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ABSTRACT 
Improved floating point (FP) multiplier based on canonical signed digit code (CSDC) has been 
reported in this paper. Array structure was implemented through Hatamain’s scheme of partial 
product generation along with Baugh-Wooley’s (B.W) sign digit multiplication technique. 
Moreover, CSDC approaches were used for the addition of partial products in constant time 
without carry propagation and independent of operands. The functionality of these circuits was 
checked and performance parameters, such as propagation delay, dynamic switching power 
consumptions were calculated by spice spectre using 90nm CMOS technology. Implementation 
methodology ensures the stage reduction for floating point multiplier, hence substantial 
reduction in propagation delay compared with B.W.’s methodology, has been investigated. 
Implementation result offered propagation delay of the single precision floating point multiplier 
was only ~14.7ns propagation delay while the power consumption of the same was ~23.7mW. 
Almost ~40% improvement in speed from earlier reported FP multiplier, e.g. B.W 
implementation methodology, the best architecture reported so far, has been achieved. 
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1. INTRODUCTION 
Floating point (FP) multiplier plays a pivotal role in scientific computation for its dynamic 
range, high precision, and straightforward operating rules (Renxi, 2009). The increasing 
demand of FP multiplier for the high-precision computation gives a new dimension to the 
researchers to implement high performance (high speed and low power) processor designs 
(Zhou 2007; Zhao 2004; Wu 2005).  

Generally, multiplication performs the computation P = X×Y. Where X, Y, P signifies 
multiplicand, multiplier, and product respectively. It is assumed that if both X, Y are ‘N’ bits, 
then the values of ‘P’ must be ‘2N’ bits. A FP number consists of a mantissa (M) and an 
exponent (e), as shown in Equation (1) (Uya, 1984). There are several ways to represent the 
sign of the mantissa like as two's-complement representation, sign magnitude representation. 
The IEEE 754 single precision format is 32 bit wide and uses a 23 bit fraction, an eight bit 
exponent represented using excess 127, and one bit is used as a sign bit (Koren, 1993).  
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Thereby, the exponent is treated as a positive number from which a constant is subtracted to 
form the final exponent (Raafat, 2008). Thus, the mantissa is a normalized binary floating point 
number followed by the sign bit and does not stored together with the floating point number. 
The IEEE 754, a standard for floating point numbers (IEEE, 1996), dictates the format 
presented in Equation (2). 

 ܺ ൌ  2௘ (1) ܯ

 ܺ ൌ ሺെ1ሻௌ .1. .ܯ 2௘ି௘௫௖௘௦௦ (2) 

 

In general, high-speed FP multipliers, multiplication is carried out by generation of the partial 
products in parallel format, followed by the addition of these partial products to carry the final 
results (Hickmann, 2007; Hao, 2005). Addition has been carried out by parallel adders, which 
has been normalized and rounded to produce the final results. The exponent of the product is 
the summation of the exponents with proper bias adjustment and increment if the pre-
normalized significant requires 1-bit shift for normalization (Quach, 2004). The sign of the 
product is simply the exclusive-OR (XOR) of the signs of the input operands (Uya, 1984). 

In this paper, we report on a floating point multiplier based on CSDC where partial products are 
generated through the Baugh Wooley’s (B.W) (Baugh, 1973) methodology. Generally, 
multiplication of two ‘N’ bit sign digit floating numbers generates N×N partial products, 
thereby N−1 adders are required to sum the partial products, if conventional two input N bit 
adders are used, since each adder reduces the number of partial products by one (Saha, 2009). 
Canonical sign digit multipliers have been shown to provide a very efficient method for 
constant fixed point multiplication by utilization of redundancy of sign digit code (Avizienis, 
1961). CSD is a radix-2 signed digit representation for coefficient of the digit set {-1,0,1}. Thus 
CSD representation permits subtraction as well as addition of shifted data of the partial 
products, which is generated by the multiplication of two numbers (Takagi 1985). The features 
of the redundancy in this representation allow a coefficient implementation to be selected which 
requires a few numbers of adders/subtractors, thus yields a faster multiplier compared to the 
others (Saha, 2011).  

The multiplier is fully optimized, so any configuration of input and output word-lengths could 
be elaborated. Transistor level implementation has been carried out for calculating the 
performance parameters like propagation delay, dynamic leakage power, and dynamic 
switching power consumption. Performance parameters of the implemented method was 
computed by spice spectre using 90nm standard CMOS technology and compared with the 
other design like conventional (con) (Wu, 2005) and B.W. (Baugh, 1973) FP multiplier. The 
calculated results revealed IEEE single precision (32×32) bit FP multiplier have propagation 
delay only ~14.7nS and consumes ~23.7mW dynamic switching power. 
 
