. A constant electric current with high-intensity and low-voltage passes through the 

electrolytic cell from the carbon anode to the bath, and then onto the carbon cathode. The latter 

is built in the form of a rectangular box to facilitate the gathering of the liquid aluminum as 

shown in Figure 1. 

 

 

Figure 1 Process flow diagram of the target aluminum factory (Haupin, 1995) 
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The anode of the electrolytic cell is made of carbon, and the pool of already produced 

aluminum acts as a cathode. The oxygen of the alumina is discharged at the anode where it 

reacts with the carbon to produce carbon dioxide (CO2). 

A steel cell which is lined with carbon blocks and thermal insulation material contains the 

liquid cryolite electrolyte and liquid aluminum. The process uses electrical energy to reduce 

electrolytically aluminum oxide, and to keep the electrolyte at a temperature of about 950°C. 

During aluminum production, the chemical reactions continuously consume alumina and 

anodes, which must be added and replaced, respectively in the electrolytic cell. 

Aluminum and anode gases (i.e., carbon dioxide and carbon monoxide) are produced and 

removed from the cell, respectively. In addition to cryolite, the bath usually contains various 

additives, mainly aluminum fluoride (AlF3) and calcium fluoride (CaF2), with the purpose of 

improving the physicochemical properties of the bath, and lowering its melting temperature. If 

the alumina is maintained at too high a concentration, then un-dissolved slurry of alumina may 

form at the bottom of the cell, which causes the reduction of current efficiency. For adequate 

operation, the alumina concentration should be maintained in the range of 2-3%. 

 

3. MODELING METHODOLOGY  

One of the most well-known structures for supervised learning of neural networks is the Multi-

Layer Perceptron (MLP), which is generally used for classification and prediction problems 

(Serra et al., 2003). In this method, neurons consist of at least an input layer, an output layer, 

and one or more hidden layers. For this topology, the information only propagates in the 

forward direction. The most widely employed networks have only one hidden layer (Hagan et 

al., 1995). Each node within a given layer is connected to all of nodes of the previous layer. The 

node sums up the weighted inputs and a bias. Then, it sends results through a linear function as 

follows (Haykin et al., 1998): 
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where wji is the weight that goes from the input i  to the hidden neuron j ; b is the bias to the 

node, and xi is the input of the neuron. By utilizing an activation function ( f ), the output of the 

neuron can be written as follows: 

)( jj afz =                                                                    (2) 

This activation function is applied to model the nonlinear process behavior. In this work, the 

activation function utilized for hidden and output nodes is the tangent sigmoid function as 

follows: 

)(tan)( asig
ee

ee
af

aa

aa

=
+

-
=

-

-

                                                     (3) 

Neural networks have been broadening into numerous types such as radial basis, Kohonen, 

recurrent, Hopfield, feed forward, neuro-fuzzy networks and so on (Mat Noor et al., 2010). 

After creating the structure of the ANN, the training procedure is carried out by introducing a 

set of known inputs and outputs. ANN can learn the trend of these known data by manipulating 

the weights and biases (Behbahani et al., 2009). These parameters are adjusted using a back-

propagation algorithm i.e., iterative reduction in training errors utilizing a generalized delta 

rule. This procedure is followed until a minimum value for the Mean Square Error (MSE) can 

be provided. Additionally, the success in obtaining a reliable and robust network depends 

strongly on the choice of process variables involved in the model (Parisi et al., 2002). 
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Therefore, it is essential to include all momentous variables, affecting the yield and quality of 

the product in the input layer of the ANN structure.  

In this research, feed forward and recurrent layer networks are used to model the target 

aluminum extraction plant. Input neurons of the proposed networks are the cell temperature, 

voltage, purity of CaF2 and Al2O3, metal and bath heights, and bath ratio (see Figure. 2). The 

latter is defined as the mass ratio of NaF to AlF3, which are used as additives. The most 

important output variables included in the output layer are the purity of product, ampere 

efficiency, and the rate of production. 

