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Abstract: Unmanned aerial vehicles, or UAVs, are becoming more and more important in a variety17
of industries, including agriculture, civil aviation, the military, and the environment.: In this study,18
we investigated the aerodynamic stability of a transient STU.1.M unmanned aerial vehicle (UAV)19
At speeds of 40, 60, and 80 m/s and an angle of attack of 6 degrees, corresponding to the lift-to-drag20
coefficient ratio's maximum value in a steady state. For the numerical analysis, Ansys Fluent was21
used. The grid-independence study and validity of the numerical solution were conducted by22
comparing the results of the proposed mathematical model on NACA 0012 airfoil with23
experimental results using same mathematical model. The numerical study revealed that vortices24
formed and decay behind the aircraft as a result of the flow field's oscillations at specific frequencies.25
The magnitude of these vortices grows as the aircraft's speed increases. When the aircraft speed is26
increased to 80 m/s, the lift coefficient increases by 0.56%, while the lift-to-drag ratio increases by27
2.85%. The lift-to-drag ratio oscillation frequency rises by 102.5%, while the vertical oscillation28
frequency, which corresponds to the oscillations of the lift force, decreased by 71.7%.29
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1. Introduction35

Unmanned Aerial Vehicles, or UAVs for short, are autonomous aircraft that operate without a36
human pilot operating the flight controls (Dickes et al. 2000). Because UAVs have the potential to37
benefit the aircraft industry, they are being closely examined and are continuously evolving.38
Benefits include being less costly than conventional jet aircraft, not endangering pilots, being able39
to fly autonomously for longer periods of time than a human pilot, and being able to fly in regions40
that are considered too hazardous for pilots to fly in (Boelens 2012). The motion and interaction of41
air around and with solid objects are of interest in the subfield of fluid dynamics known as42
aerodynamics. When objects move in the air at limited speeds so that the Mach number of the flow43
does not exceed 0.3, as is the case when flying drones, then the density changes are small and the44
flow is then called incompressible fluid flow and the changes in forces and momentum are then45
linear and this science is called linear aerodynamics (Klein & Morelli 2006). In contemporary46
engineering, time-varying fluid flows and their unsteady aerodynamic forces and moments are47
commonplace. Cars, boats, and airplanes are all designed with meticulous optimization to48
streamline the body and increase efficiency by reducing drag and flow separation (Kubo 2006).49
(Molaa & Abdulwahid 2024) conducted a numerical and experimental study of the impact50

effect on the aerodynamic properties of the NACA0012 airfoil, with the results showing51
remarkable agreement between the numerical modeling and practical tests, contributing to a52
better understanding of the airfoil performance under turbulent conditions. (Song, Zhao, & Liu53
2023) comprehensively reviewed mission planning methods for UAV fleets, categorizing different54
strategies according to missions and operational environments, and highlighting technical55
challenges and future trends in this field. (Zhang et al. 2024) conducted an experimental and56
numerical study on the secondary flow systems of a supersonic aircraft wing, using a wind tunnel57
to simulate actual flight conditions, and the results showed good agreement between the58
numerical simulation and tests, which contributes to the improvement of supersonic wing design.59
(Maleki Dastjerdi et al. 2021) presented an innovative design for vertical axis wind turbines60

using a simultaneous combination of symmetric and curved airfoils. The results showed improved61
aerodynamic performance compared to conventional designs, enhancing the potential of these62
turbines in diverse environments. (Majid & Jo 2021) conducted a comparative study between the63
aerodynamic performance of conventional and camber morphing airfoils, where camber64
morphing airfoils showed improved performance in terms of lift and aerodynamic efficiency,65
indicating their potential in advanced aviation applications. (Somashekar 2021) conducted a66
comparative study to evaluate the accuracy of different turbulence models in predicting the67
aerodynamic properties of small unmanned aerial vehicles. The results showed that the68
performance of the models varied in representing the airflow, which helps in choosing the most69
appropriate model to improve the simulation accuracy. (Mubassira et al. 2021) conducted a70
numerical study of the characteristics of the NACA 4312 airfoil when a Gurney slat was added.71
The results showed a significant improvement in lift force without a significant increase in drag72
force, indicating the effectiveness of the slat in improving the aerodynamic performance of airfoils.73
The potential of unsteady aerodynamics for engineering design is perhaps best demonstrated74

