
International Journal of Technology (2014) 1: 22‐31
ISSN 2086‐9614 © IJTech 2014

IMPROVED FLOATING POINT MULTIPLIER DESIGN BASED ON CANONICAL
SIGN DIGIT

P. Saha1, P. Bhattacharyya2, A. Dandapat3*

1Department of Electronics and Communication Engineering, National Institute of Technology,

Shillong, Meghalaya-793003, India
 2Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science

University. Shibpur, Howrah-711103, India
3Department of Electronics and Communication Engineering, National Institute of Technology,

Shillong, Meghalaya-793003, India

(Received: March 2013 / Revised: August 2013 / Accepted: December 2013)

ABSTRACT
Improved floating point (FP) multiplier based on canonical signed digit code (CSDC) has been
reported in this paper. Array structure was implemented through Hatamain’s scheme of partial
product generation along with Baugh-Wooley’s (B.W) sign digit multiplication technique.
Moreover, CSDC approaches were used for the addition of partial products in constant time
without carry propagation and independent of operands. The functionality of these circuits was
checked and performance parameters, such as propagation delay, dynamic switching power
consumptions were calculated by spice spectre using 90nm CMOS technology. Implementation
methodology ensures the stage reduction for floating point multiplier, hence substantial
reduction in propagation delay compared with B.W.’s methodology, has been investigated.
Implementation result offered propagation delay of the single precision floating point multiplier
was only ~14.7ns propagation delay while the power consumption of the same was ~23.7mW.
Almost ~40% improvement in speed from earlier reported FP multiplier, e.g. B.W
implementation methodology, the best architecture reported so far, has been achieved.

Keywords: Baugh-Wooley (B.W) multiplier; CSD adder; CSD multiplier; High Speed

1. INTRODUCTION
Floating point (FP) multiplier plays a pivotal role in scientific computation for its dynamic
range, high precision, and straightforward operating rules (Renxi, 2009). The increasing
demand of FP multiplier for the high-precision computation gives a new dimension to the
researchers to implement high performance (high speed and low power) processor designs
(Zhou 2007; Zhao 2004; Wu 2005).

Generally, multiplication performs the computation P = X×Y. Where X, Y, P signifies
multiplicand, multiplier, and product respectively. It is assumed that if both X, Y are ‘N’ bits,
then the values of ‘P’ must be ‘2N’ bits. A FP number consists of a mantissa (M) and an
exponent (e), as shown in Equation (1) (Uya, 1984). There are several ways to represent the
sign of the mantissa like as two's-complement representation, sign magnitude representation.
The IEEE 754 single precision format is 32 bit wide and uses a 23 bit fraction, an eight bit
exponent represented using excess 127, and one bit is used as a sign bit (Koren, 1993).

* Corresponding author’s email: anup.dandapat@gmail.com, Tel. +91‐3642501225, Fax: +91‐3642501113
Permalink/DOI: http://dx.doi.org/10.14716/ijtech.v5i1.150

Dandapat et al. 23

Thereby, the exponent is treated as a positive number from which a constant is subtracted to
form the final exponent (Raafat, 2008). Thus, the mantissa is a normalized binary floating point
number followed by the sign bit and does not stored together with the floating point number.
The IEEE 754, a standard for floating point numbers (IEEE, 1996), dictates the format
presented in Equation (2).

 ܺ ൌ 2௘ (1) ܯ

 ܺ ൌ ሺെ1ሻௌ .1. .ܯ 2௘ି௘௫௖௘௦௦ (2)

In general, high-speed FP multipliers, multiplication is carried out by generation of the partial
products in parallel format, followed by the addition of these partial products to carry the final
results (Hickmann, 2007; Hao, 2005). Addition has been carried out by parallel adders, which
has been normalized and rounded to produce the final results. The exponent of the product is
the summation of the exponents with proper bias adjustment and increment if the pre-
normalized significant requires 1-bit shift for normalization (Quach, 2004). The sign of the
product is simply the exclusive-OR (XOR) of the signs of the input operands (Uya, 1984).