 

 

Figure 2 Structure of the ANN model developed for the target aluminum factory 

 

Thirty-three data points were collected from the target plant, and they were divided into three 

groups i.e., training (60%), testing (20%), and validating (20%) ones. Developed networks are 

trained, tested and validated using the Neural Network Toolbox (newff and newlrn functions) of 

MATLAB 2012a. The transfer or activation function used in the hidden and output nodes is the 

tangent sigmoid function. Training of the ANN is carried out using the 'trainlm' syntax, 

applying óLevenberg-Marquardtô method to estimate weights and biases. 
 

4. OPTIMISATION OF HALL -HEROULT PROCESS 

The metal purity and production rate of the plant are identified as significant process variables 

of the Hall-Heroult process. Therefore, they are maximized simultaneously using the validated 

ANN model by manipulating the process variables i.e., temperature and cell voltage, metal and 

bath heights, and bath ratio. CaF2 and Al2O3 purities are dependent to the quality of the feed, 

and so they are assumed as constant variables during the optimization procedures.  

Although there are many numerical methods that have been presented to solve an optimization 

problem, in this paper the genetic algorithm (GA) has been chosen to optimize the target Hall-

Heroult process. GA is a part of soft computing, a branch of computer science that deals with 

exploring the search space, selecting the best solution, and working for global optimization 

(Joshi, 2014). These algorithms (GAs) have been applied to a variety of function optimization 

problems, and were shown to be highly effective in searching large and complex response 

surfaces even in the presence of difficulties, such as high dimensionality, multimodality and 

discontinuity (Goldberg, 1989). The GA operates on a population of potential solutions, using 

the principle of survival of the fittest to produce successively better solutions to a problem. At 

each generation of a GA, a new set of answers is created by the process of selecting individuals 

according to their level of fitness in the problem domain and regenerating them using operators 
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mimicked from natural genetics. This process leads to the evolution of populations of 

individuals that are better suited to their environment than the individuals from which they were 

created, just as in natural adaptation. 

 

5. RESULTS AND DISCUSSION 

During three year period, under normal operating conditions, actual data were obtained from the 

target plant. Since consumption of carbon anode was approximately constant versus the time of 

operation (0.45 per kg of pure aluminum), the cell age was not considered as an input variable 

of the model. From these data, 19 points were selected for building and training (60%), 7 points 

for testing (20%), and the remaining ones (7 data points) for validating the developed network. 

Feed-forward, back propagated and recurrent layers neural networks were considered for the 

modeling study. Determination of the number of hidden nodes is one of the main aspects of 

designing the neural network architecture. Too small a number of hidden nodes limit the ability 

of the ANN to model the problem, and furthermore such a network may not train well to an 

acceptable error. On the other hand, too many hidden nodes forced the network for memorizing 

data rather than learning them for generalization. In this study, the number of hidden nodes was 

determined by varying the number of nodes, starting with only two hidden nodes, and then 

adding up to four nodes. For each case, Mean Squared Error (MSE) was computed during 

training, testing and validating steps. 

Table 1 shows the best network design obtained after 20,000 iterations for each case. From this 

table, it can be found that increasing the number of hidden nodes from 2 to 3 has considerably 

decreased the MSE% of simulation. Moreover, it can be found that both feed forward and 

recurrent layers networks can acceptably model the metal purity, ampere efficiency, and also 

the product rate of the aluminum plant. By increasing the number of hidden nodes from 3 to 4, 

the MSE of metal purity decreases for both network, but the MSE of ampere efficiency 

considerably increases. For the product rate, a feed forward network with 4 hidden nodes in the 

hidden layer has the best accuracy. Conversely, a recurrent layer network with 4 hidden nodes 

has the least accuracy between all networks. 