by biological propulsion. It has been noted that fish, insects, birds, and bats frequently use75
unsteady fluid dynamics to enhance their maneuverability, maximize thrust and lift, and improve76
their propulsive efficiency (Roy et al. 2007). Unsteady aerodynamic forces are becoming more77
significant during agile maneuvers and gust disturbances as unmanned aerial vehicles (UAVs) get78
lighter and smaller. Over the past century, the need for precise, effective aerodynamic models has79
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served as a major driving force behind research efforts. In order to design aircraft and assess80
aeroelastic and flight dynamic stability, aerodynamic models are essential tools (Selig 2010).81

The quasi-steady assumption that forces and moments depend statically on parameters like82
relative velocity and angle of attack is the foundation of the majority of aerodynamic models used83
for flight control. The unsteady aerodynamic forces necessary for small, agile aircraft to avoid84
obstacles, react to gusts, and track potentially elusive targets are not described by these models,85
despite the fact that they perform well for conventional aircraft (Schlichting & Truckenbrodt 1979;86
Leishman 2006). Nonetheless, the literature contains a large number of unsteady aerodynamic87
models. The classical unsteady models of Theodorsen (Theodorsen 1979; Wagner 2006) are still in88
use today and serve as a standard for the linear models that come after them. By convolving the89
motion's time derivative with the analytically calculated step response, Wagner's model generates90
the lift in response to arbitrary input motion. Theodorsen used the same model assumptions of an91
incompressible, inviscid, planar wake to create an analogous model in the frequency domain.92
With the resources available at the time, Theodorsen's model was appropriate for the analysis of93
flutter instability even though it only applies to sinusoidal input motion. Direct numerical94
simulations (DNS) (Williams et al. 2008; Taira & T. Colonius 2009), computational fluid dynamics95
(CFD) (Taira & T. I. M. Colonius 2009; Sitaraman & Baeder 2004; Murman 2007; Singh & Baeder96
1997; Ronch et al. 2012; Amsallem et al. 2010), wind tunnel experiments (Pelletier & Mueller 2000;97
Williams et al. 2008), and water channel experiments (Fransos & Bruno 2006; Buchholz & Smits98
2008) can all be used to create sophisticated models for the unsteady fluid dynamics and the99
resulting aerodynamic forces. The viscous fluid dynamic interactions that result in transient100
unsteady aerodynamics may be accurately estimated using any of these techniques. These101
techniques, however, are very costly in terms of both time and equipment. Therefore, it is crucial102
to extract low-dimensional models from these intricate model systems (Green & Smits 2008; Ol et103
al. 2005; Dowell et al. 1997; Gold & Karpel 2008; Mor & Livne 2005; Silva & Bartels 2004).104
A model for small fixed-wing UAVs at high angles of attack is presented by (Johnson & Lind105

2009) and is based solely on flight test data. Transfer functions from aileron, elevator, and rudder106
commands to roll, pitch, and yaw rates are found using least square regression curve fitting. For107
example, a controller for the hover maneuver of a small fixed-wing MAV is presented by (Green &108
Oh 2005; Green & Oh 2009). Since nonlinear or unsteady aerodynamics are not involved, the109
controller's dynamics are modeled using first principles and simplified. (Kaplan et al. 2007)110
Discuss the Reynolds number and aspect ratio on small wings. For larger amplitude maneuvers at111
high angles of attack, nonlinear separated flow effects like vortex shedding (Leishman et al. 2002)112
and dynamic stall (Fischenberg & Jategaonkar 1998) are crucial.113
It is worth mentioning that novel materials, such as Polyethylene Terephthalate (PET) (Patel,114

2023), present robust substances can address critical performance challenges to drone stability115
under unsteady conditions. Modern numerical studies must evaluate such trade-offs for the116
STU.1.M drone. Additionally, The STU.1.M drone’s stability under turbulent conditions considers117
economic issues and climate change that disturb food and medical supply chains (Sharma, 2024).118
On this regard, this study’s numerical investigation could help in designing drones for such high-119
stakes environments.120
This research is a continuation of the study of the aerodynamic stability of the flow through the121

