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Abstract.	Inaccurate	Owner	Estimate	Cost	(OEC)	calculations	often	lead	to	procurement	failures	in	
the	procurement	process,	which	can	affect	the	success	of	government	capital	expenditure	projects	
in	Indonesia.	As	the	OEC	becomes	a	critical	benchmark	for	assessing	the	fairness	of	bids,	and	errors	
in	 its	 calculation	 can	 cause	 financial	 mismanagement	 and	 regulatory	 issues,	 this	 study	 aims	 to	
improve	its	accuracy	by	developing	a	Machine	Learning	(ML)	model	using	Linear	Regression	(LR)	
algorithm	capable	of	predicting	 the	price	 fluctuations	 in	 the	procurement	of	government-owned	
building	projects.	Data	from	a	state-owned	building	construction	project	and	the	data	from	Analysis	
of	Work	Unit	Prices	for	2017-2020	were	analyzed	and	used	to	predict	2021	price	amandment	for	
various	construction	work	items	in	2021.	The	developed	ML	model	demonstrated	robust	accuracy,	
with	Root	Mean	Squared	Error	(RMSE)	values	ranging	from	0.012	to	0.037	and	Mean	Absolute	Error	
(MAE)	values	between	0.011	and	0.029	across	job	descriptions,	indicating	a	strong	fit.		Results	of	
this	study	highlight	the	superiority	of	the	developed	model	over	similar	studies	in	terms	of	precision	
and	interpretability,	offering	a	solution	to	enhancing	procurement	decision-making.	
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1.	 Introduction	

Capital	expenditure	is	one	of	the	most	important	categories	in	public	sector	institutions,	as	
it	 deals	 with	 acquiring	 fixed	 assets,	 such	 as	 land,	 buildings,	 buildings,	 and	 equipment	
(Sutopo	 &	 Siddi,	 2018).	 Therefore,	 capital	 expenditure	 procurement	 has	 been	 a	 key	
performance	indicator	and	a	driving	force	for	economic	growth,	especially	in	infrastructure	
and	development	projects.	Central	and	local	governments	both	focus	on	optimizing	their	
revenue	 generation	 to	 fund	 capital	 expenditures,	 which	 is	 necessary	 to	 develop	 basic	
infrastructure,	improve	public	services,	and	encourage	national	development	(Mukmin	et	
al.,	2020).	
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However,	the	realization	of	capital	expenditure	in	Indonesia	has	often	suffered	from	a	
high	 procurement	 failure	 rate,	 driven	 by	 some	 factors	 such	 as	 non-compliance	 with	
regulations,	 experience	 among	 estimators,	 pricing	 survey	 errors,	 inadequate	 banking	
support,	and	inaccuracies	from	Owner	Estimate	Cost	(OEC)	estimation	(Bosio	et	al.,	2023;	
Strang,	2021).	OEC	represent	the	prices	estimated	for	projects	or	services	that	incorporate	
all	cost	components	from	the	initial	design	until	the	project	is	ready	to	be	delivered	to	the	
user	 (Koo	et	al.,	2010).	 In	government	procurement,	 the	OEC	 includes	Value-Added	Tax	
(VAT)	once	the	technical	specifications	in	Terms	of	Reference	(TOR)	have	been	finalized.	
Inaccurate	OEC	estimations	can	create	significant	risks	within	 the	procurement	process,	
potentially	 leading	to	 financial	and	 legal	consequences.	OEC	preparation	should	 follow	a	
transparent	 and	 accountable	methodology	 to	mitigate	 these	 risks,	 using	 up-to-date	 and	
reliable	data.	A	comprehensive	market	analysis	before	selecting	suppliers	is	crucial	to	avoid	
procurement	failures	(Safa	et	al.,	2014).	

In	the	tendering	phase,	OEC	serves	as	a	benchmark	for	the	determination	of	reasonable	
prices	considering	market	conditions.	Setting	the	OEC	too	low	can	deter	competitive	bids,	
leading	to	project	delays	and	failures.	On	the	other	hand,	an	overestimated	OEC	can	result	
in	government	overspending,	which	could	attract	public	criticism	and	raise	concerns	about	
financial	mismanagement	(Astana	et	al.,	2023).	

