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Abstract: Timely and accurate identification of rice leaf diseases is paramount for optimizing crop 14 

productivity and safeguarding global food security. This research developed an innovative deep 15 

learning framework that incorporates the DenseNet121 architecture, optimized through a modified 16 

Parrot Optimization Algorithm (POA), to achieve precise classification of rice leaf diseases. The 17 

modified POA, an enhanced variant of the original algorithm, integrates Mutation random opposition-18 

based learning (mROB) and Brownian motion mechanisms to improve optimization efficiency. By 19 

effectively tuning critical hyperparameters, including batch size, learning rate, dropout rate, and the 20 

number of neurons, the proposed model demonstrates superior performance. Evaluations conducted 21 

on rice leaf disease dataset revealed that the modified POA-DenseNet121 model outperformed 22 

established pretrained models such as VGG19, DenseNet201, InceptionV3, EfficientNetB0, and 23 

ResNet50. The proposed model achieved remarkable performance metrics, including a 98.5% 24 

accuracy, 98.6% precision, 98.4% recall, and 98.5% F-measure. Furthermore, the application of 25 

optimization strategies, including step decay learning schedules and early stopping, enhanced the 26 

model's robustness and minimized the risk of overfitting. This study underscores the potential of the 27 

modified POA-DenseNet121 framework as a scalable and efficient tool for advancing agricultural 28 

diagnostics and addressing challenges in rice disease management. 29 

 30 

Keywords: Disease detection; Parrot optimization algorithm; Rice leaf disease; Transfer learning; Technological 31 

development 32 

 33 

1. Introduction 34 

Rice is a fundamental food source for nearly half of the global population, making its stable 35 

production crucial for global food security (Chen et al., 2020). However, rice-based agriculture faces 36 

persistent economic, ecological, and social challenges, with diseases posing one of the most 37 
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significant threats. The International Rice Research Institute (IRRI) estimates that rice diseases can 38 

cause yield losses of up to 80%, further aggravating food insecurity (Ritharson et al., 2024; Yusuf et 39 

al., 2024). Traditional disease detection methods, such as visual inspection and lab tests, are time 40 

consuming, error-prone, and costly, especially across large-scale farms (Shah et al., 2023; Barman et 41 

al., 2024). 42 

Advancements in artificial intelligence (AI), particularly deep learning, have shown promise in 43 

revolutionizing agricultural diagnostics. Convolutional Neural Networks (CNNs) have emerged as 44 

effective tools for automatically learning hierarchical features from disease images, thus facilitating 45 

accurate rice disease classification (Pattnaik et al., 2021; Chakrabarty et al., 2024). Despite their 46 

effectiveness, training CNNs from scratch is resource-intensive and requires large annotated 47 

datasets often unavailable in the field of agriculture. Transfer learning mitigates this by fine-tuning 48 

pre-trained CNNs, enabling high performance even with limited data (Ayesha et al., 2021; Yuan et 49 

al., 2022). 50 

Nevertheless, CNN performance heavily depends on optimal hyperparameter settings such as 51 

learning rate, batch size, and number of filters, making hyperparameter tuning a critical step. 52 

Traditional methods like manual tuning, grid search, and random search are often inefficient, 53 

computationally expensive, and time-consuming (Rehman et al., 2021; Barman et al., 2024; Rehman 54 

et al., 2023). These challenges have driven researchers to reframe hyperparameter tuning as a 55 

complex optimization problem, increasingly addressed through metaheuristic algorithms.  56 

Metaheuristic algorithms, inspired by natural phenomena such as evolution, swarm behavior, and 57 

physics, offer strategic exploration of high-dimensional and non-linear search spaces. Their 58 

adaptability and effectiveness have been widely demonstrated in optimizing deep learning models 59 

for various applications. For example, Artificial Bee Colony (Ebraheem et al., 2024), Artificial Namib 60 

Beetle Optimization (Rao & Vasumathi, 2024), and Jaya Artificial Ecosystem-Based Optimization 61 

(Babu & Philip, 2024) have all been employed to fine-tune CNNs. However, the No Free Lunch (NFL) 62 

theorem (Wolpert & Macready, 1997) asserts that no single algorithm performs best across all 63 

problems, prompting the need for tailored or hybrid approaches. 64 

In this context, the Parrot Optimizer Algorithm (POA) (Lian et al., 2024), inspired by the behaviors 65 

of Pyrrhura molinae parrots offers a compelling optimization framework. Though effective, the 66 

original POA struggles with premature convergence and limited exploration. To overcome these 67 

limitations, this study introduces a modified POA (mPOA) that integrates mutated random 68 

opposition-based learning (mOBL) and Brownian motion to enhance population diversity and 69 

convergence speed. 70 

The proposed approach combines CNNs with mPOA for optimized rice leaf disease detection 71 

using transfer learning. By fine-tuning a comprehensive set of CNN hyperparameters, the method 72 

demonstrates superior accuracy, precision, recall, and F1-score across disease classes. This 73 

integration of deep learning and metaheuristic optimization highlights the growing potential of AI 74 

in precision agriculture, particularly for scalable and cost-effective disease diagnostics. 75 

Overall, this study contributes a novel, hybridized optimization framework that addresses critical 76 

challenges in CNN training and demonstrates its effectiveness in improving rice crop health 77 

monitoring, thereby supporting food security efforts on a global scale. 78 

This study highlights that rice leaf disease detection models may struggle with unseen 79 

environments and cultivars due to diverse leaf morphology and backgrounds. Future work will 80 

incorporate multi-location datasets and domain adaptation. The model's potential for real-time, 81 

mobile-based diagnostics offers practical benefits for timely agricultural interventions. 82 

The key contributions of this study are outlined as follows: 83 
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1. Applied various preprocessing methods, including contrast enhancement, normalization, noise 84 

reduction and data augmentation, to improve the leaf image quality for more effective detection of 85 

rice leaf diseases. 86 

2. Proposed a modified Parrot Optimizer algorithm (POA) incorporating mutated random 87 

opposition-based learning and Brownian motion strategies to enhance the performance of the 88 

traditional POA for superior optimization. 89 

3. Applied the modified POA for efficient hyperparameter optimization of DenseNet121, thereby 90 

improving the disease detection. 91 

4. Performed thorough evaluations of the presented model using rice disease to confirm its 92 

effectiveness. 93 

5. Performed a comparative analysis of the presented model in contrast to other advanced rice 94 

disease detection methods available in the literature. 95 

This manuscript is delineated in the following sequence: Section 2 offers a review of recent deep 96 

learning-based rice leaf disease detection models. Section 3 describes the CNN architecture and the 97 

transfer learning approach. Section 4 introduces the POA and its mathematical formulations. Section 98 

5 presents the modified POA. Section 6 outlines the proposed rice leaf disease detection model and 99 

its performance evaluation. Lastly, Section 7 concludes the paper and explores potential avenues for 100 

future research. 101 

2. Literature Review 102 

Recent studies on rice leaf disease detection have evolved from traditional machine learning to 103 

advanced deep learning models. Goluguri et al. (2021) combined deep CNN with LSTM and artificial 104 

fish swarm optimization, achieving 97.5% accuracy but facing scalability issues due to computational 105 

demands. Daniya and Vigneshwari (2023) proposed a Rider Water Wave-based Neural Network, 106 

achieving 90.8% accuracy, limited by single-dataset testing. Hossain et al. (2024) introduced a Deep 107 

Learning-based Crested Porcupine Optimizer model with ConvNeXt-L and CVAE, but its 108 

computational complexity hinders real-time use. Preethi et al. (2024) developed a hybrid DNN with 109 

Enhanced Artificial Shuffled Shepherd Optimization, achieving 97.29% accuracy, constrained by 110 

reliance on high-resolution images. These studies highlight the need for efficient, scalable models, 111 

which this work addresses through mPOA and DenseNet121. 112 

3. CNN and Transfer learning 113 

CNNs excel in image classification by extracting complex features through convolutional, 114 

activation, pooling, and batch normalization layers (Barakat et al., 2024; Manjupriya et al., 2025). The 115 

classification section uses dense and dropout layers to categorize features, with softmax activation 116 

for multi-class tasks (Maijeddah et al., 2024; Ibrahim et al., 2024). Hyperparameter tuning (e.g., 117 

learning rate, dropout factor) is critical but challenging due to the vast search space (Gaspar t al., 118 

2021; Emam et al., 2024; Mahmmod et al., 2023). Transfer learning addresses data scarcity by 119 

leveraging pretrained models like DenseNet121, which uses dense connectivity to enhance feature 120 

reuse and mitigate vanishing gradients (Mofrad & Valizadeh, 2023). This study employs 121 

DenseNet121 with transfer learning, fine-tuning the classifier while optimizing hyperparameters 122 

using mPOA. 123 

3.1 DenseNet pre-trained models 124 

DenseNet is a powerful convolutional neural network (CNN) architecture that has significantly 125 

enhanced transfer learning performance across various vision tasks. It features a distinctive dense 126 

connectivity pattern, where each layer receives inputs from all preceding layers, encouraging feature 127 
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reuse and mitigating vanishing gradient issues. DenseNet models come in various depths, including 128 