STU.1.M aircraft, in which the changes in the values of CL, CD and CL/CD were studied over the122
entire aircraft body with the change in the angle of attack in the steady state, and it was found that123
the optimum angle value for which the value of CL/CD is the maximum is the angle of 6 degrees.124
Therefore, this research aims to study the behavior and aerodynamic stability at this angle (6125
degrees) in the unsteady state using numerical modeling at 40, 60, and 80 m/sec aircraft velocity in126
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order to evaluate the aerodynamic performance of the aircraft resulting from the fluctuation of the127
flow field as a result of its passage through the aircraft body.128

2. Materials and Methods129

Flow-induced vibration (FIV) is defined as the mechanical vibration of structures within a fluid130
flow or fluid carrier (such as pipes). Many engineering structures are subject to the interaction131
between aerodynamic forces, inertial forces, damping and elasticity of these structures (Bernitsas132
et al. 2008). This phenomenon is of particular importance in non-streamlined structures, which are133
more susceptible to this phenomenon due to their exposure to boundary layer separation. The134
aerodynamic forces that affect a body in a flow, regardless of its shape, are caused by two factors:135
the distribution of pressure and the shear stress resulting from viscosity on the immersed surface136
of the body. Pressure affects the body tangentially, causing lift, while shear stress affects the137
surface of the body tangentially, causing drag (Bibo & Daqaq 2015). Under certain conditions,138
these forces cause the body to move, which in turn changes the position of the body relative to the139
flow, causing a change in the aerodynamic forces and the occurrence of a vibration phenomenon140
resulting from the flow (Blevins, 1977).141
The lift and drag coefficient values affecting the STU.1.M UAV were determined in this study142

using unsteady CFD numerical modeling, and the following relationships were identified (Blevins,143
1977):144

�� = ��
0.5��2�

, �� = ��
0.5��2� (1)145

where A is the area of the UAV projection on a plane perpendicular to the flow direction (m2), V is146
the UAV speed (m/sec), and FL and FD stand for lift and drag force (N), respectively, and  is air147
density (Kg/m3) (Blevins, 1977) . The numerical solution was carried out using Ansys Fluent.148
SolidWorks was used to draw the UAV model and the surrounding fluid domain, and Ansys149
meshing was used to create the mesh. The mesh was then exported to Fluent for the numerical150
solution. A 3970 x 32 core AMD thread ripper computer with 128 GB of DDR5 RAMwas utilized.151
Drawing a model of the UAV in use and creating the fluid domain around it are the first stages152

of numerical modelling. SolidWorks' software was used to draw the aircraft model in its actual153
dimensions. A diagram of the drawn UAV is shown in Figure 1, and the drone's characteristic154
values are displayed in Table 1.155

156

Figure 1Main dimensions of studied UAV157
158

Table 1 Designed parameters of studied UAV.159
No. Dimensions The symbol Value
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1 Wing length L 105 cm
2 Wing span b 224 cm
3 Root chord cr 29 cm
4 Tip chord ct 12.4 cm
5 Aspect ratio AR 12.9
6 Taper ratio λ 0.42
7 Wing area A 4636.8 cm2

8 Dihedral D 0
9 Sweep s 0
10 Chord line c 20.7cm

The wing used is a Taper type wing NACA 2410 and the tail is a V-type.160

In order to minimize flow distortion, domain type C is utilized in this paper to minimize mesh161
and expedite the solution process. The plane location is five times the chord length upstream and162
ten times downstream. Four faces make up the domain; the wing side and inlet side have an area163
of 1.2397 m2, the outlet side has an area of 102.02 m2, and the inlet side has an area of 298.94 m2. As164
seen in Figure 2, the bounding box (length x = 4.379 m, length y = 23.296 m, length z = 29.813 m).165

166

Figure 2 Fluid Domain and Boundary Conditions167
2.1 Mathematical model168
Computational fluid dynamics, or CFD for short, is a powerful tool used in modeling involving169

fluid flow. There is many commercial software that use this science to analyze engineering170
systems, solve them, and display the results. Solving this problem numerically involves solving a171
set of differential equations that describe this movement. These equations include the continuity172
equation and the momentum equations, which are given by the following relationships173
(Andersson et al. 2012):174