2. METHODOLOGY 
2.1.  Implementation Algorithm 
Let us assume two operands X,Y are in the IEEE 754 format, thus FP multiplication (Renxi 
2009) can be represented as: 

ݐ݈ݑݏܴ݁ ൌ ܲ ൌ ሺെ1ሻ௑ೞሺܺெ ൈ  2௑೐ሻ ൈ ሺെ1ሻ௒ೞሺ ெܻ ൈ  2௒೐ሻ involves the following steps, and 
implementation procedure is shown in fig. 1. Implementation stages have been given hereunder: 

Step 1: If one/both operands are equal to zero, return the result as zero, otherwise: 

Step 2: Compute the sign of the result Xs XOR Ys 

Step 3: Compute the mantissa of the operands: 
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 • Multiply the mantissas: Xm × Ym 

 • Round the result to the allowed number of mantissa bits 

Step 4 : Compute the exponent of the result: Result exponent = biased exponent (X) + biased 
exponent (Y) - bias 

Step 5: Normalize if needed, by shifting mantissa right, incrementing result exponent. 

Step 6 : Check result exponent for overflow/underflow: 

 • If larger than maximum exponent allowed return exponent overflow 

 • If smaller than minimum exponent allowed return exponent underflow 

 

Generally, in N bit floating point multiplication, N×N partial products are generated first and 
added them to obtain the product. The partial products may be added by using full adder or full 
adder with compressors. In the modified algorithm, partial products are added pair-wise by 
means of CSD adders (Saha, 2011). All intermediate results have been calculated in CSD 
format and the addition has been implemented through CSD addition. Finally, the product has 
been converted into binary number. 

 
Figure 1 FP multiplication procedure 
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Improved multiplication algorithm 

<Input> 

X and Y: Multiplicand and multiplier respectively (Both are N Bits). Both are signed 
digit floating point numbers. 

<Output> 

 Sum : the products of X and Y 

Algorithm 

Step 1 : Generate N×N bits partial products using Baugh-Wooley’s method 

Step 2 : Add the partial products using CSD adders. Perform the additions at each level in the 
tree in parallel 

Step 3 : Convert Addition Results in 2’s complement format 

 

Flowchart diagram has been implemented through the algorithm and shown in Figure 2. Input 
data (multiplicand and multiplier) has been taken as 2’s complement format. Transistor level 
implementation has been carried out for the same architecture.  

 

 
 

Figure 2 Flowchart diagram of improved multiplication algorithm using CSD 
 

 
3. CIRCUIT MODULES  
The advantages of CMOS transmission gate (TG) logic over conventional CMOS logic are well 
established. CMOS transmission gate are based on one PMOS and one NMOS, and they are 
connected in parallel, thereby ON resistance is smaller than even a single NMOS (Uyemura, 
2001). The circuit modules required for computation decimal multiplication of two numbers are 
described in the following subsections, have been implemented using TG. 
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3.1.  Partial Product Generation using Baugh-Wooley’s Methodology 
In case of signed or 2’s complement floating point multiplication the multiplicand and 
multiplier can be represented as follows. According to the sign magnitude format (Wanhammar 
1999), numbers can be represented as  

 ܺ ൌ  ൫െݔ଴ ൅  ∑ ௜ݔ
௡ିଵ
௜ୀଵ 2ି௜൯ and ܻ ൌ  ൫െݕ଴ ൅  ∑ ௝2ି௝௡ିଵݕ

௝ୀଵ ൯ (3) 

Now, the multiplication of X & Y gives: 

 P = XY = ൫െݔ଴ ൅  ∑ ௜ݔ
௡ିଵ
௜ୀଵ 2ି௜൯ ൫െݕ଴ ൅  ∑ ௝2ି௝௡ିଵݕ

௝ୀଵ ൯ (4) 

଴ݕ ଴ݔ =  ൅  ∑ ∑ ௜ݔ
௡ିଵ
௝ୀଵ

௡ିଵ
௜ୀଵ ௝2ି௜ି௝ݕ െ ଴ݔ   ∑ ௝ݕ

௡ିଵ
௝ୀଵ 2ି௝ െ ଴ݕ  ∑ ௜2ି௜௡ିଵݔ

௜ୀଵ  (5) 

 

While generating P by combining the partial products, the sign of the partial products must be 
taken into consideration. Here  ൫െ ݔ଴  ∑ ௝ݕ