 

Table 1 Comparison between the mean square errors 

Variable 

2 nodes in hidden layer 3 nodes in hidden layer 4 nodes in hidden layer 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Metal purity (%) 0.0076 0.0078 0.002 0.004 0.0004 0.0014 

Ampere Efficiency 

(%) 
0.760 0.897 0.108 0.185 0.205 0.207 

Product rate (kg/h) 0.414 0.393 0.407 0.191 0.078 0.908 

 

In Table 2, the number of data points, coefficients, Degree of Freedom (DOF) of the regression 

and DOF of residual for all cases are presented. From this table, it can be found that for the feed 

forward and recurrent layers network with 2 nodes in the hidden layer, and also for the feed 

forward network with 3 nodes in the hidden layer, the number of fitting parameters are less than 

the number of data points. Therefore, it is obvious that the degree of residual for these models is 

positive. Hence, the validity of the other networks, i.e. feed forward and recurrent layer 

networks with 4 nodes in the hidden layer, and also recurrent layer with 3 nodes in the hidden 

layer, cannot be acceptable. 



Sadighi et al. 485 

In Tables 3, 4 and 5, the ANOVA analysis of the presented models for the simulation of output 

variables i.e., metal purity, ampere efficiency, and production rate are presented. From Tables 3 

and 4, it can be found that the feed forward layer network with 3 nodes in the hidden layer has 

the highest F-value (the mean squared of regression to the mean squared of residuals) for 

simulating the metal purity and ampere efficiency; therefore, this network can be used for 

simulating these parameters. Moreover, Table 5 confirms that this network has the lowest error 

of residuals for the production rate, but due to the higher number of coefficients, its F-value is 

lower than the networks with 2 nodes in the hidden layer. However, it is still reliable to be 

utilized for simulating the production rate of the target aluminum plant.The negative value 

reported for the F-value of other networks is due to the negative value of the DOF, discussed 

before. As mentioned earlier, these networks cannot be accepted for modeling the Hall-Heroult 

process. 

Parity plots in Figures 3 to 5 show comparisons between the metal purity, ampere efficiency 

and the production rate versus actual values. As seen from these figures, simulation results 

obtained from a feed forward-back propagated network with 3 nodes in the hidden layer are in 

good agreement with the actual data. It should be mentioned that the AAD% of the simulated 

variables for the metal purity, ampere efficiency, and the production rate were 0.002%, 0.108%, 

and 0.407%, respectively. 
 

Table 2 Number of coefficients and degree of freedom for different ANN modeling approaches 

Variable 

2 nodes in hidden 

layer 
3 nodes in hidden layer 4 nodes in hidden layer 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Number of data 33 33 33 33 33 33 

Number of coefficients 19 23 28 37 37 53 

DOF* of regression 18 22 37 36 36 52 

DOF* of residual 14 10 5 -4 -4 -20 

*Degree of freedom 

 

Table 3 Analysis of variance for the metal purity 

Variable 

2 nodes in hidden layer 3 nodes in hidden layer 4 nodes in hidden layer 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Error of 

regression 
4.32×10

-5
 4.09×10

-5
 3.16×10

-5
 2.30×10

-5
 2.42×10

-5
 1.65×10

-5
 

Error of 

residuals 
9.95×10

-5
 1.65×10

-5
 2.36×10

-6
 -9.1×10

-6
 -1.37×10

8
 -2.19×10

--7
 

F-value 4.35 2.44 13.39 -2.53 -175.81 -75.34 
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Table 4 Analysis of variance for the ampere efficiency 

Variable 

2 nodes in hidden layer 3 nodes in hidden layer 4 nodes in hidden layer 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Error of regression 0.596 0.496 0.46 0.344 0.349 0.244 

Error of residuals 0.096 0.126 0.0088 -0.011 -0.0006 -0.00649 

F-value 6.21 3.93 52.08 -30.34 -581.34 -37.76 

 

 

Table 5 Analysis of variance for the production rate 

Variable 

2 nodes in hidden layer 3 nodes in hidden layer 4 nodes in hidden layer 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Feed 

forward 
Recurrent 

Error of regression 254.23 223.52 181.88 135.24 130.023 105.27 

Error of residuals 5.24 11.33 18.81 -8.16 -1.53 -18.54 

F-value 48.44 19.71 9.67 -16.57 -84.69 -5.68 

 

 

 

 