��
��

+ �(��)
��

+ �(��)
��

+ �(��)
��

= 0 (2)175

176
The continuity equation expresses the law of conservation of mass within the control volume177
under consideration and states that the net time rate of mass entering and leaving must equal the178
change in mass within the control volume with time.179

where � is the Fluid density, ,u v and w is the velocity components on the x, y and z direction.180
Momentum equations on X, Y and Z direction are (Chaoqun. L, Jiyuan. T 2018):181

182

�( ��
��

+ � ��
��

+ � ��
��
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��
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��
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��2 ) (3)183
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186
The conservation of momentum equation expresses Newton's second law, which states that the187

sum of the external forces acting on the control volume is equal to the inertial forces.188
The primary external forces acting on an aircraft are viscous forces, pressure, and gravity. Lift and189
drag forces, in particular, arise from viscous and pressure forces.190

where P is pressure (Pa),  is viscosity (Pa.sec), g is acceleration due to gravity (m/sec2),  and191
density (Kg/m3), and (u, v, and w) are the velocity components on the x, y, and z directions (m/sec),192
respectively.193

The turbulence model k SST is more stable and dependable than the k-omega turbulence194
model because it employs the k-epsilon equations outside of the boundary layer region and the195
normal k-omega equations inside, making it more accurate close to the boundary layer region wall.196

With the addition of a termD pertaining to the frequency dissipation of the turbulence within the197
 equation's bounds, the K-omega-SST turbulence model is comparable to the K-omega198
turbulence model (Chaoqun. L, Jiyuan. T 2018).199
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��
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���
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4) (8)203
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���2

��
���
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, 10−10] (10)205

where ij represents the shear stress resulting from viscosity, t is vortex viscosity and  is206
kinematic viscosity. The Table 2 shows the values ​ ​ of the constants in the previous equations207
(Zhao & Su 2018):208

209

Table 2 Constant Values of K-Omega SST Turbulence Model.210
2 22 11   

1.168 1/2 1/2 9/100 3/40 5/9
211

2.2 Assumptions and boundary conditions212
It is necessary to establish suitable boundary conditions in order to solve the previous213

mathematical model. These boundary conditions are displayed in Figure 2 and Table 3.214

Table 3 Boundary Conditions215
Velocity Inlet (Components) Inlet
Pressure Outlet (Zero
Atmospheric Gage
Pressure)

Outlet

No Slip Condition Wall Of Aircraft
Symmetry Side Wall
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The flow can be regarded as incompressible for angles of attack (0, 2, 4, 6, 8, 10, 12, and 14216
degrees) because the velocity values selected for this study (20, 40, 60, and 80 m/sec) are all at217
Mach numbers less than 0.3, then Physical properties of air at these conditions are indicated in the218
Table 4.219

Table 4 Physical Properties of Air220

Viscosity(Pa.s) 51.7894 10x 

density
3(Kg/ m ) 1.225

The study was carried out in three dimensions and in a transient state with fixed air property221
values.222

2.3 Meshing of domain223

One of the fundamental factors ensuring the validity of the numerical solution in numerical224
modeling is thought to be the mesh generation procedure. In order to guarantee the modeling of225
the viscos sublayer regime within the boundary layer, this is accomplished by testing the value of226
Y+ at the walls until it is extremely small (Y+<1) [39]. Figure 3 displays the mesh that was created.227

Tetrahedral mesh was generated using Ansys meshing (left of Fig S1 in supplementary228
information) then converted to polyhedral mesh in Ansys Fluent (right of Fig S1), this ensure229
reducing the number of element accounts which resulted less computational cost.230

A Tetrahedral mesh of five different sizes (3743532, 7742139, 9549582,13040520, and 14200000)231
were examine. The CL/Cd value at 80 m/Sec velocity was chosen to monitor its variation with232
respect to number of cells as in(see Figure S2 in supplementary information).233

Since Figure 4 shows that the value of the CL/CD quantity remains constant at value of 8.96234
when the number of cells reaches 13 million or more, we will use this number of cells as the cell235
count for numerical simulation.236

237
2.4 Results Validation238

Due to the lack of experimental results for the studied UAV and in order to verify the accuracy239
of the numerical results. The proposed physical model was tested with the same boundary240
conditions on the benchmark motion of a NACA 0012 airfoil at 1000 Reynolds number when air241
moves over it and starts to vibrate, as this case is similar to the vibration resulting from the242
movement of an airplane in the air. The Figure 5 shows the modeling of the NACA 0012 airfoil in243
reference (Kurtulus, 2019) which contains experimental results using the same mathematical model244
and boundary conditions used in the current study.245

