
International Journal of Technology (2015) 2: 139-150
ISSN 2086-9614 © IJTech 2015

IMPLEMENTATION OF PORTER’S MODIFIED STEMMING ALGORITHM IN AN

INDONESIAN WORD ERROR DETECTION PLUGIN APPLICATION

Marsel Widjaja
1*

, Seng Hansun
1

1
Computer Science Department, Faculty of Information and Communication Technology,

Universitas Multimedia Nusantara, Jl.Scientia Boulevard, Gading Serpong, Tangerang,

Banten-15811 Indonesia

(Received: August 2014 / Revised: April 2015 / Accepted: April 2015)

ABSTRACT

Stemming is a process of finding the root of a word with some omission stages of prefixes and

suffixes. Stemming for each language varies depending on the morphology of the language.

Stemming has widely been used as a complementary stage in many activities related to a word

or phrase. With so many stemming utilizations, numerous algorithms have been developed to

conduct the stemming process. In this study, the authors would like to develop, improve, and

implement Porter’s stemming algorithm in a word error detector plugin application. The test

results have shown that the modified Porter’s stemming algorithm produces more accurate

results in the analysis than Porter’s original stemming algorithm with an average difference in

precision of about 3%.

Keywords: Indonesian; Morphology; Porter; Stemming

1. INTRODUCTION

Indonesian is the main language Indonesian people use to communicate both orally and in

writing. The selection of raw words in pronunciation and in writing a sentence are important

elements. In terms of Standard Indonesian Grammar (Dept. of Cultural and Education, Republic

of Indonesia, 1988), the Dictionary of Indonesian is the main reference in the use of raw words

in the Indonesian language. In addition to communication, the use of proper Indonesian is

required when writing formal documents, journals, reports, and so on.

According to Buckland (1998), a good document written in Indonesian must have a high level

of formality, employ appropriate vocabulary, and avoid grammatical and spelling errors. A

document must be rechecked and revised repeatedly to make sure there are no typographical

errors. This can be a very time-consuming task if more than one document needs to be

inspected.

Pustakers (www.pustakasekolah.com) defined stemming as a process used to maximize word

processing by changing basically every word being said. It is necessary to obtain a word that is

not in accordance with the Indonesian dictionary. Porter’s stemming algorithm is one of the

algorithms that can be used to find the root (raw) word in the Indonesian language.

Through previous studies, Porter’s stemming algorithm has been applied to search applications

and has also been compared with other stemming algorithms, such as Nazief and Adriani’s

algorithm (Agusta, 2009). In the present study, Porter’s stemming algorithm is applied to a

plugin application for Microsoft Word that will quickly and thoroughly check the validity

*
 Corresponding author’s email: marselwidjaja@yahoo.co.id, Tel. +62-21- 5422.0808, Fax. +62-21- 5422.0800

Permalink/DOI: http://dx.doi.org/10.14716/ijtech.v6i2.456

140 Implementation of Porter’s Modified Stemming Algorithm in an Indonesian
 Word Error Detection Plugin Application

the validity of each word in a document written in the Indonesian language in order to eliminate

typographical errors. Thus, the document obtained with a high degree of formality to minimize

the level of Indonesian language word errors.

The purpose of this study is to implement Porter’s stemming algorithm as a Microsoft Word

plugin application and improve it with the proposed method.

2. LITERATURE

2.1. Indonesian Morphological Structure

Morphology is the study of the form of the words in a particular language. Root words in

Indonesian can be developed into other words due to the affix-related rules that exist in

Standard Indonesian Grammar. There are various types of affixes in morphology, examples of

which include the following:

1. Prefix: per-, me-, ter-, di-, ber-, and so on.

2. Infix: -el-, -em-, and -er-.

3. Suffix: -an, -kan, and -i.

4. A confix has a variety of functions, among which include the following:

a) Remuneration functional form of the verb, including the following: me-, ber-, per-, -kan, -
i, and ber-an.

b) Remuneration functional of the noun, including the following: pe-, ke-, -an, ke-an, per-an,

-man, -wan, and -wati.
c) Remuneration functional form of the adjective, including the following: ter-, -i, -wi, -iah.

d) Remuneration functional form of the words, including the following: ke- and se-.
e) Remuneration functional form of function words, including the following: se- and se-

nya.