In this paper, we report on a floating point multiplier based on CSDC where partial products are
generated through the Baugh Wooley’s (B.W) (Baugh, 1973) methodology. Generally,
multiplication of two ‘N’ bit sign digit floating numbers generates N×N partial products,
thereby N−1 adders are required to sum the partial products, if conventional two input N bit
adders are used, since each adder reduces the number of partial products by one (Saha, 2009).
Canonical sign digit multipliers have been shown to provide a very efficient method for
constant fixed point multiplication by utilization of redundancy of sign digit code (Avizienis,
1961). CSD is a radix-2 signed digit representation for coefficient of the digit set {-1,0,1}. Thus
CSD representation permits subtraction as well as addition of shifted data of the partial
products, which is generated by the multiplication of two numbers (Takagi 1985). The features
of the redundancy in this representation allow a coefficient implementation to be selected which
requires a few numbers of adders/subtractors, thus yields a faster multiplier compared to the
others (Saha, 2011).

The multiplier is fully optimized, so any configuration of input and output word-lengths could
be elaborated. Transistor level implementation has been carried out for calculating the
performance parameters like propagation delay, dynamic leakage power, and dynamic
switching power consumption. Performance parameters of the implemented method was
computed by spice spectre using 90nm standard CMOS technology and compared with the
other design like conventional (con) (Wu, 2005) and B.W. (Baugh, 1973) FP multiplier. The
calculated results revealed IEEE single precision (32×32) bit FP multiplier have propagation
delay only ~14.7nS and consumes ~23.7mW dynamic switching power.

2. METHODOLOGY
2.1. Implementation Algorithm
Let us assume two operands X,Y are in the IEEE 754 format, thus FP multiplication (Renxi
2009) can be represented as:

ݐ݈ݑݏܴ݁ ൌ ܲ ൌ ሺെ1ሻ௑ೞሺܺெ ൈ 2௑೐ሻ ൈ ሺെ1ሻ௒ೞሺ ெܻ ൈ 2௒೐ሻ involves the following steps, and
implementation procedure is shown in fig. 1. Implementation stages have been given hereunder:

Step 1: If one/both operands are equal to zero, return the result as zero, otherwise:

Step 2: Compute the sign of the result Xs XOR Ys

Step 3: Compute the mantissa of the operands:

24 Improved Floating Point Multiplier Design based on Canonical Sign Digit

 • Multiply the mantissas: Xm × Ym

 • Round the result to the allowed number of mantissa bits

Step 4 : Compute the exponent of the result: Result exponent = biased exponent (X) + biased
exponent (Y) - bias

Step 5: Normalize if needed, by shifting mantissa right, incrementing result exponent.

Step 6 : Check result exponent for overflow/underflow:

 • If larger than maximum exponent allowed return exponent overflow

 • If smaller than minimum exponent allowed return exponent underflow

Generally, in N bit floating point multiplication, N×N partial products are generated first and
added them to obtain the product. The partial products may be added by using full adder or full
adder with compressors. In the modified algorithm, partial products are added pair-wise by
means of CSD adders (Saha, 2011). All intermediate results have been calculated in CSD
format and the addition has been implemented through CSD addition. Finally, the product has
been converted into binary number.

Figure 1 FP multiplication procedure

Dandapat et al. 25

Improved multiplication algorithm

<Input>

X and Y: Multiplicand and multiplier respectively (Both are N Bits). Both are signed
digit floating point numbers.

<Output>

 Sum : the products of X and Y

Algorithm

Step 1 : Generate N×N bits partial products using Baugh-Wooley’s method

Step 2 : Add the partial products using CSD adders. Perform the additions at each level in the
tree in parallel

Step 3 : Convert Addition Results in 2’s complement format

Flowchart diagram has been implemented through the algorithm and shown in Figure 2. Input
data (multiplicand and multiplier) has been taken as 2’s complement format. Transistor level
implementation has been carried out for the same architecture.

Figure 2 Flowchart diagram of improved multiplication algorithm using CSD

3. CIRCUIT MODULES
The advantages of CMOS transmission gate (TG) logic over conventional CMOS logic are well
established. CMOS transmission gate are based on one PMOS and one NMOS, and they are
connected in parallel, thereby ON resistance is smaller than even a single NMOS (Uyemura,
2001). The circuit modules required for computation decimal multiplication of two numbers are
described in the following subsections, have been implemented using TG.

