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Abstract.  3D localization is one of important part for indoor drone navigation systesm. 3D 
localization using Ultra-wideband (UWB) can be applied to solve GPS-denied environment problem. 
However, UWB has some disadvantages related to distance accuracy measurement, measurement 
fluctuation, and position estimation in 3-dimensional space. UWB measurement accuracy is affected 
by antenna delay. Antenna delay must be first calibrated for each anchor before measurement is 
performed. Performing an automatic calibration for antenna delay can significantly increase the 
consistency and efficiency of measurement systems. Conventional localization methods like 
trilateration, triangulation, or multilateration are effectively proven in 2-dimensional localization. 
While performing 3-dimensional localization, this method produced significant error, especially in 
Z-Axis. A new approach based on Machine Learning Convolutional Neural Network (CNN) is 
expected to solve complexity and nonlinearity in data measurement that arises in conventional 
methods. Data fluctuation problems due to UWB measurement during the position estimation 
process create large estimation errors. To solve these problems, a motion threshold is implemented 
after position estimation. Position changes that are too significant beyond the maximum drone 
velocity limit can be eliminated. Based on the experiment result, implementation of AAC in ML-
based 3D localization with motion threshold significantly increases positioning accuracy up to 0.34 
m, lowers standard deviation up to 0.12 m, and eliminates outliers caused by data fluctuation with 
maximum 1.07 m. 

Keywords: Anchor auto-calibration; Indoor Drone; Machine Learning; Motion Threshold, Ultra-
Wideband; 3D Localization. 

 

1. Introduction 

The use of drone technology has seen significant growth in recent years, becoming a 
crucial tool in various industries such as warehousing (Ekici et al., 2023; Shen et al., 2021), 
indoor livestock management (Krul et al., 2021), medical (Maria Elena Nenni, 2020) and 
construction (McCabe et al., 2017). Indoor drones, in particular, offer distinct advantages 
over traditional robots, including the ability to access difficult-to-reach areas, enhanced 
mobility, and a broader field of view. For safe and efficient operation, accurate 3D 
localization is essential for indoor drones (El-Sheimy and Li, 2021; Sesyuk et al., 2022). 
Precise positioning enables drones to navigate complex environments, avoid obstacles, and 
achieve their objectives with a high degree of accuracy.
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3D localization on drones allows drones to determine their position in 3D space. Global 
Positioning System (GPS) is a commonly used localization method, but it is not effective for 
indoor localization (Macoir et al., 2019; Niculescu et al., 2023; Shi et al., 2020; Shule et al., 
2020; Yang et al., 2022). This is because the GPS signal is blocked by the building structure 
because GPS uses satellites to determine position, and this signal can be blocked by walls, 
ceilings, and other objects inside the building (Chang et al., 2023). In addition, GPS accuracy 
is generally around 1-3 meters, which is not enough for some indoor drone applications 
because it is considered less precise (Patrik et al., 2019). To overcome the weaknesses of 
indoor GPS, WiFi localization based on RSSI (Nina Hendrarini, 2022) or Ultra-Wideband 
(UWB) can be used. UWB offers a better solution for indoor drone 3D localization. UWB 
uses high-frequency signals with a wide band to measure the distance between the drone 
and the anchor point. Anchor points are stationary devices installed in indoor environments 
and transmit UWB signals. UWB has several advantages including high accuracy up to a few 
centimeters, and low latency (Dai et al., 2024; Nawaid Hasan, 2024). However, UWB itself 
also has several disadvantages, one of which is the problem of complexity. For the UWB 
localization system to work effectively, it is necessary to calibrate each anchor (Krapež and 
Munih, 2020), the anchor installation position (Gao et al., 2023), and the localization 
algorithm used (Chang et al., 2023; Joses S. Sorilla, 2024; Sandamini et al., 2023). 