DenseNet-121, DenseNet-169, and DenseNet-201, with 121, 169, and 201 layers respectively. These 129 

variants balance computational cost and representational power, allowing practitioners to select a 130 

model based on task complexity and available resources. Table 1 provides a summary of these pre-131 

trained models, particularly those trained on the ImageNet dataset 132 

All DenseNet versions include four dense blocks composed of 1×1 and 3×3 convolutional layers, 133 

separated by transition layers with convolution, pooling, and normalization. These models are 134 

typically pre-trained on large datasets like ImageNet, capturing generalized visual features useful for 135 

transfer learning. The architecture of DenseNet-121, as initially applied to the ImageNet dataset, is 136 

shown in Figure 1. 137 

Transfer learning with DenseNet involves fine-tuning a pre-trained model rather than training 138 

from scratch. Freezing early convolutional layers, which detect common low-level features such as 139 

edges, accelerates training and reduces overfitting especially with small datasets. However, freezing 140 

too many layers may limit the model’s ability to learn high-level, task-specific features. Thus, 141 

selecting an appropriate fine-tuning strategy is essential for achieving optimal performance. 142 

 143 

Table 1: Architectural settings for different DenseNet CNN architectures trained using ImageNet. 144 

Layers DenseNet-121 DenseNet-169 DenseNet-201 Output size 

    DenseNet-121 DenseNet-169 DenseNet-201 

Input     224 × 224 × 3  

Conv.  7 × 7 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2   112 × 112 × 64  

Pooling  3 × 3max𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 2   56 × 56 × 64  

Block-1  [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 6   56 × 56 × 256  

TL-1 
                 1 × 1 𝑐𝑜𝑛𝑣 

2 × 2 avg 𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 

  56 × 56 × 128 

28 × 28 × 128 

 

Block-2  [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 12   28 × 28 × 512  

TL-2 
 1 × 1 𝑐𝑜𝑛𝑣 

2 × 2 avg 𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 

  28 × 28 × 256 

14 × 14 × 256 

 

Block-3 [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 24 [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 32 [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 48 14 × 14 × 1024 14 × 14 × 1280 14 × 14 × 1792 

TL-3 
            1 × 1 𝑐𝑜𝑛𝑣 

2 × 2 avg 𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 

 14 × 14 × 512 

7 × 7 × 512 

14 × 14 × 600 

7 × 7× 600 

14 × 14 × 896 

7 × 7× 896 

Block-4 [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 16 [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 32 [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 32 7 × 7 × 1024 7 × 7 × 1664 7 × 7× 1920 

CL 
 7 × 7 global avg𝑝𝑜𝑜𝑙 

1000 − D fc, softmax 

 1 × 1 × 1024 1 × 1 × 1664 

1 × 1× 100 

1 × 1× 1920 

 145 

 146 
Figure 1 The main architecture of DenseNet-121 CNN architecture, as applied to the ImageNet data. 147 
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The diagram includes the following components: D represents the dense blocks, 𝑇 denotes the 148 

transition layers, FC stands for the fully connected layers, DL refers to the dense layers, and C 149 

represents the initial convolution and pooling layers. 150 

4 Parrot Optimization Algorithm (POA) 151 

The POA by Lian et al. (2024) is a novel and effective metaheuristic algorithm inspired by the 152 

behavioural traits of domesticated Pyrrhura Molinae parrots, such as foraging, remaining stationary, 153 

vocalizing, and exhibiting caution towards unfamiliar entities. These behavioural patterns serve as the 154 

foundational principles for the development of the POA. This section presents an overview of the 155 

POA along with its foundational mathematical framework. 156 
 157 

4.1 POA Initialization stage 158 

The POA, as introduced by Lian et al. (2024), is an innovative population-based metaheuristic 159 

approach, where each parrot in the population symbolizes a potential solution to the optimization 160 

issue. The position of each Pyrrhura Molinae within the search space is mapped to the values of the 161 

parameters, thereby defining a possible solution. For POA initialization, parameters such as the size 162 

of the population size (N_pop), the highest number of iterations (MaxIter), and the boundaries of 163 

the search region denoted by the lower bound (lwb) and the upper bound (upb) are considered. This 164 

initialization process is mathematically formulated in Equation 1. 165 

𝑷𝒊
𝟎 = 𝒍𝒘𝒃 + 𝒓 ∗ (𝒖𝒑𝒃 − 𝒍𝒘𝒃)                                                            (1) 166 

Where r signifies a number randomly produced in range of [0, 1] and 𝑷𝒊
𝟎 denotes the 𝒊𝒕𝒉 167 

Pyrrhura Molinae position in the starting stage. 168 
 169 

4.2 POA hunting conduct 170 

In POA, during the hunting phase, the parrots assess the possible location of food by observing 171 

its surroundings or by referring to the position of the leader. Subsequently, they move toward the 172 

identified region. As a result, the variation in their position is controlled by the equation presented 173 

in Equation 2. 174 

𝑷𝒊
𝒄𝒖𝒓𝑰𝒕+𝟏 = (𝑷𝒊

𝒄𝒖𝒓𝑰𝒕 − 𝑷𝒃𝒆𝒔𝒕) ∗ 𝑳𝒗(𝑫) + 𝒓(𝟎, 𝟏) ∗  (𝟏 −
𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
)

𝟐𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
∗ 𝑷𝒎𝒆𝒂𝒏

𝒄𝒖𝒓𝑰𝒕      (2) 175 

Where, 𝑷𝒊
𝒄𝒖𝒓𝑰𝒕 defines the current region and 𝑷𝒊

𝒄𝒖𝒓𝑰𝒕+𝟏 indicates the location after the next update. 176 

𝑷𝒎𝒆𝒂𝒏
𝒄𝒖𝒓𝑰𝒕  signifies the average location within the existing population, and Lv(D) refers to a Levy 177 

distribution, which characterizes the parrots' flight pattern. 𝑷𝒃𝒆𝒔𝒕 represents the optimal position 178 

achieved up to this point, from the initialization stage to the current phase, and also indicates the 179 

current position of the leader. 𝒄𝒖𝒓𝑰𝒕 represents the current iteration.  (𝑷𝒊
𝒄𝒖𝒓𝑰𝒕 − 𝑷𝒃𝒆𝒔𝒕) ∗ 𝑳𝒗(𝑫) 180 

represent movement in relation to one’s position based on the owner and 𝒓(𝟎, 𝟏). 181 

(𝟏 −
𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
)

𝟐𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
∗ 𝑷𝒎𝒆𝒂𝒏

𝒄𝒖𝒓𝑰𝒕  refers to the monitoring of the overall position of the population in order 182 

to better direct the search for the food's location. The average position of current swarm, 𝑷𝒎𝒆𝒂𝒏
𝒄𝒖𝒓𝑰𝒕  is 183 

computed using the mathematical expression depicted in Equation 3 and the Lv(D) can be determine 184 

using rule define in Equation 4. 𝜸 is given a magnitude of 1.5. 185 

𝑷𝒎𝒆𝒂𝒏
𝒄𝒖𝒓𝑰𝒕 =

𝟏

𝑵𝒑𝒐𝒑
∑ 𝑷𝒌

𝒄𝒖𝒓𝑰𝒕𝑵𝒑𝒐𝒑
𝒌              (3) 186 
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𝑳𝒗(𝑫) =
𝝁−𝝈

|𝒗|
𝟏
𝟕

𝝁~𝑵𝒑𝒐𝒑(𝟎, 𝑫)

𝒗~𝑵𝒑𝒐𝒑(𝟎,𝑫)

𝝈 = (
𝝉(𝟏+𝜸)∗𝐬𝐢𝐧(

𝝅𝜸

𝟐
)

𝝉(
𝟏+𝜸

𝟐
)∗𝜸.𝟐

𝟏+𝜸
𝟐

)

𝜸+𝟏

         (4) 187 

 188 

 189 

4.3 POA staying conduct 190 

The highly social Pyrrhura molinae primarily demonstrates a characteristic behavior of swiftly 191 

flying to a specific area on its owner’s body, where it stays motionless for a particular period. This 192 

behavior is mathematically represented by Equation 5. 193 

𝑷𝒊
𝒄𝒖𝒓𝑰𝒕+𝟏 = 𝑷𝒊

𝒄𝒖𝒓𝑰𝒕 +𝑷𝒃𝒆𝒔𝒕 ∗ 𝑳𝒗(𝑫) + 𝒓(𝟎, 𝟏) ∗  𝒐𝒏𝒆𝒔(𝟏, 𝒅)      (5) 194 

𝒐𝒏𝒆𝒔(𝟏,𝑫) signifies all-1 vector of D dimension, 𝑷𝒊
𝒄𝒖𝒓𝑰𝒕 +𝑷𝒃𝒆𝒔𝒕 represents the flight to the host, 195 

and the procedure of randomly halting at a portion of the host's body is defined by 𝒓(𝟎, 𝟏) ∗196 

 𝒐𝒏𝒆𝒔(𝟏, 𝒅). 197 
 198 

4.4 PO communication conduct 199 

Parrots, belonging to the Pyrrhura Molinae family, are inherently social creatures that display a 200 

strong tendency for group communication. Their communication behavior includes both hovering 201 

to join the flock and interacting without flying. The POA assumes that these actions have an equal 202 

chance of occurring. The center of the flock is represented by the mean position of the current 203 

population. Equation 6 provides a mathematical expression for this phenomenon. 204 

𝑷𝒊
𝒄𝒖𝒓𝑰𝒕+𝟏 = {

𝟎. 𝟐 ∗ 𝒓(𝟎, 𝟏) ∗ (𝟏 −
𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
) ∗ (𝑷𝒊