26 Improved Floating Point Multiplier Design based on Canonical Sign Digit

3.1. Partial Product Generation using Baugh-Wooley’s Methodology
In case of signed or 2’s complement floating point multiplication the multiplicand and
multiplier can be represented as follows. According to the sign magnitude format (Wanhammar
1999), numbers can be represented as

 ܺ ൌ ൫െݔ଴ ൅ ∑ ௜ݔ
௡ିଵ
௜ୀଵ 2ି௜൯ and ܻ ൌ ൫െݕ଴ ൅ ∑ ௝2ି௝௡ିଵݕ

௝ୀଵ ൯ (3)

Now, the multiplication of X & Y gives:

 P = XY = ൫െݔ଴ ൅ ∑ ௜ݔ
௡ିଵ
௜ୀଵ 2ି௜൯ ൫െݕ଴ ൅ ∑ ௝2ି௝௡ିଵݕ

௝ୀଵ ൯ (4)

଴ݕ ଴ݔ = ൅ ∑ ∑ ௜ݔ
௡ିଵ
௝ୀଵ

௡ିଵ
௜ୀଵ ௝2ି௜ି௝ݕ െ ଴ݔ ∑ ௝ݕ

௡ିଵ
௝ୀଵ 2ି௝ െ ଴ݕ ∑ ௜2ି௜௡ିଵݔ

௜ୀଵ (5)

While generating P by combining the partial products, the sign of the partial products must be
taken into consideration. Here ൫െ ݔ଴ ∑ ௝ݕ

௡ିଵ
௝ୀଵ 2ି௝൯ ܽ݊݀ ሺെ ݕ଴ ∑ ௜2ି௜ሻ௡ିଵݔ

௜ୀଵ are two partial
product terms that represents negative quantities. Each of two negative terms can be rewritten
as 2’s complement form (Wanhammar, 1999). The partial products with negative terms are
written at the end rows as shown in Figure 3. The partial product row in Figure 3 (5×5 floating
point multiplication) containing the row {1 1 ݔ଴ݕଵതതതതതത ݔ଴ݕଶതതതതതത ݔ଴ݕଷ ݔ଴ݕସതതതതതത 1 1 1 1} is added
with ‘1’ to get the 2’s complement form of െݔ଴ ∑ ௝2ି௝௡ିଵݕ

௝ୀଵ . Similarly to get the 2’s
complement form of െݕ଴ ∑ ௜2ି௜௡ିଵݔ

௜ୀଵ the row of the partial product terms {1 1 ݔଵݕ଴ തതതതതത ݔଶݕ଴തതതതതത
 .’଴തതതതതത 1 1 1 1} shown in Figure 3, is again added with ‘1ݕସݔ ଴തതതതതതݕଷݔ

The B.W’s algorithm (Baugh, 1973) is relatively straight forward way of doing signed digit
floating multiplier. Figure 4 representing the algorithm for a 5-bit case, (for simplicity purpose
a 5-bit case has been considered, higher number of bit array can be designed in similar manner)
where the partial product bits have been recognized according to Hatamain’s scheme (Hatamain
1986). The creation of the partial product array comprises of two steps.

I. The most significant bit (MSB) of the first N-1 partial and all bits of the last partial
product rows except its MSB, are inverted.

II. ‘1’ is added to the (N+1)th and 2Nth column.

The modified architecture has been shown in Figure 4. In this modified diagram, partial
products have been added in three stages. Adders and different compressors are used to
minimize the stage operations (Saha, 2009). Compressors and adders are used carefully, so that
a minimum number of outputs would be generated. As an example, let us consider the column
number five where five bits are added at the first time (Saha, 2009). These five bits could be
added by using one full adder and a half adder but that will generate four (two from full adder
and two from half adder) outputs, instead of this we have used one 5-3 (Saha, 2009) compressor
that generates three outputs only which eventually decrease the number of bits for the next
stage. The algorithm and architecture described here is only for five bit multiplier. Higher bit
multipliers are developed in a similar manner.