2.2. Docx

A Docx file is generated from the Microsoft Word typing software, which was first released in

1983. Microsoft Word has been used by many people throughout the world and is thus one of

the world’s most popular typing software programs. The Word file format is now considered

the standard digital document format (Roy, 2001).

2.3. Algorithm

Based on Utami and Sukrisno’s (2005) definition, an algorithm is a method or logic of the

sequence of work to solve problems systematically. An algorithm will generate the appropriate

output from the desired input.

2.4. Stemming

Pustakers (www.pustakasekolah.com) defined stemming as a process of changing the words in

the document to obtain a root word with certain rules. Stemming is used to maximize the

information retrieval in a document. Implementation of the Indonesian stemming algorithm is

different from the English stemming process because both languages have a different

morphology. For example, if the English had to eliminate a prefix and a suffix, the Indonesian

must also eliminate the confix. There are many other variations of augmentation that must be

reckoned with when implementing the Indonesia stemming algorithm. The first stemmer for

English is Lovin’s stemmer (Lovins, 1968).

2.5. Purpose of a Stemming Algorithm

According to Moral et al. (2014), a stemming algorithm has three main objectives. The first is a

grouping of words according to their topics. Many words from the same root derivation and

derivation generated through additional affix (prefix, infix, and / or suffix). The second goal of

a stemming algorithm is related to the process of finding information that has the same root,

Widjaja & Hansun 141

and thus the grouping term by the root word makes it easy to index the documents. The third

goal is the incorporation of a variety of the same root to reduce the words that are taken into

account in the process of collecting data, thereby reducing the space required to store the

structures used by the information retrieval system.

2.6. Porter’s Stemming Algorithm

According to Milutinovich (2006), Porter’s stemming algorithm was first discovered in 1979 by

Martin Porter in a computer lab. Porter’s stemming algorithm is a process of removing the

suffix morphology and inflection of a word in English as part of the normalization that occurs

when creating the information retrieval system. Porter’s algorithm, which was originally

developed for English, was developed for Indonesian by WB Frakes in 1992. The stemming

process using Porter's algorithm is illustrated in Figure 1.

Figure 1 Porter’s Algorithm (Agusta, 2009)

Agusta (2009) outlined the following measures undertaken in Porter’s algorithm:

1. Remove the particle.

2. Remove the possessive pronoun.

3. Remove the first prefix. If there is no first prefix, then go to step 4a; otherwise go to step 4b.

4. a. Remove the second prefix and then proceed to step 5a.

b. Remove the suffix; if there is no suffix then the word is assumed to be a root word. If the

suffix is found, then go to step 5b.

5. a. Remove the suffix. The final remaining word is assumed to be the root word.

 b. Remove the second prefix. The final remaining word is assumed to be the root word.

According to Agusta (2009), there are five phases in the algorithm rules for Porter’s algorithm

for Indonesian, which are presented in Table 1 below.

Table 1 Rules for inflectional particle

Suffix Replacement Measure Condition Additional Condition Example

-kah NULL 2 NULL bukukah

-lah NULL 2 NULL pergilah

-pun NULL 2 NULL bukupun

142 Implementation of Porter’s Modified Stemming Algorithm in an Indonesian
 Word Error Detection Plugin Application

In the second rule, there are examples of suffixes being changed to base words with possessive

pronouns.

Table 2 Rules for inflectional possessive pronoun

Suffix Replacement Measure Condition Additional Condition Example

-ku NULL 2 NULL bukuku

-mu NULL 2 NULL bukumu

-nya NULL 2 NULL bukunya

In the third rule, there is an example of a prefix being changed to the word base with a second

order derivational prefix.

Table 3 Rules for second order derivational prefix

Prefix Replacement Measure Condition Additional Condition Example

ber- NULL 2 NULL berlari -> lari

bel- NULL 2 Ajar belajar -> ajar

be- NULL 2 k*er bekerja -> kerja

per- NULL 2 NULL perjelas -> jelas

pel- NULL 2 Ajar pelajar -> ajar

pe- NULL 2 NULL pekerja -> kerja

In the fourth rule, there are examples of first order prefixes for basic words.

