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ABSTRACT 

This paper proposes a new method for building low-density-parity-check codes, exempt of 

cycle of length 4, based on a circulant permutation matrix, which needs very little memory for 

storage it in the encoder and a dual diagonal structure is applied to guarantee that parity check 

bits can be recursively computed with linear calculation complexity. The Bit Error Rate 

performance of the new low-density-parity-check codes was compared to the uncoded bi-phase-

shift-keying over additive-white-gaussian-noise channel. This simulation shows that the 

proposed codes are very efficient over additive-white-gaussian-noise. The proposed codes 

ensure a very low encoding complexity and reduce the memory storage required for the parity-

check matrix, which can be more easily built than others codes used in channel coding. 
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1. INTRODUCTION 

Because of their prodigious performance, low-density-parity-check (LDPC) codes are now 

considered optimal (Gallager, 1962). These codes are a part of linear block codes which have 

acquired considerable importance in error correcting performances (Yahya et al., 2009). LDPC 

codes can be presented by specific parity check matrix H that includes a high density of 0’-s 

and a low density of 1’-s (Mackay, 1999). The Tanner graph (Tanner, 1981) is a bipartite graph 

comprising two groups of nodes: the variable nodes and check nodes. Variable nodes depicting 

columns and rows are represented by check nodes and connections between these two sets are 

known as edges (Tanner, 1981; Juwono et al., 2013). In the Tanner graph, a cycle is defined as 

a path which starts and ends at the same node, if the graph contains a cycle; its minimum length 

is known as ‘girth’ (Tanner, 1981). Cycles especially those of length 4 decrease the bit-error-

rate (BER) performance of LDPC codes, because of their impact on the independence of 

extrinsic information exchanged in the decoding process (Johnson & Weller, 2001). Gallager 

codes are classified: as regular if the weight of columns and rows (i.e. density of 1’s) is constant 

and as irregular if column weight and row weight are variable (Yahya et al., 2009). 

The construction of these codes is of two types; the first is random construction that is flexible 

in design and construction (Mackay, 1999). The parity-check matrix is a superposition and/or 

concatenation of sub-matrices and this construction has significant drawbacks in term of the 

stocking and accessing a large parity-check matrix. As random building does not guarantee 

small cycle lengths, a second form of construction was developed; this is known as 

deterministic construction (Moura el al., 2004; Shin et al., 2014).  
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In this paper, we depict a particular category of LDPC codes, excluding cycles of length 4, 

which can be linearly coded by matrix H. The parity check matrix is divided into two sections: 

the first, which matches to the parity bits, is a dual-diagonal structure (Guolei & Dong, 2010) 

and the second, which matches the information bits, is a quasi-cyclic structure. For that reason, 

this new LDPC code is classified as irregular code. 

This paper is organized as follows. Section 2 discusses the construction of the new LDPC code 

based on a quasi-cyclic and a dual diagonal matrix. In section 3, we propose a deterministic rule 

for constructing parity-check matrix with various rates. Section 4 describes the LDPC reduced-

complexity encoding method, and section 5 discusses decoding complexity. Section 6 specifies 

the advantages of the proposed method, followed by conclusions in Section 7. 

 

2. PROPOSED CONSTRUCTION OF MATRIX H 

Girth is one of the most important factors affecting the performance of LDPC code (Gallager, 

1962; Liu et al., 2009). As several studies have shown that a small girth (generally of length 4) 

affects the decoding process. Therefore, many researches on building a LDPC code with girth 

large (greater than 4) are still used for various applications (Tanner, 1981). 

Let H, the parity-check matrix, have a size M by N. where M is the number of rows and N is the 

number of columns. This matrix can be represented in the following form: 

 H = [Hd Hp]  (1) 

where c is a codeword written as c = [d p], the parity relationship (Ping et al., 1999) is written 

as: 

 HcT = 0  (2) 

where d and p refer to the data and parity bits respectively (Lin et al., 2008). 

Hp is a dual-diagonal matrix of size M by M that can be represented as follow 

   (3) 

Hd is a matrix of size  by . The proposed method can be constructed in two steps: 

2.1.  Step 1: Construction of Initial Matrices 

First, an identity sub-matrix I of size m×m is generated, where m must be greater than 2. Next, 

another sub-matrix called S of size m×m is generated which is symmetrically constructed in 

relation to rows of  I with the elements Si,j,  1 ≤ i ≤  m and 1 ≤ j ≤ m, defined as: 

 Si,j = I(m+1-i),j (4) 

where Ii,j are elements of identity sub-matrix I. 