Inaccurate	 OECs	 elevate	 the	 risk	 of	 disputes	 between	 contractors	 and	 clients.	
Moreover,	significant	gaps	between	the	OEC	and	the	final	bid	can	create	financial	instability	
for	contractors,	negatively	affecting	project	timelines	and	quality	(Mohamed	et	al.,	2011;	Oo	
et	al.,	2022).	Contract	changes	 in	construction	projects	often	occur	due	 to	 the	combined	
effects	of	factors	such	as	scope	adjustment,	scheduling	changes,	or	cost	revisions	(Khoso	et	
al.,	2019).	These	changes	are	referred	as	Addendums,	Contract	Change	Orders	(CCOs),	and	
Variation	Orders	(VOs).	Addendums	are	additions	to	the	original	contract	mutually	agreed	
upon	by	the	parties	to	address	inadequate	or	missing	requirements.	CCOs	are	revisions	in	
work	volume	or	project	timeline	without	altering	the	core	contract	clauses,	while	VOs	are	
the	changes	in	scope,	specifications,	costs,	and	regulations	(Mohammad	et	al.,	2017).	

Since	 procurement	 makes	 up	 a	 large	 portion	 of	 national	 capital	 expenditures,	
inaccurate	 OECs	 directly	 hinder	 infrastructure	 projects'	 timely	 completion	 and	 cost-
efficiency,	which	can	limit	government	performance	(Komakech,	2016).	The	gap	between	
the	winning	bid	and	the	OEC	is	a	significant	risk	factor	during	the	pre-tendering	phase,	as	it	
can	 lead	 to	project	 cancellations,	 scope	 reductions,	 or	 schedule	delays	 (Almohsen	et	 al.,	
2023).	Economic	volatility,	incorrect	pricing	surveys,	and	estimators’	low	experience	gaps	
can	further	complicate	these	gaps	(Liu	&	Zhu,	2023).	

Machine	 Learning	 (ML),	 a	 branch	 of	 Artificial	 Intelligence	 (AI),	 has	 the	 potential	 to	
enhance	the	accuracy	of	the	OEC	and	reduce	the	risks	linked	to	procurement	failures.	It	uses	
algorithms	 to	 analyze	 large	 datasets,	 uncover	 patterns,	 and	 produce	 more	 precise	
predictions	to	inform	decision-making	(Berawi	et	al.,	2019;	Ma’ruf	et	al.,	2024;	Sari	et	al.,	
2023).	 Cost	 estimation	 has	 the	 potential	 to	 be	 an	 alternative	 to	 conventional	 methods	
dependent	 on	 basic	 statistical	 analyses,	 and	 it	may	 fail	 to	 consider	market	 volatility	 or	
complex	cost	structures	(Budiono	et	al.,	2014;	Creedy	et	al.,	2010;	Hashemi	et	al.,	2020).	

The	 application	 of	ML	 in	 predicting	 the	 OEC	 during	 the	 construction	 projects’	 pre-
tender	phase	has	been	investigated	in	previous	studies.	For	example,	Li	et	al.	(2022)	aimed	
to	improve	OEC	accuracy	by	employing	a	feedforward	neural	network	(FFNN)	within	the	
framework	of	Friedman’s	model	that	can	forecast	the	lowest	submitted	bid	more	precisely.	
Similarly,	Almohsen	et	al.	(2022)	created	an	advanced	model	combining	Artificial	Neural	
Networks	 (ANN),	 Deep	 Neural	 Networks	 (DNN),	 and	 Time	 Series	 (TS)	 techniques	 to	
estimate	 the	 ratio	 of	 the	 lowest	 bid	 to	 the	 OEC	 in	 the	 pre-tender	 phase	 across	 various	
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contract	types	and	sizes.	Furthermore,	Alsugair	et	al.	(2023)	used	an	ANN	model	to	predict	
Final	Contract	Costs	(FCC)	based	on	the	initial	OEC,	using	Linear	Regression	(LR)	to	process	
data,	 a	 square	 root	 function	 for	 data	 transformation,	 as	well	 as	 Zavadskas	 and	Turskis’	
logarithmic	method	for	data	standardization.		
These	studies	demonstrate	the	promise	of	ML	for	improving	OEC	accuracy;	however,	they	
also	reveal	key	challenges.	Neural	network	(NN)-based	approaches	often	suffer	from	a	lack	
of	 transparency	 in	 their	decision-making	process,	making	 it	 difficult	 for	 stakeholders	 to	
interpret	cost	drivers	(Ribeiro	et	al.,	2016).	This	limitation	hinders	the	practical	adoption	
of	 such	 models,	 particularly	 in	 public-sector	 procurement	 frameworks	 where	
interpretability	 is	 crucial.	 This	 study	 addresses	 these	 challenges	 by	 employing	 a	 Linear	
Regression	(LR)-based	ML	model.	Unlike	NN,	LR	offers	transparency	that	helps	understand	
the	 relationships	 between	historical	 price	 adjustment	 as	 independent	 variables	 and	 the	
OEC	as	the	dependent	variable.		
	