Table 4 Rules for first order derivational prefix

Prefix Replacement Measure Condition Additional Condition Example

meng- NULL 2 NULL mengukur -> ukur

meny- S 2 V…* menyapu -> sapu

men- NULL 2 NULL menduga -> duga

mem- P 2 V… memaksa-> paksa

mem- NULL 2 NULL membaca-> baca

me- NULL 2 NULL merusak -> rusak

peng- NULL 2 NULL pengukur-> ukur

peny- S 2 V… penyapu -> sapu

pen- NULL 2 NULL penduga -> duga

pem- P 2 V… pemaksa -> paksa

pem- NULL 2 NULL pembaca -> baca

di- NULL 2 NULL diukur -> ukur

ter- NULL 2 NULL tersapu -> sapu

ke- NULL 2 NULL kekasih -> kasih

Finally, there are example of adding suffixes to base words.

Widjaja & Hansun 143

Table 5 Rules for derivational suffix

Suffix Replacement Measure Condition Additional Condition Example

-kan NULL 2 Prefix €{ke, peng} tarikkan -> tarik

-an NULL 2 Prefix €{di, meng, ter}
makanan ->

makan

-i NULL 2 Prefix €{ber, ke, peng} tandai – tanda

2.7. Porter Stemmer Errors

According to Karaa (2013), Porter’s stemming algorithm also has its drawbacks, the most

significant of which are overstemming and understemming errors. Overstemming occurs when

words that are cut produce a basic word with a different meaning. In the case of

understemming, the words are derived from the same root word; however, if it is stemmed, it

does not produce the same stem word. It certainly reduces the efficiency and performance of

Porter’s stemming algorithm.

2.8. Affixes and Dilution

Widya (2013) described an affixed word as a word that underwent the basic process of adding

affixes with the aim of ensuring a clearer meaning in the use of the word. Dilution is the

removal of the first letter of said base when the process of adding affixes is completed. Some

words have to undergo a process of rule-based augmentation dilution. The following are the

types of additives used in Indonesian.

1. Prefix meng- and peng-.
The prefix meng- can be added to the base word when the initial letters form the word

vowels “k,” “h,” “g,” and “kh.”

Consider the following examples:

• Meng-ambil and peng-ambil.
• Meng-uap and peng-uap.

• Meng-harap and peng-harap.

• Meng-gunting and peng-gunting.

• Meng-khotbah and peng-khotbah.
The initial letter “k” undergoes a dilution process. Consider the following examples:

• Meng-kaji becomes mengaji.
• Peng-kaji becomes pengaji.

2. Prefix me- and pe-.
The prefix me- can be added on the basis of the initial letters of words when the form

includes the letters “l,” “m,” “n,” “ny,” “ng,” “r,” “y,” and “w.”

Consider the following examples:

• Me-latih and pe-latih.

• Me-makan and pe-makan.

• Me-namai and pe-nama.

• Me-nyatakan and pe-nyanyi.
• Me-nganga and pe-ngidap.

• Me-rapikan and pe-robek.

• Me-yakinkan and pe-yakin.

• Me-warnai and pe-warna.

3. Prefix men- and pen-.
The prefix men- can be added on the basis of the initial letters of words when the form

144 Implementation of Porter’s Modified Stemming Algorithm in an Indonesian
 Word Error Detection Plugin Application

includes the letters “d,” “j,” “sy,” and “t.”

Consider the following examples:

• Men-datangi and pen-datang.

• Men-jegal and pen-jegal.
• Men-syukuri and pen-syukur.
• Men-tanam becomes menanam and pen-tanam becomes penanam (having a dilution for the

initial letter “t”).

4. Prefix mem- and pem-.
The prefix mem- can be added on the basis of the initial letters of words when the form

includes the letters “b,” “p,” and “f.”

Example:

• Mem-bantai and pem-bantai.
• Mem-pukul becomes memukul and pem-pukul becomes pemukul (having a dilution for the

initial letter “p”).

• Mem-fokuskan and pem-fokus.