𝒄𝒖𝒓𝑰𝒕 − 𝑷𝒎𝒆𝒂𝒏
𝒄𝒖𝒓𝑰𝒕 ), 𝒑𝒓 ≤ 𝟎. 𝟓

𝟎. 𝟐 ∗ 𝒓(𝟎, 𝟏) ∗ 𝒆𝒙𝒑 (−
𝒄𝒖𝒓𝑰𝒕

𝒓(𝟎,𝟏)∗𝑴𝒂𝒕𝑰𝒕𝒆𝒓
) , 𝒑𝒓 > 𝟎. 𝟓

                    (6) 205 

4.5 POA Fear of strangers’ conduct 206 

Parrots of the Pyrrhura Molinae species, like other birds, exhibit an instinctual fear of unfamiliar 207 

individuals. In response to this fear, they tend to seek safety by distancing themselves from strangers 208 

and finding refuge with their owners. In POA, this behavior can be mathematically represented by 209 

Equation 7. 210 

𝑷𝒊
𝒄𝒖𝒓𝑰𝒕+𝟏 = 𝑷𝒊

𝒄𝒖𝒓𝑰𝒕 + 𝒓 (𝟎, 𝟏) ∗ 𝐜𝐨𝐬 (𝟎. 𝟓𝝅 ∗
𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
) ∗(𝑷𝒃𝒆𝒔𝒕 − 𝑷𝒊

𝒄𝒖𝒓𝑰𝒕) − 𝐜𝐨𝐬( 𝒓 (𝟎, 𝟏) ∗ 𝝅) ∗211 

(
𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
)

𝟐

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
*(𝑷𝒊

𝒄𝒖𝒓𝑰𝒕 − 𝑷𝒃𝒆𝒔𝒕)        (7) 212 

where 𝒓 (𝟎, 𝟏) ∗ 𝐜𝐨𝐬 (𝟎. 𝟓𝝅 ∗
𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
) ∗(𝑷𝒃𝒆𝒔𝒕 − 𝑷𝒊

𝒄𝒖𝒓𝑰𝒕) represents the procedure of reorienting to 213 

fly in the direction of the owner and 𝐜𝐨𝐬( 𝒓 (𝟎, 𝟏) ∗ 𝝅) ∗ (
𝒄𝒖𝒓𝑰𝒕

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
)

𝟐

𝑴𝒂𝒙𝑰𝒕𝒆𝒓
*(𝑷𝒊

𝒄𝒖𝒓𝑰𝒕 − 𝑷𝒃𝒆𝒔𝒕) indicates the 214 

procedure of going away from the strangers.  215 

In POA, the procedure will go on until the specified circumstances for termination are fulfilled. 216 

The pseudocode is indicated by Algorithm 1. 217 

 218 
Algorithm 1: PO algorithm pseudo − code 

1: PO parameter initialization 

2: Randomly initialized the position of the solution agents 

3:𝑭𝒐𝒓 𝑖 = 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 𝑑𝑜 

4:        𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

5:        𝑭𝒐𝒓 𝑗 = 1: 𝑁𝑝𝑜𝑝  𝒅𝒐 

6:        𝑠𝑡 = 𝑟𝑎𝑛𝑑𝑖([1, 4] 
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7:            𝑰𝒇 𝑠𝑡 == 1 𝑻𝒉𝒆𝒏 

8:                𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (2)  

9:           𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 2 𝑻𝒉𝒆𝒏 

10:              𝑆𝑡𝑎𝑦𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (5) 

11:        𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 3 𝑻𝒉𝒆𝒏 

12:              C𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (6) 

13:        𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 4 𝑻𝒉𝒆𝒏 

14:              𝑓𝑒𝑎𝑟 𝑜𝑓 𝑠𝑡𝑟𝑎𝑛𝑔𝑒𝑟𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (7) 

15:       𝑬𝒏𝒅 𝑭𝒐𝒓 

16: 𝑬𝒏𝒅 𝑭𝒐𝒓 

17: Return best solution obtain 

5 Modified Parrot optimizer (mPOA) 219 

The following section presents an enhanced variant of the POA, referred to as the modified parrot 220 

optimization algorithm (mPOA), which seeks to improve the POA's local search capabilities and speed 221 

up the global search procedure in order to get over its drawbacks. The main goal of mPOA is to 222 

lessen the issue of stagnation at local optima while achieving faster convergence. In order to give a 223 

comprehensive overview, we start by examining the difficulties with the traditional PO algorithm. 224 
 225 

5.1 Issues with original POA 226 

The original Parrot Optimization Algorithm (POA), though effective, struggles with high-227 

dimensional problems due to premature convergence and limited exploration. To overcome this, we 228 

propose a modified POA (mPOA) integrating opposition-based mutation learning (mOBL) and 229 

Brownian motion (BR). mOBL enhances initialization and accelerates convergence, while BR improves 230 

exploration. The mPOA’s effectiveness was validated by optimizing a pre-trained DenseNet-121 231 

model for rice leaf disease detection, demonstrating improved performance in navigating complex 232 

search spaces and identifying optimal hyperparameter configurations. 233 
 234 

5.2 Opposition based mutation learning approach (OBL) 235 

OBL enhances convergence in metaheuristic algorithms by simultaneously exploring original and 236 

opposite solutions, increasing the chance of locating global optima. It is especially effective when 237 

initial solutions are suboptimal, accelerating convergence and improving performance by expanding 238 

the search space and enabling the selection of superior solutions from a broader solution pool 239 

(Adamu et al., 2022). The following subsection describes how the OBL is incorporated. 240 

Opposite values: In OBL, Equation 8 is used to determine the opposite of a real integer 𝒚 inside 241 

the interval [𝒍𝒘𝒃, 𝒖𝒑𝒃]. 242 

𝒚𝑶 = 𝒍𝒘𝒃 + 𝒖𝒑𝒃 − 𝒚                  (8) 243 

where 𝒍𝒘𝒃 and 𝒖𝒑𝒃 denote lower and upper bounds respectively 244 

Opposite vectors: If 𝒀 = [𝒚𝟏 , 𝒚𝟐, … , 𝒚𝒏] is a vector, where 𝒚𝟏 , 𝒚𝟐, … , 𝒚𝒏
 ∈ 𝑹 and 𝒚𝒋 ∈ [𝒍𝒘𝒒, 𝒖𝒑𝒒]. The 245 

opposite vector 𝒀𝑶 = [𝒚𝑶𝟏, 𝒚𝑶𝟐 , … , 𝒚𝑶𝒏] is computed based on Equation 9. 246 

𝒚𝑶 = 𝒍𝒘𝒃𝒒 + 𝒖𝒑𝒃𝒒 − 𝒚𝒒                    (9) 247 

In OBL, the solution 𝒀 is substituted with its complementary counterpart 𝒀𝑶, determined by an 248 

activation function. If the fitness of 𝒀 represented as 𝒇(𝒀) is greater than that of 𝒀𝑶 denoted as 249 

𝒇(𝒀𝑶), 𝒀 is preserved; otherwise, Y is replaced with 𝒀𝑶. This updating process facilitates the evolution 250 

of the solution population by selecting the better solution between 𝒀 and 𝒀𝑶. The paper presents a 251 

modified version of this approach, referred to as the mutated random opposition-based learning 252 

(mROBL) strategy, which is outlined in Equation 10. 253 

𝒚𝒎𝑶𝑩𝑳 = 𝒍𝒘𝒒 + 𝒖𝒑𝒒 − 𝜺 × 𝒓               (10) 254 

In this context, 𝒓 denotes a value within the range [0,1], and 𝜺 represents the mutation scale, a 255 

small constant that regulates the intensity of the mutation. Unlike Equation 9, the mutated opposite 256 

solution, as outlined in Equation 10, introduces a higher degree of randomness. This increased 257 
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randomness promotes greater diversity within the population, thereby improving the algorithm's 258 

capability to efficiently escape from local optima. 259 
 260 

5.3 Brownian motion 261 

The length of each phase in the Brownian motion method is governed by a normal gaussian 262 

distribution function, with a mean of zero (𝜇 = 0) and a variance of one (𝜎2 = 1). The function that 263 

describes this motion at a given point 𝑦 is specified in Equation 11 (Faramarzi et al., 2020). 264 

𝑭𝑩𝑹(𝒚, 𝝁, 𝝈) =
𝟏

√𝟐𝝅𝝈𝟐
𝒆𝒙𝒑 (−

(𝒚−𝝁)𝟐

𝟐𝝈𝟐
) =

𝟏

√𝟐𝝅
𝐞𝐱𝐩(−

𝒚𝟐

𝟐
)                                  (11) 265 

here, 𝑭𝑩𝑹(𝒚, 𝝁, 𝝈) denotes the Brownian motion probability density function, the mean is 266 

represented by µ and the standard deviation by 𝝈.  267 
 268 

5.4 Initialization stage of modified POA 269 

Produce a starting population of potential solutions in the stated limits of the search space. 270 

Enhance the initial population by employing the mutated random (mROBL) strategy, which evaluates 271 

the fitness of each solution's opposite counterpart and updates the solution if the opposing 272 

counterpart demonstrates superior fitness, as described in Equation 10. Consequently, the 273 

application of Equation 10 effectively enhances population diversity and aids in overcoming local 274 

optima by facilitating the population's transition to unexplored regions of the search space. 275 
 276 

5.5 Fitness function 277 

The fitness function assesses how well a particular solution approximates the optimal solution for 278 

the given problem. The fitness value for each search agent is calculated using Equation 12. 279 

𝑭𝒊𝒕𝒊 = 𝜶 × 𝑬𝒓𝒓𝒊 + 𝜷×
𝒅𝒊

𝑫
          (12) 280 

The 𝜶 is assign a value of 0.7 and 𝜷 = 𝟏 − 𝜶. The α parameter strikes an equilibrium between 281 

number of feature subsets 𝑭𝑺 (𝒅𝒊) and the error rate (𝑬𝒓𝒓)𝒊 of classification. 282 
 283 