2.	 Methods	
This	 study	 aimed	 to	 enhance	 the	 accuracy	 of	 OEC	 predictions	 in	 capital	 expenditure	
procurement	 through	 the	 development	 of	 an	 ML	 model.	 To	 achieve	 this	 objective,	 a	
systematic	 approach	 was	 adopted,	 combining	 theoretical	 insights	 with	 practical	
implementation.	 The	 theoretical	 foundation	 of	 the	 research	 is	 grounded	 in	 data-driven	
decision-making	theory	that	emphasizes	the	use	of	historical	data	and	statistical	modelling	
to	improve	predictive	accuracy	(Montgomery	et	al.,	2012).	To	operationalize	this	approach,	
the	Cross	Industry	Standard	Process	for	Data	Mining	(CRISP-DM)	framework	was	adopted.	
It	 encompasses	 six	 iterative	 phases:	 business	 understanding,	 data	 understanding,	 data	
preparation,	modeling,	evaluation,	and	deployment	(Mandolini	et	al.,	2024;	Schröer	et	al.,	
2021).	

In	the	business	understanding	phase,	the	study	identified	the	need	to	improve	the	OEC	
accuracy	 in	 capital	 expenditure	 project.	 Subsequently,	 during	 the	 data	 understanding	
phase,	procurement	contract	data	for	this	study	was	derived	from	a	state-owned	building	
construction	project,	referred	to	as	the	SM	project.	This	data	was	obtained	from	a	Jakarta-
based	 construction	 company	 and	 included	 historical	 records	 of	 amended	 items,	 price	
addendums,	work	volumes,	and	Work	Unit	Prices.		

The	historical	price	data	used	spans	the	period	from	2017	to	2020,	which	was	chosen	
for	 its	 completeness	 and	 alignment	 with	 the	 SM	 project’s	 initial	 contracts	 and	 price	
adjustments,	 further	 ensuring	 the	 consistent	 patterns	 for	 cost	 estimation.	 Economic	
disruptions	 from	 2020	 onwards,	 such	 as	 the	 COVID-19	 pandemic,	 were	 excluded	 to	
maintain	dataset	consistency.	Exploratory	Data	Analysis	(EDA)	was	conducted	to	verify	the	
absence	of	missing	values	and	to	examine	relationships	between	variables.	

In	 the	 data	 preparation	 phase,	 the	 data	 was	 processed	 and	 transformed	 into	 a	
structured	format	for	ML	modelling.		Work	Unit	Prices	were	categorized	into	independent	
(YEAR)	 and	 dependent	 (WORK	 ITEM	 PRICE)	 variables.	 For	 OEC	 calculation,	 the	 study	
utilized	information	on	amended	items	in	the	SM	project,	including	work	volumes	and	Work	
Unit	Prices,	 that	were	analyzed	using	coefficients	 from	the	Unit	Price	Analysis	and	Basic	
Unit	Prices	for	labor,	materials,	and	equipment	sourced	from	historical	data	published	in	
the	Journal	of	Unit	Prices	for	Building	Materials.	This	analysis	was	critical	to	understanding	
the	 standards,	 specifications,	 and	material	 costs	 associated	with	 tasks	 that	 experienced	
price	adjustments,	providing	a	detailed	basis	for	model	development.	

A	unit	price	analysis	model,	developed	in	accordance	with	the	Indonesian	Ministry	of	
Public	Works	 and	 Housing	 Regulation	 No.	 28,	 2016,	 was	 integrated	 into	 a	 database	 of	
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calculated	unit	prices	for	construction	works	experiencing	price	addendums.	This	database	
formed	the	basis	for	identifying	attributes	to	be	used	in	the	ML	model	development.	

Several	assumptions	were	made	to	ensure	the	reliability	of	the	model,	including	(1)	the	
representation	of	pricing	trends	reflects	cost	adjustment	factors	in	construction	projects;	
(2)	the	dataset	contained	no	missing	values	verified	through	exploratory	data	analysis,	and	
(3)	pricing	trends	were	linear	and	followed	consistent	patterns	over	the	years	analyzed.		
The	modelling	 phase	 involved	 developing	 an	 LR-based	ML,	 which	was	 implemented	 in	
Python-3	within	the	Jupyter	Notebook	environment.	The	LR	algorithm	was	selected	for	its	
ability	 to	 predict	 continuous	 variables	 based	 on	 historical	 data	 and	 its	 simplicity	 for	
interpreting	relationships	between	independent	and	dependent	variables.	The	model	was	
trained	using	an	80:20	split	of	the	dataset;	hence,	the	model	can	learn	from	existing	patterns	
while	testing	its	accuracy	on	unseen	data.	Predictions	for	the	year	2021	were	made	using	
the	trained	model,	analyzing	pricing	trends	across	various	work	items.		