5. Prefix meny- and peny-.
The prefix meny- can be added on the basis of the initial letters of words when the form

includes the letter is “s.”

Example:

• Meny-sapu becomes menyapu (having a dilution for the initial letter “s”).

3. APPLICATION DESIGN

The design process in this study uses a flowchart design. The main flowchart used in the system

is included below in Figure 2.

Figure 2 Process analysis with Porter’s algorithm flowchart

Figure 2 illustrates the process flow of the text input obtained from the user, and then the input

text is parsed per word in order to perform the stemming process using Porter’s stemming

algorithm. Then the word is compared to a database to confirm legitimacy; if it does not

Widjaja & Hansun 145

comply, then the word is highlighted. The history of the process results was stored in the

database.

Figure 3 Process Analysis with Porter’s modified algorithm flowchart

Figure 3 shows the process flow, which is similar to the previous process flow, but with some

modifications. For example, several processes were added before the highlighted words to

obtain more accurate results than the previous process flow.

Figure 4 Stemming process with Porter’s algorithm flowchart

Figure 4 illustrates that the stemming process begins with stemming the particle phase,

followed by a pronoun stemming and first prefix stemming. If the first prefix in the word is

found, then the process continues to the suffix stemming process and the last second prefix

146 Implementation of Porter’s Modified Stemming Algorithm in an Indonesian
 Word Error Detection Plugin Application

stemming; however, if it is not found in the first prefix, the prefix is the second stemming

passed first, followed by suffix stemming.

According to the flowchart in Figure 4, the stemming process applies both to Porter’s original

algorithm and Porter’s modified algorithm. The difference lies in the process of stemming the

first prefix that has some modifications from its original process. The following modifications

were made in the first table prefix.

Table 6 Rules for first order derivational prefix with modified prefix

Prefix Replacement Measure Condition Additional Condition Example

meng- NULL 2 NULL mengukur -> ukur

meng- K 2 V…* mengaji -> kaji

meny- S 2 V…* menyapu -> sapu

men- NULL 2 NULL menduga -> duga

men- T 2 NULL menari -> tari

mem- P 2 V… memaksa-> paksa

mem- NULL 2 NULL membaca-> baca

me- NULL 2 NULL merusak -> rusak

peng- NULL 2 NULL pengukur-> ukur

peny- K 2 V…* pengali -> kali

pen- S 2 V… penyapu -> sapu

pen- NULL 2 NULL penduga -> duga

pem- T 2 NULL penari -> tari

pem- P 2 V… pemaksa -> paksa

pe- NULL 2 NULL pembaca -> baca

di- NULL 2 NULL perusak -> rusak

ter- NULL 2 NULL diukur -> ukur

ke- NULL 2 NULL tersapu -> sapu

se- NULL 2 NULL kekasih -> kasih

ku- NULL 2 NULL sewaktu -> waktu

As indicated in Table 6, there are some additional rules for the first prefix, including

modifications and additions to the existing theories based on affixes and dilution that exist on a

theoretical basis.

Furthermore, the measures for Porter’s stemming algorithm have been modified as follows:

1. Remove the particle.

2. Remove the possessive pronoun.

3. Remove the first prefix. If there is no first prefix, go to step 4a; otherwise go to step 4b.

4. a. Remove the second prefix and then proceed to step 5a.

b. Remove the suffix; if the suffix is not found then the word is assumed to be a root word.

If it is found, then go to step 5b.

5. a. Remove the suffix. If the root word is found in the dictionary, then the algorithm stops.

If it is not found, skip to step 6.

 b. Remove the second prefix. If the root word is found in the dictionary, then the algorithm

stops. If it is not found, skip to step 6.

Widjaja & Hansun 147

6. First, check the prefixes that are diluted. If the root word is found in the dictionary, then the

algorithm stops.

7. Return the suffix. If the root word is found in the dictionary, then the algorithm stops.

8. Check the custom dictionary; if it is found, then the algorithm stops.

4. IMPLEMENTATION AND TESTING RESULT

Figure 5 below presents the plugin interface in the Microsoft Word application. The new ribbon

can be found in the Microsoft Word menu tab with the name "One Click Analyzer." There are

10 buttons and one checklist on this ribbon.

