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ABSTRACT 
In this research, a layered-recurrent artificial neural network (ANN) using the back-propagation 
method was developed for simulation of a fixed-bed industrial catalytic reforming unit called 
Platformer. Ninety-seven data points were gathered from the industrial catalytic naphtha 
reforming plant during the complete life cycle of the catalytic bed (about 919 days). Ultimately, 
80% of them were selected as past horizontal data sets, and the others were selected as future 
horizontal ones. After training, testing, and validating the model with past horizontal data, the 
developed network was applied to predict the volume flow rate and research octane number 
(RON) of the future horizontal data versus days on stream. Results show that the developed 
ANN was capable of predicting the volume flow rate and RON of the gasoline for the future 
horizontal data sets with AAD% (average absolute deviation) of 0.238% and 0.813%, 
respectively. Moreover, the AAD% of the predicted octane barrel levels against the actual 
values was 1.447%, which shows the excellent capability of the model to simulate the behavior 
of the target catalytic reforming plant. 
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1. INTRODUCTION 
The need for transportation fuels, especially gasoline, steadily grows in the future, thus 
contributing to the demand for related petroleum processes. Catalytic naphtha reforming is an 
important process for producing high octane gasoline, aromatic feedstock, and hydrogen in the 
petroleum refining and petrochemical industries (Hu et al., 2002). The catalytic naphtha 
reforming unit uses naphtha as feedstock to produce a high octane value liquid with main by-
products of hydrogen (H2) and liquefied petroleum gas (LPG) (Liang et al., 2005). To design 
new plants and to optimize existing ones, an appropriate mathematical model for simulating the 
industrial catalytic reforming process is needed (Weifeng et al., 2006).  

Besides kinetic-based models that are classified as deterministic or first principal models, the 
use of an artificial neural network (ANN)—a “black box” model—can be beneficial, especially 
when the former approach cannot describe a system appropriately. In particular, neural 
networks are nonlinear, and they learn (or train) by examples. The user of a neural network 
gathers representative data and subsequently invokes training algorithms to learn the structure 
of data (Chaturvedi, 2010). ANN has been applied previously for modeling of various refinery 
processes, such as hydrodesulfurization, hydrocracking, delayed coking, and thermal cracking 
of naphtha (Bellos et al., 2005; Arce-Medina & Paz-Paredes, 2009; Sadighi et al., 2010; Zahedi 
et al., 2009; Niaei et al., 2007). 
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Due to its ability to model complex and nonlinear problems, ANN can be a useful approach for 
modeling the complex behavior between input and output in catalytic processes, such as 
catalytic-dielectric barrier discharge plasma reactors (Istadi & Amin, 2006; Istadi & Amin, 
2007a; Istadi & Amin, 2007b). In modeling the catalytic reforming plant using ANN, 
Manamalli et al. (2006) developed an ANN model to maximize the aromatics yield, subject to 
constraints in inlet temperatures of the reactors. Two neural networks, one in the forward path 
and the other in the feedback path, were trained to give set points for temperature control. 
Zahedi et al. (2008) developed two ANN models using the back-propagation and radial basis 
function (RBF) methods for simulation of an industrial catalytic reforming unit. The proposed 
models predict the volume flow rate of H2, gasoline, and LPG; outlet temperatures of reactors; 
gasoline specific gravity; Reid vapor pressure (RVP); and the research octane number (RON) of 
gasoline. In this case, 97 data sets were collected from an industrial naphtha reforming plant, 
and all data sets were used to train, test, and validate ANN architecture. Using the ANN model, 
a set of optimized operation conditions leading to a maximized volume flow rate of produced 
gasoline was obtained. However, there were no reports to compare the optimized volume flow 
rate of products estimated by the model with the actual results. Furthermore, the life of the 
catalyst or days on streams—crucial for a commercial scale fixed-bed reactor—was not 
included in the model. 

The present study was aimed at investigating the predictability of ANN models for an industrial 
naphtha reforming unit called the Platformer. This investigation discusses the use of 
mathematical models to describe behavior of the Platformer (i.e., yield and RON of the product) 
from the existing data. This work could be significant for predicting vital outputs of the plant 
according to the life of the catalyst and days on stream. 
 