In	the	evaluation	phase,	 the	model’s	accuracy	was	assessed	using	two	metrics:	Root	
Mean	Square	Error	(RMSE)	and	Mean	Absolute	Error	(MAE).	These	metrics	are	valuable	
because	 they	 indicate	 error	 in	 the	units	of	 the	 constituent	of	 interest,	which	aids	 in	 the	
analysis	 of	 results	 (Hodson,	 2022).	 RMSE	 is	 a	 widely	 recognized	 metric	 for	 evaluating	
regression	models	that	refers	to	the	square	root	of	the	average	of	the	squares	of	differences	
between	predicted	and	observed	values	over	the	total	number	of	data	points(Chicco	et	al.,	
2021;	Oke	et	al.,	2020).	Mathematically,	this	is	represented	with	this	formula:	

𝑅𝑀𝑆𝐸 = &∑ (𝑦! − 𝑦+!)"#
!$%

𝑛 	
(1)	

Where:	 	 	
𝑦! 	 =	observed	value	
𝑦+! 	 =	predicted	value	
𝑖	 =	index	of	the	data	in	the	database	
𝑛	 =	total	number	of	data	points	

MAE	is	determined	by	computing	the	absolute	errors	between	each	predicted	and	the	
actual	value,	then	finding	the	mean	by	evaluating	the	entire	dataset.	This	is	performed	by	
subtracting	the	mean	value	from	each	data	point,	summing	the	results,	then	dividing	by	the	
total	number	of	datasets.	The	formula	for	MAE	is:	

𝑀𝐴𝐸 =
1
𝑛1𝑥𝑖 − 𝑥	 (2)	

Where:	 	 	
𝑥𝑖	 =	the	actual	value	
𝑥	 =	the	predicted	value	
𝑛	 =	the	total	number	of	values	

RMSE	and	MAE	values	of	0	indicate	a	perfect	fit	(Moriasi	et	al.,	2007).	RMSE	and	MAE	
values	below	half	the	standard	deviation	of	the	measured	data	can	be	deemed	modest,	and	
either	metric	is	suitable	for	model	evaluation.	Moreover,	RMSE	emphasizes	larger	errors	
because	of	the	squaring	of	residuals,	whereas	MAE	offers	a	direct	average	error	metric.		

Though	this	study	did	not	include	full-scale	implementation	of	the	deployment	phase,	
a	structured	and	transparent	methodology	for	developing	and	validating	the	ML	model	can	
be	obtained	by	adopting	CRISP-DM	framework.	Figure	1	illustrates	the	research	workflow.	
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Figure	1.	Research	Workflow	within	CRISP-DM	framework	
	
3.	 Results	and	Discussion	

3.1.		Identifying	the	Variables	for	the	ML	Model	Development		
Data	from	the	procurement	contract	of	the	SM	project,	originally	established	in	2020,	

contained	works	whose	prices	were	adjusted	with	an	addendum	in	2021.	The	contract	data	
includes	both	the	original	values	of	OEC	and	the	price	revisions	that	were	later	affected	in	
one	place.	Table	1	summarizes	in	detail	the	adjustments	involved,	especially	in	architectural	
works.	Six	work	 items,	which	have	undergone	price	changes	 from	the	 initial	 contract	 in	
2020	to	the	2021	addendum,	were	selected	for	further	analysis.	This	analysis	is	required	to	
develop	the	ML	model	that	predicts	future	pricing	trends.	The	adjustments	were	necessary	
because	the	original	OEC	did	not	take	on	post-award	signing	price	increases.	