Figure 5 Whole interface of Microsoft Word

According to the results of the analysis illustrated in Figure 5, there are some incorrect words

there are some incorrect words which the plugin managed to detect (as illustrated with the blue

highlights).

In the "One Click Analyzer" menu tab there are two analyze buttons. The first analyze button

can be used to analyze the text with Porter’s modified algorithm, while the second can be used

to analyze the text with Porter’s original algorithm.

The test was conducted to see the results of the analysis of Porter’s stemming algorithm and

Porter’s modified stemming algorithm. The test was done with a few words that were

intentionally typed incorrectly to test the accuracy of the analysis of both versions of Porter’s

algorithm. In addition, the test was also performed to see the accuracy of the analysis of the

correct words. Table 7 presents the results of the analysis with some sample documents in

tabular form.

Table 7 shows some of the experimental results from the samples of the short stories (“cerpen”)

and articles. The first experiment was conducted on short stories, which included five different

sample documents that each has a varying number of words. First, there is a short story with

200 words in which there are 10 incorrect words. The experiments were performed using

Porter’s original algorithm; 10 incorrect words were successfully analyzed, while 20 correct

words are regarded as incorrect words. The second experiment was performed using Porter’s

modified algorithm.

148 Implementation of Porter’s Modified Stemming Algorithm in an Indonesian
 Word Error Detection Plugin Application

Table 7 Analysis of the test results

As a result, 10 incorrect words were successfully analyzed, whereas only two correct words

were considered incorrect. The second experiment was conducted on a 400-word short story

with 15 incorrect words. Both algorithms successfully analyzed 15 incorrect words; however,

Porter’s original algorithm regarded 26 correct words as incorrect words, while Porter’s

modified algorithm regarded 14 correct words as incorrect words. The third experiment was

conducted on a 600-word short story with 20 incorrect words. Both algorithms successfully

analyzed all 20 incorrect words; however, Porter’s original algorithm regarded 46 correct words

as incorrect words, while Porter’s modified algorithm regarded 23 correct words as incorrect

words. The fourth experiment used an 800-word short story with 20 incorrect words. Both

algorithms successfully analyzed all 20 incorrect words; however, Porter’s original algorithm

regarded 66 correct words as incorrect words, while Porter’s modified algorithm regarded 62

correct words as incorrect words. The fifth experiment was conducted on a 1,000-word

document with 20 incorrect words. Both algorithms successfully analyzed all 20 incorrect

words; however, Porter’s original algorithm regarded 62 correct words as incorrect words,

while Porter’s modified algorithm regarded 44 correct words as incorrect words.

The next stage of the experiment involved using different kinds of articles, including five

different types of documents each with a different number of words. The first experiment used a

200-word article with 10 incorrect words. Both algorithms successfully analyzed 10 incorrect

words; however, Porter’s original algorithm regarded 13 correct words as incorrect words,

while Porter’s modified algorithm regarded 9 correct words as incorrect words. The second

experiment used a 400-word article with 15 correct words. Both algorithms successfully

analyzed 15 incorrect words; however, Porter’s original algorithm regarded 25 correct words as

incorrect words, while Porter’s modified algorithm regarded 9 correct words as incorrect words.

The third experiment used 600-word article with 20 incorrect words. Both algorithms

successfully analyzed 20 incorrect words; however, Porter’s original algorithm regarded 37

correct words as incorrect words, while Porter’s modified algorithm regarded 16 correct words

as incorrect words. The fourth experiment used an 800-word article with 20 incorrect words.

Both algorithms successfully analyzed 20 incorrect words; however, Porter’s original algorithm

regarded 50 correct words as incorrect words, while Porter’s modified algorithm regarded 35

correct words as incorrect words. The fifth experiment used a 1,000-word article with 20

incorrect words. Both algorithms successfully analyzed 20 incorrect words; however, Porter’s

Widjaja & Hansun 149

original algorithm regarded 85 correct words as incorrect words, while Porter’s modified

algorithm regarded 40 correct words as incorrect words.