5.6 Modified POA fitness evaluation  284 

Each parrot fitness value is chosen using Eqn. (13) 285 

𝒊𝒇 𝒎𝑶𝑩𝑳𝒇𝒊𝒕 < 𝑭𝒊 𝒕𝒉𝒆𝒏 {
𝒀(𝒊, ∶) = 𝒀𝒎𝑶𝑩𝑳
𝑭𝒊 = 𝒎𝑶𝑩𝑳𝒇𝒊𝒕

                              (13) 286 

5.7 modified POA update phase 287 

It is essential to evaluate the solutions at each iteration in order to find the best candidates and 288 

improve the freshly created solutions for subsequent phases. After computing the fitness of each 289 

individual, their positions are updated by applying the initial phases of the POA. The foraging 290 

behavior phases are implemented as described in Equations (2–4). The parameter the St 𝝐 rand [1, 291 

4] is then examined. If 𝑺𝒕 = 𝟏, the position is updated using the Brownian motion (BR) strategy as 292 

per Equation 11 instead of the Lévy strategy. Similarly, if 𝑺𝒕 = 𝟐, the position is updated using BR 293 

based on Equation (11) instead of employing the staying behavior. Algorithm 2 presents the pseudo-294 

code for the mPOA. 295 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐:Modified POA pseudo − code 

1:  Initilize the mPOA parametres 

2:  Initilize the position of all agents using Eqn. (1)and evaluate their fitness  

3:  𝒇𝒐𝑟 i = Npop 𝒅𝒐 

4:        Perform mOBL on the initial population using Eqn. 10 and save results in 𝑌𝑚𝑂𝐵𝐿 

5:        Evaluete the fitness 𝑜𝑓 𝑌𝑚𝑂𝐵𝐿 and save result in 𝑚𝑂𝐵𝐿𝑓𝑖𝑡 

6:       𝑖𝑓 𝑚𝑂𝐵𝐿𝑓𝑖𝑡 < 𝐹𝑖  𝑡ℎ𝑒𝑛 

7:              𝑌𝑖 = 𝑌𝑚𝑂𝐵𝐿 

𝟖:       𝐞𝐧𝐝 𝐢𝐟 

𝟖:  𝐞𝐧𝐝 𝐟𝐨𝐫 

3:𝑭𝒐𝒓 𝑖 = 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 𝑑𝑜 

4:        𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (12) 

5:        𝑭𝒐𝒓 𝑗 = 1: 𝑁𝑝𝑜𝑝  𝒅𝒐 
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6:        𝑠𝑡 = 𝑟𝑎𝑛𝑑𝑖([1, 4] 

7:            𝑰𝒇 𝑠𝑡 == 1 𝑻𝒉𝒆𝒏 

8:                   𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑛. (11)  

9:           𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 2 𝑻𝒉𝒆𝒏 

10:                  𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝐵𝑅 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐸𝑞𝑛. (11) 

11:        𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 3 𝑻𝒉𝒆𝒏 

12:                  𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (6) 

13:        𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 4 𝑻𝒉𝒆𝒏 

14:                  𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑓𝑒𝑎𝑟 𝑜𝑓 𝑠𝑡𝑟𝑎𝑛𝑔𝑒𝑟𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (7) 

15:       𝑬𝒏𝒅 𝑭𝒐𝒓 

16: 𝑬𝒏𝒅 𝑭𝒐𝒓 

17: Return best solution obtain 
 296 
 297 

6 Proposed rice leaf disease detection model 298 

This part presents the methodology underlying the presented rice leaf disease detection model, 299 

designed to significantly enhance the performance of CNN architectures. The approach integrates 300 

the mPOA with DenseNet121 framework to optimize it performance for improved disease detection 301 

and classification. Firstly, the mPOA is employed to determine the optimal hyperparameter 302 

configurations of DenseNet121. Afterward, transfer learning methods are applied to train the 303 

DenseNet121. Upon completion of the training, the model's performance is assessed on a separate 304 

validation set. More precisely, the training and validation datasets are used to optimize the hyper-305 

parameters and train the DenseNet121, with subsequent assessment carried out using the validation 306 

data. The methodology outlines a detailed pipeline for building the deep learning model, starting 307 

with the acquisition of the dataset and ending with the generation of classification results. The 308 

presented model consists of several stages, as illustrated in Figure 2. These stages include data 309 

collection, preprocessing, hyperparameter tuning, the learning phase, and the testing and evaluation 310 

phase. 311 

 312 
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 313 
Figure 2 The structural diagram of the proposed rice disease detection model. 314 

 315 

6.1 Dataset acquisition 316 

The data utilized in this work was from the publicly accessible Kaggle cloud data repository 317 

(Tejaswini et al., 2022). It comprises a total of 1,600 images distributed across four distinct classes: 318 

Hispa, Brown Spot, Leaf Blast, and Healthy leaves. The class spread of the data is depicted in Figure 319 

3. 320 

 321 

 322 
Figure 3 The Data distribution 323 

6.2 Data Preprocessing 324 

Images of crop leaf diseases are often characterized by significant noise and low contrast, which 325 

can hinder accurate disease detection. Since the clarity and sharpness of these images are critical for 326 
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effective diagnosis, improving image clarity by eliminating noise frequencies is considered a useful 327 

strategy to enhance detection accuracy. Accordingly, this study investigates various image 328 

preprocessing techniques aimed at addressing these challenges and improving the quality of rice 329 

disease images for more precise and reliable detection. 330 
 331 

6.2.1 Noise reduction 332 

Digital imaging plays a crucial role in image processing, but noise from acquisition devices can 333 

hinder analysis, especially in rice disease classification. Reducing noise enhances signal quality and 334 

classification accuracy. Identifying noise sources and applying effective reduction techniques is 335 

essential (Huang et al., 2024). Nonlinear filters like the median filter are particularly effective, 336 

preserving edges while suppressing noise by replacing each pixel with the median of its neighbors. 337 

This technique involves replacing each pixel median rate calculated from its surrounding pixels, as 338 

mathematically expressed in Equation 14. 339 

𝑿(𝒂,𝒃) = 𝒎𝒆𝒅𝒊𝒂𝒏(𝒚𝒊,𝒋 ∶ 𝒊, 𝒋 ∈ 𝑵)        (14) 340 

where 𝑵 defines the surrounding neighborhood at location  (𝒂, 𝒃). 341 
 342 

6.2.2 Image Normalization 343 

Normalization is a fundamental aspect of preprocessing, mostly in tasks involving image resizing 344 

and brightness normalization. These processes play a critical role in standardizing pixel values, which 345 

significantly contributes to enhancing model convergence during training. In the initial stage of 346 

normalization, the brightness levels of input images are adjusted to lie within the range of zero to 347 

one, as outlined by Razmjooy et al. (2020). The mathematical formulation employed to achieve this 348 

brightness normalization is provided in Eqn. (15). 349 

𝑰𝑪𝑲 = (𝑰𝑪 − 𝑰𝑪𝒎𝒊𝒏) ×
𝑰𝑪𝑲 𝒎𝒂𝒙−𝑰𝑪𝑲 𝒎𝒊𝒏

𝑰𝑪𝒎𝒂𝒙−𝑰𝑪𝒎𝒊𝒏
+ 𝑰𝑪𝑲 𝒎𝒊𝒏      (15) 350 

where 𝑰𝑪 is the input image limited to the range of 𝑰𝑪𝒎𝒂𝒙  and 𝑰𝑪𝒎𝒊𝒏, and 𝑰𝑪𝑲 contains the new 351 

adjusted image, having its limits described by 𝑰𝑪𝑲 𝒎𝒂𝒙  and 𝑰𝑪𝑲 𝒎𝒊𝒏. The images in the dataset are 352 

scaled down to 224 × 224 each. 353 
 354 

6.2.3 Contrast enrichment 355 

Contrast is vital for image quality, representing brightness variability. Low contrast compresses 356 

tonal range, causing blurriness. Enhancing contrast increases tonal variation and sharpness. The 357 

methodologies and algorithms discussed in this study leverage histogram correction techniques to 358 

address challenges associated with low image contrast. Specifically, the histogram equalization 359 

method is identified as an effective approach to rectify these issues (Razmjooy et al., 2020). 360 
 361 

6.2.4 Dataset augmentation 362 

Data augmentation is crucial in deep learning for overcoming limited data and class imbalance, 363 

particularly in binary classification where underrepresented (minority) classes can critically impact 364 

model performance. In crop leaf disease detection, scarce samples of key disease classes exacerbate 365 

these challenges. By artificially generating new images through techniques such as rotation, flipping, 366 

scaling, and color jitter data augmentation increases dataset size, balances class distributions, and 367 

enhances the model’s ability to learn from minority classes. This preprocessing step effectively 368 

mitigates the risks of poor generalization and high misclassification costs associated with 369 

imbalanced datasets. In this study, a number of augmentation approaches are implemented as 370 

shown in Table 2. 371 
 372 

Table 2 Augmentation approaches and their parameter values 373 

Approaches Values 

Shearing 0.2 
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Zooming 0.25 

Width shift 0.2 

Height shift 0.2 

Rotation 10 

Feature-wise 

Centering 

True 

Fill mode Reflect 

Vertical flip True 

Horizontal flip True 

6.3 Optimization of Hyper-parameters 374 

To identify the most suitable pre-trained CNN for rice leaf disease classification, several models 375 

were evaluated, including VGG16, DenseNet121, Xception, InceptionV3, and MobileNet, with 376 