Table	1.	Initial	OEC	and	Price	Addendums	in	SM	Project	
No	 Work	Description		 2020’s	OEC	

(USD)	
Additional	Work		

(USD)	
2021’s	Amended	
Contract	(USD)	

A		 Architectural	Work	 	 	 	
I	 Preparation	Work	 7,697	 	 7,697	
II	 Demolition	Work	 	 	 	
	 A.	Main	Building	 21,704	 	 21,704	
	 B.	Supporting	Building	 2,007	 	 2,007	
	 C.	Exterior	Spaces	 4,238	 	 4,238	

III	 Brick	Wall	Masonry	Works	 	 	 	
	 A.	Main	Building	Ground	Floor	 15,020	 1,474	 16,218	
	 B.	Main	Building	Upper	Floor	 4,115	 	 4,115	
	 C.	Front	Supporting	Facilities	Building		 1,391	 	 1,391	
	 D.	Rear	Supporting	Facilities	Building	 1,548	 84	 1,640	
	 E.	Exterior	Spaces	 4,335		 	 4,335		
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No	 Work	Description		 2020’s	OEC	
(USD)	

Additional	Work		
(USD)	

2021’s	Amended	
Contract	(USD)	

IV	 Gypsum	Partition	Wall	Pairing	+	Hollow	Iron	Frame		 	 	
	 A.	Main	Building	Ground	Floor	 4,998	 264	 5,261	
	 B.	Main	Building	Upper	Floor	 2,390		 		 2,390	

V	 Floor	&	Wall	Finishing	Work	 	 	 	
	 A.	Main	Building	Ground	Floor	 28,772		 2,152		 29,310	
	 B.	Main	Building	Upper	Floor	 5,104		 	 5,104	
	 C.	Front	Supporting	Facilities	Building	 5		 	 4,863	
	 D.	Front	Exterior	Space	 11,140		 327		 11,343	
	 E.	Rear	&	Side	Space	 14,730		 511		 15,172	

The	items	included	in	the	sub-items	of	the	six	work	items	listed	in	Table	1	include	a	number	
that	 requires	detailed	 scrutiny.	Each	 sub-item	relates	 to	particular	 contracts	with	 third-
party	 contractors	 for	 construction	 procurement	 and	 contains	 confidential	 information	
regarding	pricing	and	contractual	terms.	To	accurately	calculate	the	OEC	for	each	sub-item,	
it's	crucial	to	have	data	on	the	work	volumes	and	unit	prices.	After	pinpointing	the	work	
items	that	experienced	price	adjustments	through	addendums,	16	Work	Unit	Price	items	
were	extracted	for	further	analysis	using	the	coefficients	from	the	Analysis	of	Work	Unit	
Prices	from	2017	to	2020.	These	datasets	were	run	10	times	for	each	Work	Unit	Price	item,	
resulting	 in	a	 total	of	64	data	points.	To	ensure	robustness,	 the	data	was	processed	640	
times	in	the	ML	model,	providing	sufficient	volume	and	variability	for	effective	ML	model	
training.	The	trend,	represented	in	Table	2,	creates	a	background	understanding	of	price	
changes	throughout	time	and	helps	predict	near-future	cost	trends	more	effectively.		

Table	2.	16	price-adjusted	work	items	and	the	Analysis	of	Work	Unit	Price	(2017-2020)	
No.	 Work	Type	 Code	 2017	

(USD)	
2018	
(USD)	

2019	
(USD)	

2020	
(USD)	

1	 Standard	Brick	Wall	Masonry	(1/2	Brick)	 WORK1	 9.88	 11.59	 11.55	 17.84	
2	 Standard	Plastering	+	Finishing	 WORK2	 6.15	 6.61	 7.08	 7.88	
3	 Door	&	Windowsills	 WORK3	 6.15	 6.40	 6.58	 7.04	
4	 Brick	Masonry	for	Foundation	Wall	 WORK4	 10.16	 11.98	 12.08	 18.42	
5	 Waterproof	Plastering	+	Finishing	 WORK5	 6.31	 6.83	 7.37	 8.21	
6	 Gypsum	Partition	Wall	Masonry		 WORK6	 4.64	 5.09	 5.22	 5.62	
7	 Hollow	Steel	Partition	Frame	 WORK7	 19.10	 19.98	 23.76	 21.81	
8	 Paving	Floor	 WORK8	 19.16	 19.65	 19.74	 21.55	
9	 Installation	&	Procurement	of	Walls	 WORK9	 12.27	 12.06	 12.37	 13.30	
10	 Backfill	/	Red	Soil	(Planting	Medium)	 WORK10	 5.60	 5.83	 5.94	 6.72	
11	 Granite	Floor	 WORK11	 36.47	 37.41	 39.96	 41.66	
12	 Installation	&	Supply	of	Curbstones	 WORK12	 12.60	 12.37	 12.74	 13.65	
13	 Granite	Tile	Polish	Floor	 WORK13	 43.78	 42.08	 44.22	 49.23	
14	 Rough	Motif	Ceramic	floor	 WORK14	 22.32	 24.41	 25.70	 37.33	
15	 Granite	Tile	Wall	 WORK15	 19.99	 21.04	 21.30	 26.68	
16	 Floor	Plint	 WORK16	 6.03	 5.63	 5.48	 5.72	