The following is an example for m = 3 

 
 

The obtained sub-matrix S is: 
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2.2.  Step 2: Construction of Matrix Hd based on a Quasicyclic Matrix 
Making a permutation of S (from right to left) by n locations, where n, represents the number of 

sub-matrices and must be inferior to m, the matrix Hd can be written as 

 

                                                                                                         (5) 

where Sp(n) is the nth  permuted version of S. 

It follows that Hd is a matrix of size . 

In the above example, there are two permuted versions: 

 

 

Hd of size 6×6 can then be represented as follows: 
 

 

and the matrix H can be represented as:   

 

Figure 1 shows the bipartite graph of matrix H : 

 

Figure 1 Tanner graph of matrix H 
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3. LDPC CODES CONSTRUCTION FOR VARIOUS RATES 

Based on the proposed method, the size of matrix H is , where K represents data 

length and  N represents codeword length and N = K + M . 

 , where R represents code rates. To obtain various rates, Hd must be constructed using the 

following rule:  

Let n be an integer inferior to m where N must divide . 

Table 1 presents the detail of these codes. 

 

Table 1 Various-rate LDPC codes constructed using the proposed method (without cycle 4) 

n R m 
   

2 1/2 10…80…576 40…320…2304… 20…160…1152… 20…160…1152… 

4 2/3 10…80…576 60…480…3456… 20…160…1152… 40…320…2304… 

6 3/4 10…80…576 80…640…4608… 20…160…1152… 60…480…3456… 

8 4/5 10…80…576 100…800…5760… 20…160…1152… 80…640…4608… 

 

4. ENCODING CONCEPT 

Comparing column-weights of 2 and at least 3, Gallager found that the minimum distance 

increases logarithmically with code length. However, the minimum distance increases linearly 

with code length when column weight is at least 3 (Gallager, 1962). These codes have proved 

efficient in several domains, such as partial response channels (Song et al., 2002; Song et al., 

2004). Additionally, these codes require less computation by virtue of their column weight. 

Despite their excellent performance, hardware implementation of these codes is challenging 

because of the random of row-column connections and large size of LDPC codes (Malema & 

Liebelt, 2007), despite their performance has been proved to be great (Malema & Liebelt, 

2007). The complexity of hardware implementation has been reduced by using structured codes 

(Malema & Liebelt, 2007), and girth (smallest cycle) has been decreased by introducing the 

constraint of row-column connections (Fossorier, 2004). It has been shown that when girth 

increases, decoding performance increases also improves (O’Sullivan, 2006; Mao & 

Banihasherni, 2001). Girth determines also determines which path starts and ends at the same 

node. In general, increased girth improves the performance of structured codes. 

Based on Equations 1 and 2, results: 

                                                                               (6) 

                                                                                                                             (7) 

                                                                                                                      (8) 

As Hp is always a dual-diagonal matrix, it is always invertible. 

Based on the structure of Hp and Equation 6, for a given data   as in (Ping et al., 1999), 

the parity-check bits  are easily computed: 

                                                                                                                             (9) 

and 

                                                                                             (10) 
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where hd
ij are the elements of Hd. 

A comparative study of LDPC code has shown that there are several advantages if parity-check 

matrix H is broken into , where Hp has a dual-diagonal structure (Ping et al., 

1999). 

 Hp is always invertible (non-singular); the method yields in any given rate directly and 

precisely. 

 Gaussian elimination is not necessary for encoding. 

 When Hd is sparse, the parity-check matrix H requires very little memory to stock the data 

in the encoder. 

 Additionally, this method has the following advantages. 

 The use of permutations matrices in the proposed Hd considerably reduces required-storage 

memory. 

 Hd is proposed because of the very low encoding complexity when Hd is effectively sparse. 

 

5. DECODING COMPLEXITY 

The decoding complexity of LDPC codes is dependent on the number of branches ‘Br’ in the 

Tanner graph or on the number of ‘1’s in the parity-check matrix (Berrou, 2010). The iterative 

decoding algorithm ‘Belief propagation’ includes several steps. At each step, the extrinsic and 

total information associated with the corresponding node must be calculated (Divsalar et al., 

2009). In the case of a regular code (𝑁, 𝑊𝑐, 𝑊𝑟), where 𝑊𝑐 and 𝑊𝑟 represent the number of 

rows and the number of columns respectively, the number of branches ‘Br’ is: 

                                                               Br = Wc × N = Wr × M                                                       (11) 

Table 2 compares the number of branches of the proposed LDPC codes with: the Gallager 

(1962) and Mackay (1999) codes. 