Dandapat et al. 27

Figure 3 Conventional approach 2’s complements floating point multiplication

Figure 4 Implementation of B.W. multiplier using adders and compressors

3.2. Canonic Sign Digit (CSD)
The canonical signed digit (CSD) code is a sign digit code with minimal hamming weight, i.e it
contains minimum numbers of non zero digits and no adjacent non zero digits (Avizienis 1961).
It has a fixed radix 2 and digit set [1ത , 0 , 1ሿ where 1ത denotes ‘-1’. An n digit CSD floating
point number Y = [y0……yn-1]SD2 where (yi є { 1ത, 0, 1}) has the value ∑ ௜ݕ

௡ିଵ
௜ୀ଴ ൈ 2ି௜ is

similar to a binary floating point number except that yi can be 1ത (Das 1996). An n digit 2’s
complement binary floating point number ሾݕ଴ … … … . . ௡ିଵሿଶഥ where (yi є { 0, 1}) and n digitݕ
CSD floating point number [ݕ଴തതത ݕଵ … … . . ଴ݕ௡ିଵሿCSD2 have the same value െݕ ൅ ∑ ௜ݕ

௡ିଵ
௜ୀଵ 2ି௜

where ݕ଴തതത is 1ത or 0 accordingly as y0 is 1 or 0.

3.2.1. 2’s complement to CSD conversion
Figure 5 represents the flow chart diagram of 2’s complement to CSD number conversion.
From the definition of CSD, mathematically it can be represented as
ݔ ൌ ∑ ௜ݔ

௡ିଵ
௜ୀ଴ 2௜ ݁ݎ݄݁ݓ ሺݔ௜ ߳ 1ത, 0,1ሻ (Avizienis, 1961). And two consecutive digits are non

28 Improved Floating Point Multiplier Design based on Canonical Sign Digit

zero (Lim, 1991). Thus, the mathematical expression becomes ݔ௜ݔ௜ାଵ ൌ 1 ݎ݋݂ 0 ൑ ݅ ൑ ݊ െ
1.

Figure 5 Flow chart diagram of 2’s complement floating point number to CSD conversion

The conversion of 2’s complement number to CSD code can be implemented through Table 1,
where y is defining the 2’s complement number and x is the corresponding CSD number
representation.

Table 1 Conversion of two’s complement number to CSD digit representation

yi+2 yi+1 yi xi+3 xi+2 xi+1 xi

0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 1 0
0 1 1 0 1 0 1ത
1 0 0 0 1 0 0
1 0 1 0 1 0 1
1 1 0 1 0 1ത 0
1 1 1 1 0 0 1ത

Circuit module has been carried out via Table 1, and shown in Figure 6. In this architecture yi,
yi+1, yi+2 are the present state inputs, and the corresponding outputs are xi, xi+1, xi+2, xi+3. Si_xi,
Si_xi+1, Si_xi+2,Si_xi+3 are representing the corresponding sign bits of the outputs.

Figure 6 Hardware implementation of 2’s complements floating point number to CSD conversion.

Dandapat et al. 29

3.2.2. CSD addition
Carry propagation free CSD addition is performed in two steps.

I. Determining the intermediate carry { Ci Ԗ (1ത, 0, 1)} and intermediate sum digits { Si Ԗ
(1ത , 0, 1) , satisfying the condition xi + yi= zi + Ci-1, where xi+1 and yi +1 are the augend
and adding digits respectively.

II. Obtaining the sum digits {Zi Ԗ (1ത, 0, 1)} at each position by the addition of intermediate
sum digits Si and Ci from the next lower order positions.