The	 Analysis	 of	Work	 Unit	 Prices	 for	 2017-2020	 was	 used	 to	 classify	 work	 items,	
summarized	in	Table	2.	This	classification	selected	the	YEAR	variable	as	the	input	variable	
(x).	 At	 the	 same	 time,	 the	 price	 of	 each	work	 item	was	 set	 as	 the	 dependent	 response	
variable	(y),	 labeled	from	WORK1	to	WORK16.	An	LR-based	ML	model	was	employed	to	
predict	future	price	trends	for	these	work	items.		
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3.2	Developing	ML	Model		
	 The	 ML	 model	 was	 developed	 using	 Python-3	 within	 the	 web-based	 Jupyter	

Notebook	application,	the	first	step	of	which	was	importing	several	libraries.	Pandas	was	
utilized	for	data	manipulation	and	structuring,	Matplotlib	was	used	for	visualization	and	
mathematical	functions,	and	Scikit-learn	was	used	to	implement	the	ML	model,	specifically	
the	LR	model	employed	in	this	study.	

Subsequently,	the	data	was	loaded	in	two	key	columns	that	serve	as	the	variables	in	the	
ML	 development	 process.	 The	 first	 column,	 labeled	 "YEAR,"	 was	 designated	 as	 the	
independent	variable	(x),	while	the	second	column,	"WORK,"	was	the	dependent	variable	
(y).	Once	 the	data	was	 loaded,	 the	 system	displayed	 the	data	 count,	 types,	 and	memory	
allocation	to	ensure	everything	was	correct	and	consistent	before	continuing	to	the	next	
step.	

After	that,	the	missing	values	was	checked.	There	were	no	missing	values	if	the	result	
was	zero	 (0),	meaning	 the	analysis	 could	continue	without	data	 imputation.	 It	was	 then	
followed	by	the	exploratory	data	analysis	(EDA),	which	started	with	a	bivariate	analysis	of	
the	 relationship	 between	 the	 YEAR	 and	WORK	 variables	 using	 a	 scatter	 plot.	 This	 plot	
helped	visualize	 the	 relationship	between	 these	 two	 factors	before	 proceeding	with	 the	
modelling	process.	The	correlation	was	also	calculated,	which	came	out	to	a	coefficient	of	
0.7,	indicating	a	strong	positive	relationship	between	YEAR	and	WORK.	This	means	that	as	
the	YEAR	variable	changed,	the	WORK	variable	significantly	affected	it.	

The	core	ML	modeling	process	began	after	all	those	steps	were	conducted.	It	included	
establishing	the	X	and	Y	variables,	splitting	the	data	into	training	and	testing	sets	using	an	
80:20	ratio,	and	applying	the	LR	algorithm	to	train	the	model.	During	this	phase,	the	model	
learned	 from	 the	 input	 data	 and	 identified	 the	 correct	 slope	 and	 coefficients	 to	 make	
accurate	predictions.	Finally,	the	model	was	run	through	several	iterations	to	fine-tune	and	
optimize	 the	prediction	 results.	This	process	ensured	 that	 the	model's	predictions	were	
reliable	 and	 could	 improve	 the	 accuracy	 of	 OEC	 estimation	 in	 building	 construction	
projects.	

3.3.		Evaluating	the	Accuracy	of	the	ML	Model	Predictions		
The	developed	ML	model	generated	the	optimal	prediction	results	through	a	repetitive	

process	using	variance,	where	it	used	slightly	different	training	and	testing	data	sets	each	
time	the	algorithm	ran	in	a	process.	Variance	refers	to	how	sensitive	an	algorithm	is	to	the	
specific	data	 it	uses	during	 training;	 it	 shows	 the	different	 results	when	 there	are	 small	
changes	in	the	data	and	how	the	model	is	trained	(Raste	et	al.,	2022).	

Several	ML	algorithms	that	are	not	deterministic	are	stochastic,	which	implies	that	the	
behaviour	 of	 the	 algorithm	 is	 influenced	 by	 randomness	 while	 it	 is	 being	 trained	
(Barmpalias	et	al.,	2017).	On	the	other	hand,	being	stochastic	does	not	necessarily	mean	
being	 completely	 random.	 Stochastic	ML	 algorithms	 still	 learn	 from	 the	 given	historical	
data,	but	small	decisions	made	during	the	learning	process	may	vary	randomly	from	one	
iteration	to	the	next.	As	a	result,	each	time	a	stochastic	ML	algorithm	is	run	on	the	same	
data,	the	model	produced	may	vary	slightly,	resulting	in	different	predictions	for	the	test	
data.	The	performance	of	such	stochastic	models	can	be	summarized	as	a	distribution	with	
an	 expected	mean	 error	 or	 accuracy	 and	 a	 standard	 deviation	 that	 reflects	 the	 level	 of	
randomness	in	the	prediction	results.	