 

Table 2 Comparison of proposed LDPC codes with Gallager codes and Mackay codes  

(by number of branches) 

Block length Proposed LDPC Gallager codes Mackay codes 

N = 500 and M = 250  Br = 999  Br = 1500 Br = 1500 

N = 1000 and M = 500 Br = 1999 Br = 3000 Br = 3000 

 

Table 2 shows that the new LDPC codes have a fewer branches than the Gallager and Mackay 

codes, indicating that the proposed parity-check matrices H are of reduced density (i.e. fewer 1s 

than 0s), in turn reducing decoding complexity. 

 

6. SIMULATION RESULTS 

Monte Carlo simulations were used to evaluate the BER performance of LDPC codes. Iterative 

belief propagation and AWGN (additive white Gaussian noise) were employed as the decoding 

algorithm and channel, respectively. For simulation purposes, we used the rate ( ) and 

block length (N = 504). The simulation was run for at least 103 code-words, with a maximal 

iteration of 80. 

The performance of the new LDPC code is presented for comparison with other LDPC codes. 

Signal-to-noise-ratio (SNR) for the coded and the uncoded bi-phase-shift-keying (BPSK) were 

defined as in (Moura et al., 2004); for the former,  and for the 
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latter, , where  and  represent energy per bit and noise 

variance, respectively. 

Figure 2 shows BER performance of the proposed LDPC codes and the uncoded BPSK with 

, 𝑊𝑐=2 (where 𝑊𝑐, is column weights) and . For the BPSK modulated system in 

a Gaussian channel . 
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Figure 2 Bit-error-rates of the proposed LDPC codes and the uncoded BPSK (N = 504, 𝑊𝑐 = 2,  R = ½) 
 

Table 3 compares the BER performance of the proposed LDPC (N = 504, 𝑊𝑐 ) with two other 

LDPC codes: Progressive Edge Growth (PEG) and Quasi-Cyclic (QC). 

 

Table 3 Comparison of BER performance of proposed LDPC codes with 

PEG-LDPC and QC-LDPC 

BER 
Proposed 

LDPC codes 

PEG-LDPC 

(Eb/N0) 
QC-LDPC 

10-2 2 3.15 3.15 

10-3 3.25 3.7 3.7 

10-4 4.4 4.2 4.1 

N0 is the one-sided power density spectrum of the additive white Gaussian noise 

Table 3 shows the proposed codes exhibit performance gains of about 1.65 dB and 1.3 dB when 

compared to the PEG codes and QC codes, respectively, at a BER of 10-2. The proposed LDPC 

codes perform better than the PEG codes by 0.3 dB at a BER of 10-3 over the AWGN channel; 

this significant BER performance gain owes to simple encoding and the exclusion of girth 4. 

At a BER of 10-4 the proposed LDPC show only 0.1 dB loss in BER performance when 

compared to the random PEG codes, which are considered excellent for transmitting short 
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blocks on the AWGN channel. This, confirms that the proposed LDPC codes’ uniform 

construction and low complexity hardware implementation (based on fewer logic gates and 

simple shift registers), return an error rate performance similar to or slightly better than 

complex unstructured LDPC codes. Importantly, forward error correction coding for cellular 

technologies in the Third Generation Partnership Project (3GPP) (Asvial et al., 2015) will be 

recorded by new radio access (NR) (Richardson & Kudekar, 2018). The LDPC codes have 

replaced turbo codes in the third and fourth generation (3G, 4G) (Suryanegara & Miyazaki, 

2012) and fifth generation (5G) coding schemes (Richardson & Kudekar, 2018). 

 

7. CONCLUSION 

To address quality of reception and implementation constraints, LDPC code must be 

constructed with a low error floor, linear encoding and less complex decoding. This paper 

proposes a new method for constructing parity-check matrix that include girths of length 4, for 

different rates. Memory requirements are significantly reduced by the use of the quasi-cyclic 

matrices and dual- diagonal, which reduce encoding complexity 
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