௡ିଵ
௝ୀଵ 2ି௝൯ ܽ݊݀ ሺെ ݕ଴ ∑ ௜2ି௜ሻ௡ିଵݔ

௜ୀଵ  are two partial 
product terms that represents negative quantities. Each of two negative terms can be rewritten 
as 2’s complement form (Wanhammar, 1999). The partial products with negative terms are 
written at the end rows as shown in Figure 3. The partial product row in Figure 3 (5×5 floating 
point multiplication) containing the row {1  1  ݔ଴ݕଵതതതതതത   ݔ଴ݕଶതതതതതത   ݔ଴ݕଷ  ݔ଴ݕସതതതതതത  1    1    1    1}  is added 
with ‘1’ to get the 2’s complement form of െݔ଴ ∑ ௝2ି௝௡ିଵݕ

௝ୀଵ  . Similarly to get the 2’s 
complement form of െݕ଴ ∑ ௜2ି௜௡ିଵݔ

௜ୀଵ  the row of the partial product terms {1  1 ݔଵݕ଴ തതതതതത  ݔଶݕ଴തതതതതത   
   .’଴തതതതതത   1   1   1   1} shown in Figure 3, is again added with ‘1ݕସݔ   ଴തതതതതതݕଷݔ

The B.W’s algorithm (Baugh, 1973) is relatively straight forward way of doing signed digit 
floating multiplier. Figure 4 representing the algorithm for a 5-bit case, (for simplicity purpose 
a 5-bit case has been considered, higher number of bit array can be designed in similar  manner) 
where the partial product bits have been recognized according to Hatamain’s scheme (Hatamain 
1986). The creation of the partial product array comprises of two steps. 

I. The most significant bit (MSB) of the first N-1 partial and all bits of the last partial 
product rows except its MSB, are inverted. 

II. ‘1’ is added to the (N+1)th and 2Nth column. 
 

The modified architecture has been shown in Figure 4. In this modified diagram, partial 
products have been added in three stages. Adders and different compressors are used to 
minimize the stage operations (Saha, 2009). Compressors and adders are used carefully, so that 
a minimum number of outputs would be generated. As an example, let us consider the column 
number five where five bits are added at the first time (Saha, 2009). These five bits could be 
added by using one full adder and a half adder but that will generate four (two from full adder 
and two from half adder) outputs, instead of this we have used one 5-3 (Saha, 2009) compressor  
that generates three outputs only which eventually decrease the number of bits for the next 
stage. The algorithm and architecture described here is only for five bit multiplier. Higher bit 
multipliers are developed in a similar manner.  
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Figure 3 Conventional approach 2’s complements floating point multiplication 

 

 

Figure 4 Implementation of B.W. multiplier using adders and compressors 
 
3.2.  Canonic Sign Digit (CSD) 
The canonical signed digit (CSD) code is a sign digit code with minimal hamming weight, i.e it 
contains minimum numbers of non zero digits and no adjacent non zero digits (Avizienis 1961). 
It has a fixed radix 2 and digit set [1ത , 0 , 1ሿ    where 1ത denotes ‘-1’.  An n digit CSD floating 
point number Y =  [y0……yn-1 ]SD2   where  (yi є { 1ത,  0,  1}) has the value ∑ ௜ݕ

௡ିଵ
௜ୀ଴  ൈ  2ି௜ is 

similar to a binary floating point number except that yi can be 1ത (Das 1996). An n digit 2’s 
complement binary floating point number ሾݕ଴ … … … . .  ௡ିଵሿଶഥ where ( yi  є { 0, 1}) and n digitݕ
CSD floating point number [ ݕ଴തതത  ݕଵ … … . . ଴ݕ௡ିଵሿCSD2  have the same value െݕ ൅ ∑ ௜ݕ

௡ିଵ
௜ୀଵ 2ି௜  

where ݕ଴തതത is 1ത  or 0 accordingly as y0 is 1 or 0.  

3.2.1. 2’s complement to CSD conversion 
Figure 5 represents the flow chart diagram of 2’s complement to CSD number conversion. 
From the definition of CSD, mathematically it can be represented as  
ݔ ൌ  ∑ ௜ݔ

௡ିଵ
௜ୀ଴ 2௜  ݁ݎ݄݁ݓ ሺݔ௜ ߳  1ത, 0,1ሻ  (Avizienis, 1961). And two consecutive digits are non 
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zero (Lim, 1991). Thus, the mathematical expression becomes ݔ௜ݔ௜ାଵ ൌ 1  ݎ݋݂      0 ൑ ݅ ൑ ݊ െ
1.  

 
Figure 5 Flow chart diagram of 2’s complement floating point number to CSD conversion 

 
The conversion of 2’s complement number to CSD code can be implemented through Table 1, 
where y is defining the 2’s complement number and x is the corresponding CSD number 
representation. 
 