Based on all of the experimental results it can be concluded that Porter’s original algorithm and

Porter’s modified algorithm are capable of perfectly analyzing all of the incorrect words

(100%); however, there are still shortcomings in analyzing the correct words. As the results in

Table 7 suggest, it can be concluded that the use of Porter’s modified algorithm produced better

results in analyzing the correct words. The accuracy of the modified algorithm in analyzing the

correct words was 96.31%, while the accuracy of Porter’s original algorithm was 93.04%.

Porter’s modified algorithm has more complex algorithms and more complete prefix, postfix,

and suffix rules tables. Porter’s modified algorithm is designed to minimize the errors and the

shortcomings of Porter’s original algorithm in the process of analyzing the correct words. The

results of the analysis of Table 7 are presented below in the form of graphs.

Figure 6. Analysis result of short story type for correct words

Figure 7 Analysis result of article type for correct words

5. CONCLUSION

This word error detection plugin application is good enough to analyze the existing posts in

Microsoft Word. In addition, Porter’s original algorithm and Porter’s modified algorithm have

been successfully implemented and produced good results. From the experimental results it can

be concluded that the accuracy of Porter’s modified algorithm is higher than Porter’s original

algorithm. Through the research conducted, Porter’s algorithm can be developed further so that

150 Implementation of Porter’s Modified Stemming Algorithm in an Indonesian
 Word Error Detection Plugin Application

even more accurate results can be obtained. Furthermore, Porter’s modified algorithm can be

used together with other stemming algorithms in order to fill the gap, such as Nazief and

Adriani’s algorithm. While Nazief and Adriani’s algorithm can provide better results for the

stemming process, this approach will consume more time than Porter’s original stemming

algorithm. In addition, the development of this application can be improve by adding some

features, such as the detection of words in English, auto correct, correct word suggestion, and

auto italic for foreign language words, among others.

6. REFERENCES

Agusta, L., 2009. Comparison of Porter Stemming Algorithm and Nazief & Adriani’s

Algorithm for Stemming Indonesian Text Documents. National Conference on Systems and

Informatics. KNS&I09036

Buckland, M., 1998. What is a Digital Document? Available online at

http://people.ischool.berkeley.edu/~buckland/digdoc.html, Accessed on 12 March 2014.

Dept. of Cultural and Education, Republic of Indonesia, 1988. Tata Bahasa Baku Bahasa

Indonesia. Balai Pustaka [in Bahasa]

Karaa, Wahiba Ben Abdessalem, 2013. A New Stemmer to Improve Information Retrieval.

International Journal of Network Security & Its Applications (IJNSA). Volume 5(4). Pp.

143-154 Available online at http://airccse.org/journal/nsa/5413nsa11.pdf,

Lovins, J.B., 1968. Development of a Stemming Algorithm. Mechanical Translation and

Computational Linguistics, Volume 11(1/2), pp. 2231

Milutinovich, J., 2006. The Porter Stemming Algorithm. Available onlineat

http://tartarus.org/~martin/PorterStemmer/index.html, Accessed on 27 February 2014

Moral, C., de Antonio, A., Imbert, R., Ramírez, J., 2014. A Survey of Stemming Algorithms in

Information Retrieval, Information Research, Volume 19(1), p. 605. Available online at

http://InformationR.net/ir/19-1/paper605.html,

Pustaker, Algorithm stemming. Available online at http://www.pustakasekolah.com/algoritma-

stemming.html. Accessed on 27 February 2014

Roy, A.A., 2001. History of the Personal Computer: The People and the Technology. Allan

Publishing.

Utami, E., Sukrisno, 2005. 10 Langkah Belajar Logika dan Algoritma. Menggunakan Bahasa C

dan C++ di gnu/Linux. Yogyakarta: C.V. Andi OFFSET [in Bahasa]

Widya, E., 2013. Kata Berimbuhan. Available online at

http://basindosaka.blogspot.com/2011/12/kebahasaan.html, Accessed on 18 June 2014 [in

Bahasa]

http://people.ischool.berkeley.edu/~buckland/digdoc.html
http://airccse.org/journal/nsa/5413nsa11.pdf
http://tartarus.org/~martin/PorterStemmer/index.html
http://informationr.net/ir/19-1/paper605.html
http://basindosaka.blogspot.com/2011/12/kebahasaan.html