2. PROCESS DESCRIPTION 
A catalytic naphtha reforming unit with a nominal capacity of 16,500 barrels per day, licensed 
by Chevron Corporation, was chosen for this case study. Protocol involves submitting the feed 
of the plant to a hydrodesulfurization (HDS) reaction in the hydrotreating unit prior to entering 
the catalytic reformer. Then, the produced naphtha, called Platcharge, can be introduced to the 
catalytic reforming process. The most commonly used types of catalytic reforming units have 
three or four reactors, and each reactor has a fixed catalytic bed. For such a unit, the activity of 
the catalyst is reduced during operations due to deposits of coke and loss of chloride. Generally, 
the catalyst is regenerated or restored periodically using in situ high temperature oxidation of 
the coke followed by chlorination (Weifeng et al., 2006; Chaturvedi, 2010). Therefore, the 
catalyst in semi-regenerative catalytic reforming is regenerated during routine shutdowns 
occurring once each 18 to 24 months. Normally, the catalyst can be regenerated three or four 
times, and then it must be returned to the manufacturer for reclamation of the valuable platinum 
and/or rhenium elements. 

As shown in Figure 1, the Platcharge is preheated initially by the output stream of the last 
reactor in the effluent heat exchanger (E-1); after passing through the first furnace (H-1), it 
enters the first reactor (R-1) in which naphthenes are dehydrogenated to form aromatics. Then, 
the product stream from the first reactor passes through the second reactor (R-2) and the 
resulting outlet stream enters the third reactor (R-3). Similarly, the product stream from the 
third reactor enters the fourth reactor (R-4). Due to the endothermic nature of the naphtha 
reforming reaction, furnaces (i.e., H-1, H-2, H-3, and H-4) should be provided before each 
corresponding reforming reaction. 
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Figure 1 Block flow diagram of the catalytic reforming unit of the target oil refinery 

 

Next, the product stream from the fourth reactor proceeding from the exchange of heat with 
fresh feed in heat exchanger E-1 enters a separator, V-1, wherein the hydrogen produced during 
the reforming process (gas stream) is recycled and mixed with the Platcharge. Finally, the liquid 
product leaving the separator is introduced to the gasoline stabilizer, in which the LPG and light 
gases are separated from the gasoline; so, the vapor pressure of the gasoline can be set 
according to market requirements. The final product of the stabilizer is called the Reformate. 

The catalyst distribution for reactors in the industrial catalytic naphtha reforming unit is shown 
in Table 1. Moreover, the normal operating conditions of this unit are presented in Table 2. 
 

Table 1 Catalyst distribution in reforming reactors 

 1st reactor 2nd reactor 3rd reactor 4th reactor 

Catalyst weight (kg) 5077.25 7615.87 12693.13 25386.25 

Catalyst distribution (wt%) 10 15 25 50 

 

 

Table 2 Operating conditions in catalytic reforming of target oil refinery 

Process Variable Value 

Inlet temperature (°C ) 490–515 

Hydrogen/hydrocarbon ratio (mol/mol) 3–7 

LHSV(h-1) 1–2 

Yield (vol %) 70–85 

  

3. DEVELOPMENT OF ANN MODEL 
Although ANN modeling was discovered 50 years ago, only in the last two decades it has been 
presented to tackle practical problems. ANN is a parallel structure composed of nonlinear nodes 
that are connected by fixed weights and variables. ANN differs from the classic modeling 
approach in that it is trained to learn solutions; in other words, there is no programming of the 
model in the conventional way. The advantages of ANN compared to classical methods are 
speed, simplicity, capacity to learn from examples, and the ability to learn by experimental data. 
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Therefore, ANNs are more flexible and powerful than any other parametric approach (Zahedi et 
al., 2008). 

Figure 2 shows the scheme of a typical ANN structure. A typical network consists of an input 
layer, at least one hidden layer, and an output layer. The most widely employed networks have 
only one hidden layer (Hagan et al., 1995). For a feed-forward ANN, the information 
propagates in only the forward direction. In this case, each node within a given layer is 
connected to all of the nodes of the previous layer. The node sums up the weighted inputs and a 
bias, and it passes the result through a linear or nonlinear function (Haykin & Hamilton, 1998). 