The	final	prediction	results	provided	price	estimates	for	each	work	item,	allowing	for	
accurate	 analysis	 of	 future	 trends.	 The	 ML	 model	 predictions,	 after	 undergoing	 the	
processes	of	data	training,	data	testing,	and	averaging	the	distribution	of	the	predictions,	
are	presented	in	Table	3.	
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Table	3.	 Machine	Learning	Prediction	Results	with	Price	Estimates	from	2017–2021	
No	 Work	Description	 2017	

(USD)	
2018	
(USD)	

2019	
(USD)	

2020	
(USD)	

2021	
(USD)	

1	 Standard	Brick	Wall	Masonry	(1/2	Brick)	 9.88	 11.59	 11.55	 17.84	 19.29	
2	 Standard	Plastering	+	Finishing	 6.15	 6.61	 7.08	 7.88	 8.39	
3	 Door	&	Windowsills	 6.15	 6.40	 6.58	 7.04	 7.28	
4	 Brick	Masonry	for	Foundation	Wall	 10.16	 11.98	 12.08	 18.42	 19.99	
5	 Waterproof	Plastering	+	Finishing	 6.31	 6.83	 7.37	 8.21	 8.78	
6	 Gypsum	Partition	Wall	Masonry		 4.64	 5.09	 5.22	 5.62	 5.88	
7	 Hollow	Steel	Partition	Frame	 19.10	 19.98	 23.76	 21.81	 23.91	
8	 Paving	Floor	 19.16	 19.65	 19.74	 21.55	 22.02	
9	 Installation	&	Procurement	of	Walls	 12.27	 12.06	 12.37	 13.30	 13.46	
10	 Backfill	/	Red	Soil	(Planting	Medium)	 5.60	 5.83	 5.94	 6.72	 6.97	
11	 Granite	Floor	 36.47	 37.41	 39.96	 41.66	 43.40	
12	 Installation	&	Supply	of	Curbstones	 12.60	 12.37	 12.74	 13.65	 13.82	
13	 Granite	Tile	Polish	Floor	 43.78	 42.08	 44.22	 49.23	 50.00	
14	 Rough	Motif	Ceramic	floor	 22.32	 24.41	 25.70	 37.33	 39.02	
15	 Granite	Tile	Wall	 19.99	 21.04	 21.30	 26.68	 27.33	
16	 Floor	Plint	 6.03	 5.63	 5.48	 5.72	 5.52	

	 The	percentage	increase	in	OEC	prices	was	analyzed	by	multiplying	the	price	database	
and	the	predicted	price	results	by	the	building	volume	of	the	SM	project.	The	percentage	
increase	in	prices	between	2020	and	2021	was	then	calculated.	To	evaluate	and	compare	
the	accuracy	of	the	ML	predictions,	the	percentage	price	increase	was	determined	for	both	
the	predicted	data	and	the	actual	SM	project	data	for	each	sub-work	item	(see	Table	4).	

Table	4.	Comparison	of	OEC	Price	Increases	Between	Actual	and	Predicted	ML	Prices	
No	 Work	Description	 Initial	Contract	

(USD)	
Price	Addendum	

(USD)	
Price	

Increase	(%)	
III.A	 Brick	Wall	Masonry	Work	(Main	Building)	 15,020	 16,218	 7.98%		
III.D	 Brick	Wall	Masonry	Work	(Rear	Supporting	Building)	 1,548	 1,640	 5.89%		
IV.A	 Gypsum	Partition	Wall	Pairing	(Main	Building)	 4,998	 5,261	 5.28%		
V.A	 Floor	&	Wall	Finishing	(Main	Building)	 28,772	 29,310	 1.87%		
V.D	 Floor	&	Wall	Finishing	(Front	Exterior	Space)	 11,140	 11,343	 1.82%		
V.E	 Floor	&	Wall	Finishing	(Rear	&	Side	Space)	 14,730	 15,172	 3.00%		

	 Accurate	 cost	 estimation	 is	 critical	 for	 project	 success	 (Mokoena	 et	 al.,	 2023).	 The	
predicted	price	increases	from	2020	to	2021	were	compared	with	the	actual	price	increase	
data	 from	 the	SM	project	 to	evaluate	 the	accuracy	 improvement	of	OEC	calculations	 for	
capital	expenditure	procurement	implementation	using	the	ML	model.	The	result	of	RMSE	
and	MAE	evaluations	indicated	that	the	ML	predictions	achieved	a	high	level	of	accuracy	
and	a	good	fit	with	the	actual	data	(see	Table	5).		