DenseNet121 achieving the best performance. Consequently, DenseNet121 was selected and fine-377 

tuned using transfer learning by replacing its classifier and optimizing four key hyperparameters, 378 

including learning rate, batch size, dropout rate, and dense layer size. Together, these parameters 379 

define a 4-dimensional search space, with each point representing a unique mixture of 380 

hyperparameter values optimized to improve model performance. 381 
 382 

6.4 Training Stage 383 

In this stage, DenseNet121 is applied to the rice leaf disease dataset using a blend of feature 384 

extraction and fine-tuning methods. Initially, the network serves as a feature extractor, keeping its 385 

convolutional layers frozen to prevent updates during training. The added classifier, however, is 386 

trained on the enlarged dataset using the features extracted from frozen layers. This step aligns with 387 

the third phase described in Algorithm 3. To maintain consistency, the same data augmentation 388 

techniques as in earlier stages are used to enhance sample diversity and introduce new feature 389 

variations. After the feature extraction process reaches a performance plateau with no significant 390 

improvement over several training epochs, fine-tuning is initiated for further optimization. The fine-391 

tuned classifier is composed of four key layers: a flattening layer, a dense layer, a dropout layer, and 392 

a final dense layer. The initial dense layer uses the ReLU activation function, with the size of neurons 393 

and the dropout factor determined by the mPOA. The output layer, designed for multi-class 394 

classification, includes four neurons and employs the softmax activation function. This process 395 

corresponds to the second stage outlined in Algorithm 3. At the optimization stage, all the last four 396 

layers of the DenseNet121 convolutional backbone are frozen, allowing only these final layers and 397 

the added classifier to be trainable. These components are trained simultaneously, as detailed in the 398 

fourth phase of Algorithm 3. The enhanced model undergoes additional training across multiple 399 

epochs until it achieves stable performance, marking the point where further improvements cease 400 

to occur. 401 

To mitigate the risk of overfitting during model training, several regularization techniques were 402 

employed. These include data augmentation (such as flipping, rotation, and scaling) as describe in 403 

table 2, dropout layers (with optimized rates determined by mPOA), and early stopping based on 404 

validation loss trends. The model’s robustness was further validated by analyzing the convergence 405 

behavior between training and validation curves, as illustrated in Figure 4. The close alignment of 406 

these curves indicates reduced overfitting and strong generalization performance. 407 

 408 
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 3  Learning Stage of Proposed Rice Leaf Diseases (RLD) Detection Model 
1:  𝐈𝐧𝐩𝐮𝐭:  Training set (RLD__Dtrain), test set (RLDDtest), hyperparameter values 

𝟐:  𝐎𝐮𝐭𝐩𝐮𝐭:  RLD Trained model 
       // 𝐏𝐡𝐚𝐬𝐞 𝟏:  𝐏𝐫𝐞𝐩𝐫𝐨𝐜𝐞𝐬𝐬𝐢𝐧𝐠 𝐒𝐭𝐚𝐠𝐞 

𝟑:   Perform data augmentation on RLD_Dtraain to generate  RLD_Dagtraain 

𝟒:   Resize images in RLD_Dagtraainto form RLD_Dagtraain  
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𝟓:   Resize images in RLDDtest to form RLDDntest   

𝟔:   Reduce noise in RLDDagtrain   

𝟕:   Enhance contrast of images in RLDDagtrain 

       // 𝐏𝐡𝐚𝐬𝐞 𝟐:  𝐁𝐮𝐢𝐥𝐝𝐢𝐧𝐠 𝐃𝐞𝐧𝐬𝐞𝐍𝐞𝐭𝟏𝟐𝟏 𝐌𝐨𝐝𝐞𝐥 
8:    Load DenseNet121 without top layers as 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡 
9:    𝐟𝐨𝐫 each layer in 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡 𝐝𝐨  
10:         Set 𝐿𝑎𝑦𝑒𝑟. 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒 
11:  𝐞𝐧𝐝 𝐟𝐨𝐫 
12:  Add 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡 to the model   
13:  Add Flatten layer to the model 
14:  Add a Dense layer to the model 
15:  Add Dropout layer to the model 
16:  Add a Dense layer to the model 
       //𝐏𝐡𝐚𝐬𝐞 𝟑:  𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐃𝐞𝐧𝐬𝐞𝐍𝐞𝐭𝟏𝟐𝟏 𝐌𝐨𝐝𝐞𝐥 𝐮𝐬𝐢𝐧𝐠 𝐅𝐞𝐚𝐭𝐮𝐫𝐞 𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧 𝐌𝐞𝐭𝐡𝐨𝐝  
17:   𝐟𝐨𝐫 each epoch in range(1, n) 𝐝𝐨 

18:           Train the fine − tuned DenseNet121 on RLDDagtrainusing RLDDntest 

19:    𝐞𝐧𝐝 𝐟𝐨𝐫 
       //𝐏𝐡𝐚𝐬𝐞 𝟒:  𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐃𝐞𝐧𝐬𝐞𝐍𝐞𝐭𝟏𝟐𝟏 𝐌𝐨𝐝𝐞𝐥 𝐮𝐬𝐢𝐧𝐠 𝐅𝐢𝐧𝐞 − 𝐓𝐮𝐧𝐢𝐧𝐠 𝐌𝐞𝐭𝐡𝐨𝐝  
20:   𝐟𝐨𝐫 each layer in 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡. 𝑙𝑎𝑦𝑒𝑟𝑠[: −4] 𝐝𝐨  
21:           Set 𝐿𝑎𝑦𝑒𝑟. 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒 
22:    𝐞𝐧𝐝 𝐟𝐨𝐫 
23:   𝐟𝐨𝐫 each layer in 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡. 𝑙𝑎𝑦𝑒𝑟𝑠[−4: ] 𝐝𝐨  
24:           Set 𝐿𝑎𝑦𝑒𝑟. 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = 𝑇𝑟𝑢𝑒 

25:    𝐞𝐧𝐝 𝐟𝐨𝐫 
26:   𝐟𝐨𝐫 each epoch in range(1, n) 𝐝𝐨 

27:           Train the fine − tuned DenseNet121 on RLDDagtrainusing RLDDntest 

28:    𝐞𝐧𝐝 𝐟𝐨𝐫 

 409 

6.5 Testing and Evaluation 410 

Five evaluation measures are used in this stage: F-score, Accuracy, Sensitivity, Specificity, and 411 

Precision. The effectiveness of the suggested rice leaf disease classification model is evaluated using 412 

these metrics, which are frequently employed in classification issues (Skhvediani et al., 2023; 413 

Nugroho et al., 2023; Rahayu et al., 2025) 414 

Accuracy: shows the percentage of samples that have been appropriately identified (Hassan et al. 415 

2022) and is calculated using Equation 16 416 

𝒕𝒓𝑷+𝒕𝒓𝑵

𝒕𝒓𝑷+𝒕𝒓𝑵+𝒇𝒂𝑷+𝒇𝒂𝑵
                                                             (16)  417 

Recall: measures how well a model can find all relevant instances in a dataset and is calculated 418 

using Equation 17. 419 

𝒕𝒓𝑷

𝒕𝒓𝑷+𝒇𝒂𝑵
              (17) 420 

Precision: measures the precision of positive classification and is determined using Equation 18 421 

𝒕𝒓𝑷

𝒕𝒓𝑷+𝒇𝒂𝑷
              (18) 422 

F-score: F-score is a measure of test accuracy and is calculated by Equation 19. 423 

𝟐×𝒓𝒆𝒄𝒂𝒍𝒍×𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

𝒓𝒆𝒄𝒂𝒍𝒍+𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏
             (19) 424 

where trP donate number of true positive predictions, trN define true negative predictions, faP 425 

represent false positive predictions, and faN depict false negative predictions. 426 

7 Performance evaluation of rice disease detection model 427 

This segment provides an analysis of the results achieved using the proposed deep learning 428 

framework for disease detection rice leaf. The entire methodology was executed using the Kaggle 429 

notebook environment and implemented in Python, leveraging the TensorFlow library for model 430 

development and evaluation. 431 
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7.1 Optimizing hyperparameters using the modified POA 432 

This section details the optimization ranges for various hyperparameters tuned using the mPOA 433 

algorithm. Table 3 outlines the parameter arrangements for integrating the DenseNe121 with the 434 

mPOA, emphasizing the critical important of each hyperparameter in enhancing the effectiveness of 435 

model. The optimization algorithm's maximum number of iterations was set to 50, with a population 436 

size of 30, representing the count of candidate solutions. The search space dimension, defined by 437 

the four hyperparameters, enables their simultaneous optimization. The learning rate, which governs 438 

weight adjustments during training, was constrained to a range of 1𝑒−7 to 1𝑒−3, ensuring controlled 439 

updates that preserve previously learned features. The batch size, representing the number of 440 

samples processed per iteration, had a search range between 1 and 64. The dropout rate, used for 441 

regularization, was varied between 0.1 and 0.9 to prevent overfitting. The number of neurons in the 442 

initial dense layer was optimized within a range of 50 to 550, allowing for flexible model capacity 443 

adjustments. To determine the optimal count of DenseNet121 training epochs, several values were 444 

evaluated. It was found that fewer than 16 epochs led to suboptimal accuracy; thus, the training 445 

epochs were set to 16. The key goal of using the mPOA was to lessen the validation loss. The test 446 

set loss degree after 16 training epochs served as the benchmark for evaluating the proposed 447 

method's effectiveness. After training, the optimal values for the hyperparameters: dropout rate, 448 

batch size, and the number of neurons in the initial dense layer are determined. The final optimized 449 

hyperparameter values determined by the POA were as follows: a learning rate of 0.0001, a dropout 450 

rate of 0.1, a batch size of 0.9, and 125 neurons in the first dense layer. The findings depict the 451 

efficacy of the modified POA in enhancing the DenseNet121 for improved efficiency. Table 3 452 

presents the parameter settings for the mPOA integrated with DenseNet121. 453 

 454 

 455 

 456 

 457 

 458 

Table 3 mPOA-DenseNet121 parameter settings 459 

Parameter Value 

Maximum iteration count  50 

Size of the Population 30 

Dimension 4 

st [1,4] 
𝛽 1.5 

Learning factor (𝛼)  