Boolean expressions have been implemented through the above mentioned steps is shown in the
following expressions (6-9) (Saha, 2011; Lim, 1991). Here zi, Ci-1 are representing the
intermediate sum and intermediate carry. Signxi and Signyi are representing sign magnitude of
xi and yi respectively. SignCi-1 and Signzi are representing the sign magnitude of intermediate
carry and intermediate sum respectively.
 z୧ ൌ x୧ y୧ (6)

 C୧ିଵ ൌ ൬ሺx୧ y୧ሻ ቀxన  yన
തതതതതതതതതቁ ൅ ሺSignx୧ାଵ ൅ Signy୧ାଵሻ൫x୧  y୧൯൰  ሺSignx୧  Signy୧ሻ (7)

 Signz୧ ൌ z୧ሺSıgnxనାଵ ൅ Sıgnyనାଵതതതതതതതതതതതതതതതതതതതതതതതതതതሻ (8)

 SignC୧ିଵ ൌ ቀxన  yన
തതതതതതതതതቁ ሺSignx୧ Signy୧ሻ ൅ ൫x୧  y୧൯ሺSignx୧ାଵ ൅ Signy୧ାଵሻ (9)

4. RESULTS AND DISCUSSION
Transistor level simulation of the reported FP multiplier circuitry was performed through spice
spectre simulator using 90nm CMOS technology with 1V power supply, operated at 25MHz.
Dual threshold voltage(VT) (Uyemura, 2001) operating mode was considered for simulation to
determine the performance parameters. In designing calculation of FP multiplier like (4×4),
(8×8), (16×16) and (32×32) bits, all the individual modules such partial product generation
using B.W’s methodology, we focused our main concentration for reducing the propagation
delay and dynamic switching power consumption.

For the comparison point of view, the ideas have been considered form the references and
simulated, and performance parameters was computed using the same MOSFET technology
file. Input data was taken in a regular fashion for experimental purpose. The delay and the
power measured using the worst-case pattern and from the output where the delay is maximum,
and shown in Figure 7. From Figure 7, it is also observed that the proposed design offered
~52%, ~42% improvement in propagation delay while corresponding reduction of power
consumption are ~36%, ~26% for the (32×32) bit FP multiplication circuitry in comparison
with conventional (Wu, 2005) and B.W (Baugh, 1973) based implementation respectively.

30 Improved Floating Point Multiplier Design based on Canonical Sign Digit

Figure 7 Performance parameters such as (a) propagation delay (ns); (b) dynamic switching power

(mW) consumption of the different architectures, as a function of input number of bits, which have been
implemented by Spice Spectre using 90nm CMOS technology file

5. CONCLUSION
In this paper, we report on a single precision high speed FP multiplier based on CSD, which is
highly suitable for VLSI implementation. Array structure has been implemented through
Hatamain’s scheme of partial product generation along with Baugh-Wooley’s (B.W) sign digit
multiplication technique. The implementation methodology ensures stage reduction, leading to
substantial reduction of the propagation delay and power. Transistor level simulation for FP
multiplier circuit was performed through Cadence Spice Spectre simulator using 90nm CMOS
technology. Implementation methodology offered ~52%, ~42% improvement in propagation
delay while corresponding reduction of power consumption are ~36%, ~26% for the (32×32)
bit FP multiplication circuitry in comparison with conventional and B.W implementation
techniques respectively.

6. REFERENCES
Avizienis, A., 1961. Signed-digit Number Representations for Fast Parallel Arithmetic. IRE

 Transaction on Electronics Computer, Volume EC-10, pp. 389–400
Baugh, C.R., Wooley, B.A., 1973. A Two’s Complement Parallel Array Multiplication

Algorithm. IEEE Transaction on Computer, Volume C-22, pp. 1045–1047
Das, S.K., Pinotti, M.C., 1996. Fast VLSI Circuits for CSD Coding and GNAF coding.

 Electronics Letters, Volume 32, pp. 632–634
Hao, Z.-G., Zeng, X.-J., Li, G.-K., 2005. The CMOS Circuit Design of a High-Speed Floating-

 Point Multiplier. Computer Engineering & Science,Volume 21, pp.54–57
Hatamian, M., 1986. A 70-MHz 8-bit × 8-bit Parallel Pipelined Multiplier in 2.5-μm CMOS.