In the study (Kurtulus, 2019), the flow vibration around NACA 0012 at Reynolds number was246
studied and the numerical results were compared with the experimental results. The Figure 3247
shows the vorticity and velocity contours for the studied wing at an angle of attack of 10 degrees248
and Re=1000. Figure S3 also shows the value of the instantaneous lift coefficient and its spectrum249
frequency at the same angle of attack. The Table 5 also shows a comparison of the experimental250
values with the numerical values calculated at the same angle of attack.251

Table 5 Validate the Numerical Simulation252
Cl Average Cd Average f (Hz)

Reference [41] 0.56 0.19 4.4
Current study 0.54 0.18 4.68
Percentage error % 3.57% 5.26% 6.36%
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253

Figure 3 Benchmark of simulation validity254
255

The average lift and drag values for different angles of attack are displayed Figure S4256
(supplementary information), and a comparison of these results with experimental results257
(Kurtulus 2019). The Table 5 show a clear agreement between the numerically calculated and258
experimental values, indicating that the mathematical model and numerical modeling used in this259
research yield results with acceptable accuracy.260
The model studied in Reference Study (Kurtulus 2019) is a 2D or planer model, meaning that261

the flow field does not change with the third dimension, while the Validation model is 3D and has262
a small thickness in order to reduce the computational cost, but it gives the same results as 2D if263
the area in the 2D model is set equal to the actual area studied in the 3D model. The study was264
done in 3D because the model studied for the aircraft is a three-dimensional model.265

3. Results and Discussion266

In order to solve the required mass conservation, momentum and turbulence equations in267
transient state, the simple algorithm was chosen as a method to velocity-pressure coupling with268
0.0001 sec time step size during 2.5 sec of flow time, which requires 25000 time step number, the269
lift and drag coefficients were monitored and the mass conservation equation residuals were270
adjusted until while the rest of the equations were allowed to converge until .second order271
discretization were chosen for all equation.272
The pressure and velocity contours around the fuselage are presented in figure S5 and S6.273

These contours, studied in the transient state, show the stagnation points at the front of the aircraft274
where the speed value is zero and the pressure is maximum, as is the case in the pressure and275
speed contours studied in the steady state.276
In these contours, unlike the steady-state pressure and speed contours, we notice the formation277

of vortex separation regions behind the aircraft. These regions cannot be seen when studying flow278
through the fuselage in steady state.279
These vortices form and separate at a specific frequency and are so small that they cannot be280

directly observed from the speed and pressure contours at low speeds. However, at high speeds281
(80 m/s), these vortices begin to appear in the speed and velocity contours, as shown in the Figure282
S5 and S6.283
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This can be explained by discussing the graphs showing the changes in the lift and drag284
coefficients and the lift-to-drag ratio in the Figure 4 (see figure S7/S8 for Transient Signal of Cl/Cd285
Coefficient).286

287

Figure 4 Transient Signal of Cl Coefficient.288

289
We note from these figures (Figure 4) the time-varying nature of the previous parameters,290

indicating the presence of vortices resulting from the oscillating flow behind the aircraft.291
The Figure 5 also shows the average values of the drag and lift coefficients and the lift-to-drag292

ratio at each of the studied speeds, which are equal to the values of these coefficients when293
studying flow in steady state. We also note from Figure 5, as is the case in the steady state, that the294
value of the lift coefficient and the lift-to-drag coefficient ratio increase slightly with increasing295
flow velocity. the lift coefficient increases from a value of 0.249 at a speed of 40 m/sec to a value of296
0.2504 at a speed of 80 m/sec, i.e., by 0.56%. The lift-to-drag coefficient ratio increases from a value297
of 8.711 at a speed of 40 m/sec to a value of 8.96 at a speed of 80 m/sec, i.e., by 2.85%, while the298
change in the value of the drag coefficient in the range of speeds studied is negligible due to the299
small value of the drag forces on the aircraft within the range of speeds studied.300

301
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Figure 5 Average Values of Cl, Cd, CL/Cd coefficient302
303