Batch Size [1,64] 

Dropout factor [0.1,0.9] 

Count of Neurons [50,550] 

Maximum Training epochs 

of DenseNet121 

16 

 460 

Table 4 Optimum values of DenseNet121 hyperparameters found using mPOA 461 

Hyperparameter Optimum 

value 

Learning rate (𝛼) 0.0001 

Batch size 8 
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Dropout rate 0.1 

Count of neurons  120 

7.2 DenseNet121 Training using Optimum Values 462 

Here, the enhanced DenseNet121 is trained using the optimal hyper-parameters determined 463 

using the mPOA, serving as a feature extractor for the augmented training dataset. The model’s 464 

effectiveness was subsequently assessed on the validation dataset across a maximum of 16 epochs. 465 

To mitigate overfitting, the training process was halted early if no progress was detected over 10 466 

consecutive epochs. This approach utilized the early stopping technique, as described by Prechelt 467 

(2002) and Bai et al. (2021). Given that the rice leaf disease dataset involves multi-class classification, 468 

the categorical cross-entropy loss was employed to optimize the DenseNet121 model. Adam 469 

optimizer with a 2×10-7 learning used at the feature extraction stage. A decay learning rate 470 

schedular was implemented at the fine-tuning stage, using the methodologies outlined by Iiduka 471 

(2021). This plan began with an initial learning rate that decreased by a factor of 0.2 after every ten 472 

training epochs. The decision to adopt a smaller learning factor during fine-tuning aimed to maintain 473 

the essential features learned during the feature extraction stage while minimizing substantial 474 

alterations. This ensures that the extracted knowledge from the initial phase is retained, enhancing 475 

the overall model performance. 476 

7.3 Assessing the efficacy of the presented model 477 

This section provides a comprehensive assessment of the presented model efficacy. To 478 

demonstrate the effectiveness of the mPOA in determining the optimum value of DenseNet121 479 

hyperparameters for the model and achieving superior accuracy, its results are compared to those 480 

obtained from a DenseNet121 configured using manual hyper-parameter tuning. The 481 

hyperparameter settings optimized by the mPOA are detailed in Table 4, while the manually tuned 482 

DenseNet121 model employed a batch size of 8, a 0.72 dropout factor, 120 neurons, and a 0.001 483 

starting learning rate. The efficacy of the DenseNet121 enhanced with the mPOA was assessed using 484 

standard metrics such as accuracy, precision, recall and f-measure. Table 5 presents these metrics, 485 

offering a detailed assessment of model performance. For the manually tuned DenseNet121 model, 486 

the results include an accuracy of approximately 94.8%, precision of 94.8%, 94.8% recall and 94.23% 487 

F-measure. Conversely, the DenseNet121 optimized with the mPOA demonstrated noticeably 488 

superior efficacy across all metrics. Specifically, the model achieved an accuracy of approximately 489 

98.5%, 98.6% precision, 98.4%, recall and an 98.5% F-measure. These findings depict the efficacy of 490 

the mPOA in enhancing the DenseNet121, enabling improved accuracy and reliability for rice leaf 491 

disease classification tasks. The considerable enhancement in performance metrics demonstrates 492 

the advantage of employing the mPOA over manual hyperparameter tuning. Figure 4(a) and 4(b) 493 

illustrate the training and validation accuracy and loss curves of the presented model respectively, 494 

providing further evidence of its robust and reliable performance. 495 
 496 

Table 5 Comparison of classification results between mPOA optimized DenseNet121 and original 497 

POA enhanced DenseNet121 498 

Measures mPOA optimized 

DenseNet121 

DenseNet121 

Accuracy 98.5 96.8 

Precision 98.6 96.7 

Recall 98.4 96.7 

F-measure 98.5 96.7 



16 
International Journal of Technology v(i) pp-pp (YYYY)  

 

 

 

 499 
Figure 4 (a) Proposed model training and validation accuracy (b) 500 

 501 

7.4 Performance assessment of mPOA DenseNet121 model and original POA DenseNet121 model 502 

This section presents a comparative analysis of the optimized DenseNet121 using the modified 503 

parrot optimization algorithm (POA) and the original POA in the context of rice leaf disease 504 

classification. Both models were assessed based on their respective hyperparameter configurations 505 

and the classification efficacy, as outlined in Table 6. Notably, both approaches share similar learning 506 

factor of 0.0001. 507 

The DenseNet121 enhanced with mPOA showcases notable improvements in hyperparameter 508 

configurations compared to the version optimized by the original POA. For example, the mPOA uses 509 

a lesser batch size of 8, as opposed to 13 in the original model, signifying a more streamlined training 510 

procedure with less examples per repetition. Furthermore, the dropout factor is significantly lowered 511 

to 0.1 in the modified model, compared to 0.84 in the original, demonstrating improved 512 

regularization and a reduced risk of overfitting. Additionally, the size of neurons in the first dense 513 

layer is decrease to 120 in the mPOA model, down from 180 in the original model, reflecting a more 514 

compact and efficient feature representation. These refined hyperparameter configurations 515 

contribute to significant enhancements in the classification performance of the mPOA-optimized 516 

DenseNet121 model. Evaluation measures such as accuracy, precision, recall, and F-measure show 517 

notable improvements over those achieved by the original POA-optimized model. 518 

In summary, the findings underscore the effectiveness of the mPOA in optimizing DenseNet121 519 

for rice leaf disease classification, leading to superior performance outcomes. Fig. 5 provides a 520 

graphical comparison of the performance metrics for the mPOA enhanced DenseNet121, the original 521 

POA enhanced DenseNet121, and the standard DenseNet121, further illustrating the efficacy of the 522 

proposed approach. However, While the mPOA introduces additional computation during training, 523 

the final DenseNet121-based model remains efficient at inference time, suitable for deployment in 524 

constrained environments. The proposed model achieves a balance between accuracy and 525 

computational cost, with fewer parameters (7.98 million) parameters than VGG16 and faster 526 

inference (22 ms) than ResNet50, making it practical for real-world applications. 527 

Table 6 Comparison of classification results between mPOA optimized DenseNet121 and POA 528 

Measures MPOA optimized 

DenseNet121 

POA optimized 

DenseNet121 

Accuracy 98.5 97.2 

Precision 98.6 97.0 

Recall 98.4 97.2 

F-measure 98.5 97.1 
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 529 

Figure 5 Comparison of mPOA DensNet121 with POA-DenseNet121 and original DenseNet121 530 

7.5 Performance assessment of mPOA DenseNet121 model with other pre-trained models 531 

This section presents a comparative evaluation of the proposed mPOA-DenseNet121 model for 532 

rice leaf disease detection against several widely recognized pretrained deep learning models, 533 

including VGG19, EfficientNetB0, InceptionV3, DenseNet201, and ResNet50. These models were 534 

chosen regarding their proven performance in earlier research addressing disease detection 535 

challenges. The objective is to judge the robustness and efficacy of the presented approach by 536 

contrasting its performance with those of benchmark models. This analysis provides a 537 

comprehensive evaluation of the proposed model's capability in rice leaf disease detection relative 538 

to established methods in the field. Table 7 provides a detailed comparison of the mPOA-539 

DenseNet121 with the aforementioned pretrained deep learning models. The results reveal that the 540 

presented model surpasses all others across all evaluated metrics, showcasing its exceptional 541 

performance in accurately detecting rice leaf diseases. Notably, EfficientNetB0, InceptionV3, and 542 

ResNet50 emerge as the next best-performing models, achieving accuracies of 95.2%, 94.8%, and 543 

94.6%, respectively. However, these results are still outperformed by the proposed mPOA-544 

DenseNet121 model, underscoring its superiority. This significant improvement across all 545 

performance metrics highlights the capability of the mPOA-DenseNet121 model in achieving precise 546 

classification of rice leaf disease images. The graphical representation of this comparative analysis is 547 

illustrated in Fig. 6, further emphasizing the effectiveness of the presented method over existing 548 

methods. 549 

Although an exhaustive hyperparameter search could, in theory, yield marginal improvements, 550 

such approaches are computationally intensive and often impractical for real-world applications. The 551 

use of the modified POA in this study achieves a balance between performance and resource 552 

efficiency. We define a model as "good enough" when it consistently achieves over 98% in accuracy, 553 

precision, recall, and F-measure levels suitable for field deployment. The lower bounds of model 554 

usefulness emerge in scenarios involving poor image quality, occlusions, or mixed infections, which 555 

may impact classification accuracy. Meanwhile, the performance observed in this study reflects an 556 

upper bound based on the current dataset and optimization scope. 557 
 558 
Table 7 Comparison of classification results between mPOA enhance DenseNet121 with other 559 

pre-trained models 560 

Model Accuracy Precision Recall F-

measure 

ResNet50 94.6 94.7 94.6 94.6 

InceptionV3 94.8 94.8 94.8 94.8 

VGG19 84.9 84.7 84.7 84.7 

EfficientNetB0 95.2 95.1 95.1 95.1 

DenseNet212 90.2 90.2 90.2 90.2 

95.5 96 96.5 97 97.5 98 98.5 99

Modified POA optimized DenseNet121

Original POA optimized DenseNet121

DenseNet121

F-measure Recall Precision Accuracy
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mPOA 