The training of ANN is carried out by introducing it with a set of known inputs and outputs. 
Then, it learns the trend of the known data by manipulating the weights and biases. The ANN 
parameters (i.e., weights and biases) are adjusted up until the minimization criterion is reached. 
The most widely used criterion is the mean square error (MSE) as follows (Demuth & Beale, 
2007): 
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where N is the total number of known values; P represents the output values; actual refers to 
measured outputs from the plant, and model refers to the values simulated by ANN. 
 

 
Figure 2 Schematic diagram of a typical structure layer (Niaei et al., 2007) 

 

To create the ANN model, 110 data sets during the life cycle of the catalyst (about 919 days) 
were gathered from the Platformer. All data were selected under normal conditions; no 
abnormalities, such as tower flooding, emergency depressurization, and pump or compressor 
shutdown, occurred during operations. Before using these data to build the ANN model, it was 
necessary to validate them. If a reasonable overall mass balance (±5%) could not be calculated, 
the validity of the test run was compromised. According to this strategy, 97 data points were 
obtained. The variables and their operating ranges are presented in Table 3. 
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Table 3 Input variables and ranges used for building the ANN model 

Variable Ranges 

Days on streams (DOS) 154–919 
Naphtha feed flow rate (m3/h) 125.76–149.18 
Recycled gas flow rate (m3/h) 112200–135100 
Hydrogen to hydrocarbon molar ratio 3.52–4.963 
Inlet temperature to reactor 1 (°C) 500–518 
Inlet temperature to reactor 2 (°C) 500–518 
Inlet temperature to reactor 3 (°C) 500–518 
Inlet temperature to reactor 4 (°C) 500–518 

 
Among 97 data points, 80 (up to the day of 800) were selected for building the ANN model. 
Furthermore, 48 data points were selected for training the ANN (60%); 17 data points were 
chosen for testing (20%); and the remaining ones were selected for validating the developed 
network. These data—known as past horizontal data—were supposed to show the behavior of 
the Platformer from start of run to day 800. The other data points (i.e., from day 800 to the end 
of run on day 919) were known as future horizontal data, and they were chosen to evaluate the 
reliability of the ANN model to predict the cycle life of the catalyst.    

The ANN model of the Platformer was developed using the Neural Network Toolbox (newlrn 
function) presented in MATLAB 2010a. A layered-recurrent neural network consisting of seven 
neurons in the input layer, three neurons in the hidden layer, and two neurons in the output 
layer was built. The transfer or activation function used in the hidden and output nodes is the 
tangent sigmoid function, as identified below: 
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where x is the sum of the weighted inputs to the neuron, and f(x) is the output of the node 
(Demuth & Beale, 2007). The input neurons of the ANN model consisted of days on stream 
(DOS), naphtha feed flow rate, recycled gas flow rate, hydrogen to hydrocarbon molar ratio, 
and inlet temperatures for reactors 1 to 4. The output layer was RON and the product flow rate 
(i.e., Reformate). The required coefficients (i.e., weights and biases of the designed network) 
were limited to 80 parameters—less than the number of training data. For each data set, there 
were two output variables (i.e., RON and gasoline flow rate); therefore, there were 96 training 
data points for the ANN model. Training of ANN was carried out using the function “trainlm” 
which applied the Levenberg-Marquardt optimization method to estimate weights and biases. 
Training was performed until the minimum MSE between the simulated and actual output 
variables was found (i.e., all past horizontal data points). Details of the ANN model used for the 
naphtha catalytic reforming plant are presented in Table 4. 
 