Table	5.	RMSE	and	MAE	Results	compare	ML	prediction	accuracy	with	actual	project	data	
No.	 Job	Description	 RMSE	 MAE	

III.A	 Brick	Wall	Masonry	Work	(Main	Building)	 0.020	 0.015	
III.D	 Brick	Wall	Masonry	Work	(Rear	Supporting	Building)	 0.018	 0.016	
IV.A	 Gypsum	Partition	Wall	Pairing	(Main	Building)	 0.031	 0.025	
V.A	 Floor	&	Wall	Finishing	(Main	Building)	 0.037	 0.029	
V.D	 Floor	&	Wall	Finishing	(Front	Exterior	Space)	 0.014	 0.012	
V.E	 Floor	&	Wall	Finishing	(Rear	&	Side	Space)	 0.012	 0.011	
The	 findings	 of	 this	 study	 demonstrate	 that	 the	 developed	 ML	 model	 for	 OEC	 prediction	

achieved	robust	performance,	with	RMSE	values	between	0.012	and	0.037	and	MAE	values	ranging	
from	0.015	to	0.029	across	several	construction	job	descriptions.	In	contrast,	Zhang	et	al.	(2023)	
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utilized	a	 combination	of	extreme	gradient	boosting	 (XGBoost)	and	Bayesian	optimization	 (BO),	
achieving	RMSE	and	MAE	of	0.8690	and	0.4875,	respectively.	These	higher	error	metrics	are	likely	
due	to	their	focus	on	conceptual	cost	estimation	for	diverse	infrastructure	projects,	which	involved	
heterogeneous	 datasets	 with	 greater	 variability.	 The	 LR	 model	 developed	 in	 this	 study	
demonstrates	 higher	 precision	 by	 focusing	 on	 specific	 procurement	 datasets	 with	 consistent	
characteristics.	 Similarly,	 Sanni-Anibire	 et	 al.	 (2021)	 employed	 k-Nearest	 Neighbors	 (KNN)	 to	
model	cost	estimations	 for	tall	buildings,	reporting	an	RMSE	of	6.09.	The	 larger	error	metrics	 in	
their	study	can	be	attributed	to	the	broader	scope	of	tall	building	projects	and	the	variability	in	cost	
structures.	On	the	other	hand,	this	paper's	LR	model	benefits	from	a	more	specific	dataset.	

Furthermore,	the	methodological	selections	affect	the	variations.	This	study	has	used	LR	for	
simplicity	and	 interpretability,	other	studies	have	relied	on	more	complicated	algorithms.	While	
they	 may	 capture	 non-linear	 relationships	 more	 effectively,	 they	 often	 involve	 reduced	
interpretability	and	increased	computational	requirements.	
	
4.	 Conclusions	

Inaccurate	 OEC	 in	 the	 capital	 expenditure	 procurement	 process	 can	 cause	 project	
delays	and	financial	mismanagement.	This	study	investigated	the	usage	of	ML	to	enhance	
the	accuracy	of	OEC	estimates	by	developing	an	ML	model	with	the	LR	algorithm.	Though	
the	dataset	used	in	this	study	was	derived	from	a	specific	project,	the	integration	of	detailed	
price	 addendums	 and	 historical	 adjustments	 ensures	 that	 the	model	 captures	 key	 cost-
driving	trends	applicable	to	similar	procurement	scenarios.		The	findings	showed	that	the	
model	significantly	improved	OEC	estimation	accuracy,	as	evidenced	by	low	RMSE	values	
that	 indicate	a	 strong	 fit	between	predicted	and	actual	prices.	However,	 there	are	 some	
drawbacks	in	this	study,	one	being	its	reliance	on	data	from	2017	to	2020	data	that	restricts	
the	model’s	 relevance	 to	more	 recent	market	 trends	 and	 conditions.	 Therefore,	 further	
research	can	include	more	recent	data	and	explore	advanced	ML	techniques,	such	as	deep	
learning	 models,	 to	 enhance	 the	 precision	 of	 OEC	 predictions	 in	 capital	 expenditure	
procurement.	
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