We notice from the figure S9 for illustration that the higher the flow velocity (aircraft speed),304
the greater the deviation of the instantaneous oscillation value from the average value, i.e., the305
higher the amplitude of the oscillation becomes. The deviation of the lift coefficient value from the306
average value increases from 0.65% at a speed of 40 m/sec to 1% at a speed of 80 m/sec, while the307
deviation of the drag coefficient value increases from 10.5% at a speed of 40 m/sec to 16.1% at a308
speed of 80 m/sec. The ratio of the lift coefficient to the drag coefficient increases from 31% at a309
speed of 40 m/sec to 36.6% at a speed of 80 m/sec. This explains the vortices seen behind the310
aircraft at the high speed of 80 m/sec.311
To assess the severity of this fluctuations, resulting from the flow field, it is necessary to312

calculate the dominant flow frequencies and compare them with the natural frequency of the313
aircraft body to avoid these frequencies when designing the aircraft body.314
By performing a fast Fourier transformer analysis of the above signals, the dominant frequency315

of the oscillations of both the lift coefficient and the lift-to-drag ratio can be calculated. However,316
we did not analyze the drag coefficient change signal because it is integrated within the lift-to-317
drag ratio signal.318
The Figures 6 and 7 shows the fast Fourier transformer analysis of the oscillation signal of both319

the lift coefficient and the lift-to-drag coefficient ratio, while the Figure 17 shows the dominant320
frequency value at each speed.321
We note from the Figure 8 that the dominant frequency of lift oscillations decreases from 11.1322

Hz at 40 m/sec to 3.2 Hz at 80 m/sec, a 71.7% decrease. The frequency of lift-to-drag coefficient323
oscillations increases from 8.8 Hz at 40 m/sec to 17.82 Hz at 80 m/sec, a 102.5% decrease. This is324
due to the small changes in the drag coefficient.325
The large changes in lift oscillation frequency and the low drag coefficients at high speeds326

within the speed range under study explain the pronounced appearance of vortices at this speed.327
Future work could explore materials to reduce fouling effects on drone surfaces, similar to the328

solutions proposed for boiler chimneys (Kakade, 2023). Such integrations could further stabilize329
unsteady-state performance of drone systems in extreme environments. Further future research330
directions could explore specialized drone applications for food supply chains, building on the331
identified needs of traditional markets like Raipur's fish distribution system (Punekar, 2023). Finally,332
it is worth mentioning that this study should consider integrating health and environmental333
critiques, like the one raised by [Kumar et at] (Kumar, 2024). They discussed the exposure to drone334
emissions or signal interference aligns with broader concerns.335
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336

Figure 6 Fast Fourier transformer of CL signal.337

Figure 7 Fast Fourier transformer of CL/Cd signal338

Figure 8 Values of CL and CL/CD signal dominant frequencies.339

340



12
International Journal of Technology v(i) pp-pp (YYYY)

341

4. Conclusions342

Unmanned aerial vehicle (UAV) in a transient state. The study was conducted at speeds of 40,343
60, and 80 m/s at an angle of attack of 6 degrees, corresponding to the maximum value of the lift-344
to-drag coefficient ratio in steady state. The study was conducted numerically using Ansys Fluent.345
The grid-independence study was conducted, and the validity of the numerical solution was346
verified by comparing the results of the proposed mathematical model on NACA 0012 air foil with347
experimental results to confirm the validity of the mathematical model. The results of the348
numerical study indicate formation and decay of vortices behind the aircraft showed that the349
magnitude of these vortices increases with increasing aircraft speed. Additionally, lift coefficient350
increases by 0.56%, and the lift-to-drag ratio increases by 2.85% when the aircraft speed increases351
to 80 m/s. The frequency of oscillations of the lift-to-drag ratio also increases by 102.5%, while the352
vertical oscillation frequency corresponding to the oscillation of the lift force decreases by 71.7%.353
Finally, the statistical study of the standard deviation of the lift and drag coefficients and the lift-354
to-drag ratio from the mean value also showed an increase in these deviations with increasing355
aircraft speed. The standard deviation of the lift forces increases by 0.65%, the drag forces increase356
by 10.5%, and the lift-to-drag ratio increases by 36.6% when the aircraft speed increases from 40357
m/s to 80 m/s.358
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