Figure 3 Comparison between the actual data and simulation results for the metal purity obtained from a 

feed forward model with 3 nodes in the hidden layer 
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Figure 4 Comparison between the actual data and simulation results for the ampere efficiency obtained 

from a feed forward model with 3 nodes in the hidden layer 

 

 

Figure 5 Comparison between the actual data and simulation results for the production rate obtained 

from a feed forward model with 3 nodes in the hidden layer 

 

After training, testing, and validating the developed ANN model, the developed model was 

applied to maximize the metal purity and production rate of the target aluminum plant. The 

optimized decision variables of the Hall-Heroult process i.e., temperature and cell voltage, 

metal and bath heights, and bath ratio were calculated for all thirty-three data points. For each 

case, these variables were manipulated to maximize the metal purity and production rate, 

simultaneously. 

Figures 6 and 7 demonstrate the comparison between the actual and optimized metal purity and 

production rate for all cases. After applying optimal decision variables, the average metal purity 

and production rate increased by 0.007% and 20kg/h, respectively. Moreover, Figure 7 shows 

that for the data points with the number of 5, 13 and 29, the optimal production rate is a little 

lower than the actual one.  But, the metal purity of these points shown in Figure 6 confirms that 

the optimized values are higher than the actual ones; therefore, they can be acceptable. 
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Additionally, in Figure 8, the ampere efficiency of the aluminum plant for the actual and 

optimized values is depicted. It is observed that increasing this decision variable (averagely 

about 0.185%) decreases energy consumption. Therefore, the optimized input variables can also 

efficiently increase the productivity of the Hall-Heroult process. 

 

 

Figure 6 Comparison of the optimized and the actual metal purity 

 

 

Figure 7 Comparison of the optimized and the actual production rate 

 

 

Figure 8 Comparison of the optimized and the actual ampere efficiency 

 

In Figures 9 and 10, the actual temperature and voltage of the cells are compared to the 

optimized ones. As seen, the optimized cell temperature is lower than the actual value for most 

of the data points. Therefore, to compensate the decrement of the temperature, the voltage of 

the cell increases slightly. It can be claimed that decreasing the cell temperature extends the age 

of the anode in consequence with lowering the carbon consumption. Therefore, decreasing the 
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cell temperature is another achievement of this research which has an appreciable impact on the 

economy of the target Hall-Heroult process. 

 

 

Figure 9 Comparison of the optimized and the actual cell temperature 

 

 

Figure 10 Comparison of the optimized and the actual cell voltage 

 

 

Figure 11 Comparison of the optimized and the actual bath height 

 

In Figures 11, 12 and 13, the optimal values of metal and bath heights and also bath ratio are 

compared with the actual ones. From the irregular trends of these variables, it can be concluded 

that to reach to an optimum process conditions, other input variables, such as purity of feed, 

temperature, and cell voltage should be set meticulously. Therefore, applying an appropriate 

process model can be beneficial to close the operating condition to an optimum margin. 
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Figure 12 Comparison of the optimized and the actual metal height 

 

 

Figure 13 Comparison of the optimized and the actual bath ratio 

 

6. CONCLUSION  

Back propagated, feed forward and recurrent layers of Artifical Neural Networks with 2, 3 and 

4 neurons in the hidden layer were developed to model the electrolysis cell of an industrial 

Hall-Heroult aluminum extraction process. The constructed models were trained, tested and 

validated on the basis of actual data obtained from the plant. These models could simulate the 

significant output variables of the plant including metal purity, ampere efficiency, and 

production rate. Results show that the most appropriate ANN model was a feed-forward one, 

consisting of 3 neurons in the hidden layer, which was capable of simulating the mentioned 

output variables with the AAD% of 0.002%, 0.108% and 0.407%, respectively. This validated 

model was then used to carry out a process optimization to maximize metal purity and 

production rate wherein the decision variables were temperature and cell voltage, metal and 

bath heights, and bath ratio. Results confirmed that setting these decision variables on the 

optimal values could approximately increase the metal purity, ampere efficiency and product 

rate by 0.007%, 0.185%, and 20kg/h, respectively. 
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