DensNet121 

98.5 98.6 98.4 98.5 

 561 

 562 
Figure 6 Comparison of mPOA DensNet121 with other pre-trained models 563 

 564 

8 Conclusion and future work 565 

This work introduces a mPOA-DenseNet121 model tailored for rice leaf disease detection, 566 

leveraging developments in deep learning and optimization. The proposed model demonstrated 567 

outstanding performance in all the evaluation metrics considered in contrast to popular pre-trained 568 

models such as EfficientNetB0, DenseNet201, VGG19, InceptionV3, and ResNet50. This outstanding 569 

performance highlights the efficacy of the mPOA in optimizing critical hyperparameters to enhance 570 

the classification accuracy of DenseNet121. The findings underscore the potential of the proposed 571 

approach in addressing challenges associated with rice leaf disease detection, offering a reliable and 572 

accurate tool for agricultural diagnostics. Furthermore, the practical use of this model extends to the 573 

development of lightweight mobile or embedded devices that can assist farmers with disease 574 

detection and suggest targeted treatment strategies, such as fungicide application, irrigation 575 

changes, or crop rotation, thereby improving agricultural decision-making. 576 

Despite the high accuracy, one limitation is the potential decline in model performance when 577 

exposed to entirely different rice varieties or novel environmental conditions.  578 

Building on the current findings, several avenues for future research include, (1) evaluating the 579 

model's performance on diverse crop disease datasets to generalize its applicability across 580 

agricultural domains, (2) exploring hybrid optimization algorithms that combine POA with other 581 

metaheuristic approaches to further enhance model performance, (3) developing lightweight 582 

versions of the model suitable for deployment on edge devices with limited computational resources 583 

and (4) extending the framework to include disease severity estimation, providing farmers with 584 