4. DISCUSSION 
4.1.  Developing the Neural Network using Past Horizontal Data 
The described procedure for developing the ANN model was followed to train, test, and 
validate it for 80 points of past horizontal data. The MSE and AAD% obtained for RON and 
gasoline flow rate are presented in Table 5. Additionally, the parity plots for RON and gasoline 
flow rate simulated by the ANN models are presented in Figures 3 and 4. From these results, it 
was found that the deviation of simulated values in comparison to the measured data was 
acceptable for output values of past horizontal data points.  
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Table 4 Details of ANN algorithm built for the Platformer 

Number of hidden layers 1 
Number of neurons in hidden layer 3 
Number of data used for training (60%) 
Testing (20%) and validating (20%) 

80 

Type of network Layered recurrent  
Number of model parameters  40 
Transfer function of hidden layers Tangent Sigmoid 
Transfer function of output layer Tangent Sigmoid 
Algorithm used for training Levenberg-Marquardt  
Performance function MSE 

 

It is supposed that the main source of deviation was the possibility of error measurements in 
gathering data obtained with some faults, such as signal transmission, calibration, and power 
fluctuation of instruments that could not be excluded from the actual data. However, from the 
presented simulation results, it can be concluded that the developed simulation program was 
reliable enough to be applied for predicting the behavior of the target catalytic reforming unit. 

 
Table 5 AAD% and MSE of ANN after training, testing, and validating 

Variable AAD% MSE 

RON of gasoline 0.238 0.084 
Flow rate of gasoline 0.813 1.787 

  
 

 
Figure 3 Parity plot for trained, tested, and validated RON simulated by 

ANN model 
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Figure 4 Parity plot for trained, tested, and validated gasoline flow rate 

simulated by ANN model 
 

4.2.  Predicting Future Horizontal Outputs 
After building ANN, the outputs corresponding to the future horizontal data (i.e., RON and 
gasoline flow rate) were extrapolated. Clearly, the predicted outputs were related to DOS from 
day 800 to the end of run (day 919).   

Figures 5 and 6 show the comparisons between RON and flow rate of the gasoline produced 
against the actual values. As can be seen from these figures, there are close mappings between 
measured and predicted (or extrapolated) output variables. It should be mentioned that the 
AAD% of predictions for RON and gasoline flow rate were 0.52% and 1.62%, respectively. 
Therefore, we concluded that the ANN-based model is good for extrapolation of the behavior of 
the catalytic naphtha reformer. 
 

 
Figure 5 Actual RON of gasoline against predicted values vs. DOS 
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Figure 6 Actual flow rate of gasoline against predicted values vs. DOS 

 

As an important parameter of the naphtha catalytic reforming unit, the octane barrel level of the 
unit (i.e., RON × gasoline flow rate) was studied using the validated ANN model. This variable 
is important for distinguishing the end of the life cycle, and it must be monitored at all times to 
estimate the catalyst life. The results showed that the AAD% of the ANN-based model against 
the actual octane barrel value was 1.477% for the future horizontal data. 

The AAD% of the prediction for the octane barrel level at the end of run (day 919) was about 
0.3%. Moreover, from Figure 7, close mappings between the measured and simulated octane 
barrel levels for both past and future horizontal data can be understood. These results confirm 
that the presented approach can be applied by refineries to monitor the operations of catalytic 
reforming plants, and they can be used to estimate octane levels, flow rate of gasoline, and life 
cycle with acceptable accuracy. 
 

 
Figure 7 Octane barrel levels of past and future horizontal data against actual values vs. DOS 
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5. CONCLUSION 
In this work, a layered-recurrent neural network model was developed for the simulation of an 
industrial fixed-bed catalytic naphtha reformer. The collected data from the target plant were 
divided into past horizontal data (80 data points from start of run to day 800), and future 
horizontal data (from day 800 to end of life cycle). The constructed ANN model was trained, 
tested, and validated on the basis of the past horizontal data. The results showed that ANN 
could simulate RON, flow rate of produced gasoline, and octane barrel level of past horizontal 
data with AAD% of 0.238%, 0.813%, and 0.853%, respectively. Finally, the developed ANN 
model was applied to predict RON, gasoline flow rate, and octane barrel levels of future 
horizontal data, which were significant for estimating the life of the catalyst. The comparison 
between the model predictions (extrapolations) and the future horizontal data confirmed that the 
developed ANN model could predict these outputs with AAD% of 0.52%, 1.62%, and 1.477%, 
respectively. 
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