Table 1 Conversion of two’s complement number to CSD digit representation 

yi+2 yi+1 yi xi+3 xi+2 xi+1 xi 

0 0 0 0 0 0 0 
0 0 1 0 0 0 1 
0 1 0 0 0 1 0 
0 1 1 0 1 0 1ത
1 0 0 0 1 0 0 
1 0 1 0 1 0 1 
1 1 0 1 0 1ത 0 
1 1 1 1 0 0 1ത

 
Circuit module has been carried out via Table 1, and shown in Figure 6. In this architecture yi, 
yi+1, yi+2 are the present state inputs, and the corresponding outputs are xi, xi+1, xi+2, xi+3. Si_xi, 
Si_xi+1, Si_xi+2,Si_xi+3 are representing the corresponding sign bits of the outputs.  

 

Figure 6 Hardware implementation of 2’s complements floating point number to CSD conversion. 
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3.2.2. CSD addition 
Carry propagation free CSD addition is performed in two steps. 

I. Determining the intermediate carry { Ci Ԗ (1ത, 0, 1)} and intermediate sum digits { Si  Ԗ 
(1ത , 0, 1) , satisfying the condition xi + yi= zi + Ci-1, where xi+1 and yi +1 are the augend 
and adding digits respectively. 

II. Obtaining the sum digits {Zi Ԗ (1ത, 0, 1)} at each position by the addition of intermediate 
sum digits Si and Ci from the next lower order positions. 
 

Boolean expressions have been implemented through the above mentioned steps is shown in the 
following expressions (6-9) (Saha, 2011; Lim, 1991). Here zi, Ci-1  are representing the 
intermediate sum and intermediate carry. Signxi and Signyi  are representing sign magnitude of 
xi and yi  respectively. SignCi-1 and Signzi are representing the sign magnitude of intermediate 
carry and intermediate sum respectively.  
 z୧ ൌ  x୧  y୧   (6) 

 C୧ିଵ ൌ ൬ሺx୧ y୧ሻ ቀxన   yన
തതതതതതതതതቁ ൅  ሺSignx୧ାଵ ൅ Signy୧ାଵሻ൫x୧  y୧൯൰  ሺSignx୧  Signy୧ሻ  (7) 

 Signz୧ ൌ z୧ሺSıgnxనାଵ ൅ Sıgnyనାଵതതതതതതതതതതതതതതതതതതതതതതതതതതሻ  (8) 

 SignC୧ିଵ ൌ ቀxన  yన
തതതതതതതതതቁ ሺSignx୧ Signy୧ሻ ൅ ൫x୧   y୧൯ሺSignx୧ାଵ ൅ Signy୧ାଵሻ   (9) 

  

 
4. RESULTS AND DISCUSSION 
Transistor level simulation of the reported FP multiplier circuitry was performed through spice 
spectre simulator using 90nm CMOS technology with 1V power supply, operated at 25MHz. 
Dual threshold voltage(VT) (Uyemura, 2001) operating mode was considered for simulation to 
determine the performance parameters. In designing calculation of FP multiplier like (4×4), 
(8×8), (16×16) and (32×32) bits, all the individual modules such partial product generation 
using B.W’s methodology, we focused our main concentration for reducing the propagation 
delay and dynamic switching power consumption. 

For the comparison point of view, the ideas have been considered form the references and 
simulated, and performance parameters was computed using the same MOSFET technology 
file. Input data was taken in a regular fashion for experimental purpose. The delay and the 
power measured using the worst-case pattern and from the output where the delay is maximum, 
and shown in Figure 7. From Figure 7, it is also observed that the proposed design offered 
~52%, ~42% improvement in propagation delay while corresponding reduction of power 
consumption are ~36%, ~26% for the (32×32) bit FP multiplication circuitry in comparison 
with conventional (Wu, 2005) and B.W (Baugh, 1973) based implementation respectively.   
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Figure 7 Performance parameters such as (a) propagation delay (ns); (b) dynamic switching power 

(mW) consumption of the different architectures, as a function of input number of bits, which have been 
implemented by Spice Spectre using 90nm CMOS technology file 

 
 
5. CONCLUSION 
In this paper, we report on a single precision high speed FP multiplier based on CSD, which is 
highly suitable for VLSI implementation. Array structure has been implemented through 
Hatamain’s scheme of partial product generation along with Baugh-Wooley’s (B.W) sign digit 
multiplication technique. The implementation methodology ensures stage reduction, leading to 
substantial reduction of the propagation delay and power. Transistor level simulation for FP 
multiplier circuit was performed through Cadence Spice Spectre simulator using 90nm CMOS 
technology. Implementation methodology offered ~52%, ~42% improvement in propagation 
delay while corresponding reduction of power consumption are ~36%, ~26% for the (32×32) 
bit FP multiplication circuitry in comparison with conventional and B.W implementation 
techniques respectively. 
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