actionable insights for targeted interventions. 585 
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	3. CNN and Transfer learning
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	3.1 DenseNet pre-trained models
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	Transfer learning with DenseNet involves fine-tuning a pre-trained model rather than training from scratch. Freezing early convolutional layers, which detect common low-level features such as edges, accelerates training and reduces overfitting especia...
	Figure 1 The main architecture of DenseNet-121 CNN architecture, as applied to the ImageNet data.
	The diagram includes the following components: D represents the dense blocks, 𝑇 denotes the
	transition layers, FC stands for the fully connected layers, DL refers to the dense layers, and C
	represents the initial convolution and pooling layers.
	4 Parrot Optimization Algorithm (POA)
	The POA by Lian et al. (2024) is a novel and effective metaheuristic algorithm inspired by the behavioural traits of domesticated Pyrrhura Molinae parrots, such as foraging, remaining stationary, vocalizing, and exhibiting caution towards unfamiliar e...
	4.1 POA Initialization stage
	The POA, as introduced by Lian et al. (2024), is an innovative population-based metaheuristic approach, where each parrot in the population symbolizes a potential solution to the optimization issue. The position of each Pyrrhura Molinae within the sea...
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	Where r signifies a number randomly produced in range of [0, 1] and ,𝑷-𝒊-𝟎. denotes the ,𝒊-𝒕𝒉. Pyrrhura Molinae position in the starting stage.
	4.2 POA hunting conduct
	In POA, during the hunting phase, the parrots assess the possible location of food by observing its surroundings or by referring to the position of the leader. Subsequently, they move toward the identified region. As a result, the variation in their p...
	,𝑷-𝒊-𝒄𝒖𝒓𝑰𝒕+𝟏.=,,𝑷-𝒊-𝒄𝒖𝒓𝑰𝒕.−,𝑷-𝒃𝒆𝒔𝒕..∗𝑳𝒗,𝑫.+𝒓,𝟎, 𝟏.∗ ,,𝟏−,𝒄𝒖𝒓𝑰𝒕-𝑴𝒂𝒙𝑰𝒕𝒆𝒓..-,𝟐𝒄𝒖𝒓𝑰𝒕-𝑴𝒂𝒙𝑰𝒕𝒆𝒓..∗,𝑷-𝒎𝒆𝒂𝒏-𝒄𝒖𝒓𝑰𝒕.     (2)
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	4.3 POA staying conduct
	The highly social Pyrrhura molinae primarily demonstrates a characteristic behavior of swiftly flying to a specific area on its owner’s body, where it stays motionless for a particular period. This behavior is mathematically represented by Equation 5.
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	𝒐𝒏𝒆𝒔(𝟏, 𝑫) signifies all-1 vector of D dimension, ,𝑷-𝒊-𝒄𝒖𝒓𝑰𝒕.+,𝑷-𝒃𝒆𝒔𝒕. represents the flight to the host, and the procedure of randomly halting at a portion of the host's body is defined by 𝒓,𝟎, 𝟏.∗ 𝒐𝒏𝒆𝒔(𝟏, 𝒅).
	4.4 PO communication conduct
	Parrots, belonging to the Pyrrhura Molinae family, are inherently social creatures that display a strong tendency for group communication. Their communication behavior includes both hovering to join the flock and interacting without flying. The POA as...
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	4.5 POA Fear of strangers’ conduct
	Parrots of the Pyrrhura Molinae species, like other birds, exhibit an instinctual fear of unfamiliar individuals. In response to this fear, they tend to seek safety by distancing themselves from strangers and finding refuge with their owners. In POA, ...
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	where 𝒓 ,𝟎, 𝟏.∗,𝐜𝐨𝐬-,𝟎.𝟓𝝅∗,𝒄𝒖𝒓𝑰𝒕-𝑴𝒂𝒙𝑰𝒕𝒆𝒓..∗.(,𝑷-𝒃𝒆𝒔𝒕.−,𝑷-𝒊-𝒄𝒖𝒓𝑰𝒕.) represents the procedure of reorienting to fly in the direction of the owner and ,𝐜𝐨𝐬-(.𝒓 ,𝟎, 𝟏.∗𝝅)∗,,,𝒄𝒖𝒓𝑰𝒕-𝑴𝒂𝒙𝑰𝒕𝒆𝒓..-,𝟐-𝑴𝒂𝒙𝑰�..
	In POA, the procedure will go on until the specified circumstances for termination are fulfilled. The pseudocode is indicated by Algorithm 1.
	5 Modified Parrot optimizer (mPOA)
	The following section presents an enhanced variant of the POA, referred to as the modified parrot optimization algorithm (mPOA), which seeks to improve the POA's local search capabilities and speed up the global search procedure in order to get over i...
	5.1 Issues with original POA
	The original Parrot Optimization Algorithm (POA), though effective, struggles with high-dimensional problems due to premature convergence and limited exploration. To overcome this, we propose a modified POA (mPOA) integrating opposition-based mutation...
	5.2 Opposition based mutation learning approach (OBL)
	OBL enhances convergence in metaheuristic algorithms by simultaneously exploring original and opposite solutions, increasing the chance of locating global optima. It is especially effective when initial solutions are suboptimal, accelerating convergen...
	Opposite values: In OBL, Equation 8 is used to determine the opposite of a real integer 𝒚 inside the interval [𝒍𝒘𝒃, 𝒖𝒑𝒃].
	,𝒚-𝑶.=𝒍𝒘𝒃+𝒖𝒑𝒃−𝒚                  (8)
	where 𝒍𝒘𝒃 and 𝒖𝒑𝒃 denote lower and upper bounds respectively
	Opposite vectors: If 𝒀=[,𝒚-𝟏., ,𝒚-𝟐., …,,𝒚-𝒏.] is a vector, where ,𝒚-𝟏., ,𝒚-𝟐., …,,𝒚-𝒏. ∈ 𝑹 and ,𝒚-𝒋.∈[,𝒍𝒘-𝒒., ,𝒖𝒑-𝒒.]. The opposite vector ,𝒀-𝑶.=[,𝒚-𝑶𝟏., ,𝒚-𝑶𝟐., …,,𝒚-𝑶𝒏.] is computed based on Equation 9.
	,𝒚-𝑶.=,𝒍𝒘𝒃-𝒒.+,𝒖𝒑𝒃-𝒒.−,𝒚-𝒒.                    (9)
	In OBL, the solution 𝒀 is substituted with its complementary counterpart ,𝒀-𝑶., determined by an activation function. If the fitness of 𝒀 represented as 𝒇(𝒀) is greater than that of ,𝒀-𝑶. denoted as ,𝒇(𝒀-𝑶.), 𝒀 is preserved; otherwise, Y i...
	,𝒚-𝒎𝑶𝑩𝑳.=,𝒍𝒘-𝒒.+,𝒖𝒑-𝒒.−𝜺×𝒓               (10)
	In this context, 𝒓 denotes a value within the range [0,1], and 𝜺 represents the mutation scale, a small constant that regulates the intensity of the mutation. Unlike Equation 9, the mutated opposite solution, as outlined in Equation 10, introduces a...
	5.3 Brownian motion
	The length of each phase in the Brownian motion method is governed by a normal gaussian distribution function, with a mean of zero (𝜇 = 0) and a variance of one (𝜎2 = 1). The function that describes this motion at a given point 𝑦 is specified in Eq...
	,𝑭-𝑩𝑹.,𝒚, 𝝁, 𝝈.=,𝟏-,𝟐𝝅,𝝈-𝟐...𝒆𝒙𝒑,−,,(𝒚−𝝁)-𝟐.-𝟐,𝝈-𝟐...=,𝟏-,𝟐𝝅..,𝐞𝐱𝐩-,−,,𝒚-𝟐.-𝟐...                                  (11)
	here, ,𝑭-𝑩𝑹.,𝒚, 𝝁, 𝝈. denotes the Brownian motion probability density function, the mean is represented by µ and the standard deviation by 𝝈.
	5.4 Initialization stage of modified POA
	Produce a starting population of potential solutions in the stated limits of the search space. Enhance the initial population by employing the mutated random (mROBL) strategy, which evaluates the fitness of each solution's opposite counterpart and upd...
	5.5 Fitness function
	The fitness function assesses how well a particular solution approximates the optimal solution for the given problem. The fitness value for each search agent is calculated using Equation 12.
	,𝑭𝒊𝒕-𝒊.=𝜶×,𝑬𝒓𝒓-𝒊.+𝜷×,,𝒅-𝒊.-𝑫.          (12)
	The 𝜶 is assign a value of 0.7 and 𝜷=𝟏−𝜶. The α parameter strikes an equilibrium between number of feature subsets 𝑭𝑺 (,𝒅-𝒊.) and the error rate (,𝑬𝒓𝒓)-𝒊. of classification.
	5.6 Modified POA fitness evaluation
	Each parrot fitness value is chosen using Eqn. (13)
	𝒊𝒇 𝒎𝑶𝑩,𝑳-𝒇𝒊𝒕.<,𝑭-𝒊. 𝒕𝒉𝒆𝒏 ,,𝒀,𝒊, :.=,𝒀-𝒎𝑶𝑩𝑳.-,𝑭-𝒊.=𝒎𝑶𝑩,𝑳-𝒇𝒊𝒕...                              (13)
	5.7 modified POA update phase
	It is essential to evaluate the solutions at each iteration in order to find the best candidates and improve the freshly created solutions for subsequent phases. After computing the fitness of each individual, their positions are updated by applying t...
	6 Proposed rice leaf disease detection model
	This part presents the methodology underlying the presented rice leaf disease detection model, designed to significantly enhance the performance of CNN architectures. The approach integrates the mPOA with DenseNet121 framework to optimize it performan...
	Figure 2 The structural diagram of the proposed rice disease detection model.
	6.1 Dataset acquisition
	The data utilized in this work was from the publicly accessible Kaggle cloud data repository (Tejaswini et al., 2022). It comprises a total of 1,600 images distributed across four distinct classes: Hispa, Brown Spot, Leaf Blast, and Healthy leaves. Th...
	Figure 3 The Data distribution
	6.2 Data Preprocessing
	Images of crop leaf diseases are often characterized by significant noise and low contrast, which can hinder accurate disease detection. Since the clarity and sharpness of these images are critical for effective diagnosis, improving image clarity by e...
	6.2.1 Noise reduction
	Digital imaging plays a crucial role in image processing, but noise from acquisition devices can hinder analysis, especially in rice disease classification. Reducing noise enhances signal quality and classification accuracy. Identifying noise sources ...
	,𝑿-(𝒂,𝒃).=𝒎𝒆𝒅𝒊𝒂𝒏(,𝒚-𝒊, 𝒋. :𝒊, 𝒋 ∈𝑵)        (14)
	where 𝑵 defines the surrounding neighborhood at location  (𝒂,𝒃).
	6.2.2 Image Normalization
	Normalization is a fundamental aspect of preprocessing, mostly in tasks involving image resizing and brightness normalization. These processes play a critical role in standardizing pixel values, which significantly contributes to enhancing model conve...
	,𝑰𝑪-𝑲.=,𝑰𝑪−,𝑰𝑪-𝒎𝒊𝒏..×,,𝑰𝑪-𝑲 𝒎𝒂𝒙.−,𝑰𝑪-𝑲 𝒎𝒊𝒏.-,,𝑰𝑪-𝒎𝒂𝒙.−𝑰𝑪-𝒎𝒊𝒏..+,𝑰𝑪-𝑲 𝒎𝒊𝒏.      (15)
	where 𝑰𝑪 is the input image limited to the range of ,𝑰𝑪-𝒎𝒂𝒙.  and ,𝑰𝑪-𝒎𝒊𝒏., and ,𝑰𝑪-𝑲. contains the new adjusted image, having its limits described by ,𝑰𝑪-𝑲 𝒎𝒂𝒙.  and ,𝑰𝑪-𝑲 𝒎𝒊𝒏.. The images in the dataset are scaled down to ...
	6.2.3 Contrast enrichment
	Contrast is vital for image quality, representing brightness variability. Low contrast compresses tonal range, causing blurriness. Enhancing contrast increases tonal variation and sharpness. The methodologies and algorithms discussed in this study lev...
	6.2.4 Dataset augmentation
	Data augmentation is crucial in deep learning for overcoming limited data and class imbalance, particularly in binary classification where underrepresented (minority) classes can critically impact model performance. In crop leaf disease detection, sca...
	6.3 Optimization of Hyper-parameters
	To identify the most suitable pre-trained CNN for rice leaf disease classification, several models were evaluated, including VGG16, DenseNet121, Xception, InceptionV3, and MobileNet, with DenseNet121 achieving the best performance. Consequently, Dense...
	6.4 Training Stage
	In this stage, DenseNet121 is applied to the rice leaf disease dataset using a blend of feature extraction and fine-tuning methods. Initially, the network serves as a feature extractor, keeping its convolutional layers frozen to prevent updates during...
	To mitigate the risk of overfitting during model training, several regularization techniques were employed. These include data augmentation (such as flipping, rotation, and scaling) as describe in table 2, dropout layers (with optimized rates determin...
	6.5 Testing and Evaluation
	Five evaluation measures are used in this stage: F-score, Accuracy, Sensitivity, Specificity, and Precision. The effectiveness of the suggested rice leaf disease classification model is evaluated using these metrics, which are frequently employed in c...
	Accuracy: shows the percentage of samples that have been appropriately identified (Hassan et al. 2022) and is calculated using Equation 16
	,𝒕𝒓𝑷+𝒕𝒓𝑵-𝒕𝒓𝑷+𝒕𝒓𝑵+𝒇𝒂𝑷+𝒇𝒂𝑵.                                                             (16)
	Recall: measures how well a model can find all relevant instances in a dataset and is calculated using Equation 17.
	,𝒕𝒓𝑷-𝒕𝒓𝑷+𝒇𝒂𝑵.              (17)
	Precision: measures the precision of positive classification and is determined using Equation 18
	,𝒕𝒓𝑷-𝒕𝒓𝑷+𝒇𝒂𝑷.              (18)
	F-score: F-score is a measure of test accuracy and is calculated by Equation 19.
	,𝟐×𝒓𝒆𝒄𝒂𝒍𝒍×𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏-𝒓𝒆𝒄𝒂𝒍𝒍+𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏.             (19)
	where trP donate number of true positive predictions, trN define true negative predictions, faP represent false positive predictions, and faN depict false negative predictions.
	7 Performance evaluation of rice disease detection model
	This segment provides an analysis of the results achieved using the proposed deep learning framework for disease detection rice leaf. The entire methodology was executed using the Kaggle notebook environment and implemented in Python, leveraging the T...
	7.1 Optimizing hyperparameters using the modified POA
	This section details the optimization ranges for various hyperparameters tuned using the mPOA algorithm. Table 3 outlines the parameter arrangements for integrating the DenseNe121 with the mPOA, emphasizing the critical important of each hyperparamete...
	7.2 DenseNet121 Training using Optimum Values
	Here, the enhanced DenseNet121 is trained using the optimal hyper-parameters determined using the mPOA, serving as a feature extractor for the augmented training dataset. The model’s effectiveness was subsequently assessed on the validation dataset ac...
	7.3 Assessing the efficacy of the presented model
	This section provides a comprehensive assessment of the presented model efficacy. To demonstrate the effectiveness of the mPOA in determining the optimum value of DenseNet121 hyperparameters for the model and achieving superior accuracy, its results a...
	Figure 4 (a) Proposed model training and validation accuracy (b)
	7.4 Performance assessment of mPOA DenseNet121 model and original POA DenseNet121 model
	This section presents a comparative analysis of the optimized DenseNet121 using the modified parrot optimization algorithm (POA) and the original POA in the context of rice leaf disease classification. Both models were assessed based on their respecti...
	The DenseNet121 enhanced with mPOA showcases notable improvements in hyperparameter configurations compared to the version optimized by the original POA. For example, the mPOA uses a lesser batch size of 8, as opposed to 13 in the original model, sign...
	In summary, the findings underscore the effectiveness of the mPOA in optimizing DenseNet121 for rice leaf disease classification, leading to superior performance outcomes. Fig. 5 provides a graphical comparison of the performance metrics for the mPOA ...
	Table 6 Comparison of classification results between mPOA optimized DenseNet121 and POA
	Figure 5 Comparison of mPOA DensNet121 with POA-DenseNet121 and original DenseNet121
	7.5 Performance assessment of mPOA DenseNet121 model with other pre-trained models
	This section presents a comparative evaluation of the proposed mPOA-DenseNet121 model for rice leaf disease detection against several widely recognized pretrained deep learning models, including VGG19, EfficientNetB0, InceptionV3, DenseNet201, and Res...
	Although an exhaustive hyperparameter search could, in theory, yield marginal improvements, such approaches are computationally intensive and often impractical for real-world applications. The use of the modified POA in this study achieves a balance b...
	Table 7 Comparison of classification results between mPOA enhance DenseNet121 with other pre-trained models
	Acknowledgement
	Author Contributions
	Ibrahim Hayatu Hassan: Concept, Design, Methodology, software Writing-original draft. Tanzila Saba: Concept, Review. Salma Idris Implementation, Review. Anees Ara: Design, Review, Funding sourcing. Salma Idris: Methodology, Review. Anees Ara: Concept,...
	Conflict of Interest
	References