 IEEE Journal on Solid-State Circuits, Volume 21, pp. 505–513
Hickmann, B., Krioukov, A., Schulte, M., 2007. A Parallel IEEE P754 Decimal Floating-Point

Multiplier. Proceedings of IEEE 25th International conference on computer design. Lake
Tahoe, CA, 7-10th Oct, pp. 296–303

IEEE Standard 754 for Binary Floating-Point Arithmetic, 1996
Koren, I., 1993. Computer Arithmetic Algorithms, Prentice Hall
Lim, Y.C., Evans, J.B., Liu, B., 1991. Decomposition of Binary Integers into Signed Power-of-

two Terms. IEEE Transaction on Circuits and Systems, Volume 38, pp. 667–672
Quach, N.T., Takagi,N., Flynn, M.J., 2004. Systematic IEEE Rounding Method for High-Speed

Floating-Point Multipliers. IEEE Transaction on Very Large Scale Integration (VLSI)
Systems, Volume 12, pp. 511–521

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5219227
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1672241
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00491865
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCUQFjAA&url=http%3A%2F%2Fcaod.oriprobe.com%2Farticles%2F531110%2FThe_CMOS_Circuit_Design_of_a_High_Speed_Floating_Point_Multiplier.htm&ei=9o7wUtrhEsmjiAfM2oGgBw&usg=AFQjCNESlMh2h892qvOMeNWcjtZ8pirGnQ
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1052564
http://www.researchgate.net/publication/4363540_A_parallel_IEEE_P754_decimal_floating-point_multiplier
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.cs.berkeley.edu%2F~wkahan%2Fieee754status%2Fieee754.ps&ei=sI_wUqO-JOeeiAegl4DoBw&usg=AFQjCNELCnrbhDcplqSN4xra9Q2iUkPAXA
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=81865&userType=inst
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01291429

Dandapat et al. 31

Raafat, R., Amira, M., Majeed, A., Samy R., 2008. A Decimal Fully Parallel and Pipelined
Floating Point Multiplier. Proceedings of IEEE 42nd Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, 26-29th Oct, pp. 1800–1804

Renxi, G., Shangjun Z., Hainan Z., Xiaobi M.,Wenying G., Lingling X.,Yang, H., 2009.
Hardware Implementation of a High Speed Floating Point Multiplier based on FPGA.
Proceedings of IEEE 4th International Conference on Computer Science & Education,
Nanning, 25-28th July, pp. 1902–1906

Saha, P., Banerjee, A., Dandapat, A., Bhattacharyya, P., 2011. ASIC Implementation of High
Speed Processor for Calculating Discrete Fourier Transformation using Circular
Convolution Technique. International Journal of World Scientific and Engineering
Academy and Society (WSEAS), Volume 10, pp. 278–288

Saha, P.K, Banerjee, A., Dandapat, A., 2009. High Speed Low Power Complex Multiplier
Design using Parallel Adders and Subtractors. International Journal on Electronic and
Electrical Engineering, (IJEEE),Volume 07, pp. 38–46

Takagi, N., Yasuura, H., Yajima, S., 1985. High-Speed VLSI Multiplication Algorithm with a
Redundant Binary Addition Tree. IEEE Transaction on Computer, Volume C-34, pp. 789–
796

Uya, M., Kaneko, K., Yasui, J., 1984. A CMOS Floating Point Multiplier. IEEE Journal of
Solid State Circuits, Volume Sc-9, pp. 697–702

Uyemura, J.P., 2001. CMOS Logic Circuit Design, Kluwer Academic Publishers.
Wanhammar, L., 1999. DSP Integrated Circuits” PP- 479, Academic Press.
Wu, J., Ying, Z., 2005. Design of High Speed Floating-multiplier, Journal of Circuits and

Systems, Volume 10, pp.6–11
Zhao, Z.-W., Chen, H., Han, Y.-Q., 2004. Design of High-performance 32-bit Floating-point

Multipliers for ASIC. Systems Engineering and Electronics, Volume 26, pp.531–534
Zhou, D.-J., Sun, Feng., Yu, Z.-G., 2007. Design of a 32-bit High-Speed Floating-Point

Multiplier. Semiconductor Technology, Volume 20, pp.871–874

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5074737
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05228240
http://www.wseas.us/e-library/transactions/circuits/2011/54-098.pdf
http://www.serc.org.in/admin/pdffiles/05-IJEEE-VOL-07.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676634
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01052210
http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTYD200404031.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDTJ200710013.htm