Problems related to the accuracy of distance measurement must first be resolved. This 
problem is caused by the antenna delay (tant) which is the time required for a UWB device 
to process the received data and send it back to the previous data sender (Gui et al., 2018; 
Liu et al., 2024). Antenna delay is a challenge in UWB-based distance measurement so this 
challenge has been attempted to be resolved by several previous studies. Efforts to reduce 
distance measurement errors have been carried out using several methods, including the 
Hybrid Compensation Model (Liu et al., 2023). The Hybrid Compensation Model is carried 
out with tests based on temperature and distance measurements. This method is equipped 
with a Kalman filter and several optimization algorithms. The Hybrid Compensation Model 
is quite good for use in static conditions. Multiple Simultaneous Ranging (MSR) introduces 
a new calibration system that measures the antenna delay of the anchor node in a real-time 
UWB-based distance measurement system (Shah et al., 2022). After calibration, the anchor 
node measured by this system provides more accurate distance measurements in LOS 
conditions. The Two Estimator method uses an automatic and real-time approach to 
calibrate antenna delay on UWB devices (Liu et al., 2024). This approach uses two 
estimators, namely coarse and fine adjustment. The LSTM method is also used to improve 
the accuracy and frequency of distance measurements with UWB (Liu and Bao, 2023). The 
first technique combines a convolutional neural network (CNN), a long short-term memory 
(LSTM) module, and a regression module to process data from the sensor. The second 
technique combines two random forest models to improve the accuracy of the 
measurement results. 

Conventional localization methods such as trilateration, triangulation (Guo et al., 
2022), and multilateration (Djosic et al., 2022) in the localization system are quite effective 
in 2D space. Trilateration performs by measuring the distance between the object and a 
minimum of three reference sites, wherein the convergence of three spheres centred on 
these points establishes the object's location. Triangulation employs angular data between 
the object and reference points to ascertain its location, frequently utilised in camera and 
laser systems. Conversely, multilateration ascertains location using the time difference of 
arrival (TDOA) of signals from several reference sites, rather than direct distance, rendering 
it extensively utilised in navigation systems like radar and ultra-wideband (UWB). Several 
filter-based methods such as the Kalman Filter (Kim and Pyun, 2021), the Extended Kalman 
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Filter (Li et al., 2021; Tai Shie Teoh, 2023), to the unscented Kalman Filter (Fu et al., 2019; 
Kolakowski, 2020) have been applied to improve accuracy. However, when applied to 3D 
space, the accuracy will decrease drastically (Delamare et al., 2020). In general, 3D 
localization has a very high z-axis error due to the placement of anchors which are generally 
at almost the same height, causing a lack of vertical variation (Bao et al., 2024). This reduces 
the accuracy of height estimation. In addition, the reflection and multipath effects of UWB 
signals, especially in indoor environments, often cause inaccurate distance measurements 
in the z-axis. Another positioning technique developed is circle expansion to overcome the 
weakness of the absence of a circle intersection (Ibwe et al., 2023). To overcome the 
weaknesses of conventional methods, this paper proposes 3D localization using the CNN 
machine learning approach. Machine learning-based 3D localization can effectively handle 
complexity and non-linearity in measurement data (Gao et al., 2023; Nguyen et al., 2021, 
2020). Where these advantages cannot be achieved by simple geometric models such as 
trilateration, triangulation, and multilateration. 

Distance estimation from UWB sensors often fluctuates due to noise and 
environmental disturbances (Bregar, 2023), thus requiring data smoothing filters such as 
Moving Average (MA) or Kalman Filter (KF) (Borhan et al., 2023; Huang and Qian, 2023; Liu 
and Li, 2019). However, MA is less responsive to rapid changes, while Kalman Filter 
requires a complex model. The actual position change is limited by the maximum speed, so 
if the estimated position change exceeds the distance that the drone can travel in a certain 
time, it can be considered as noise. To overcome this data fluctuation, this paper applies a 
motion threshold algorithm to limit the position change based on a realistic maximum 
speed, thereby improving the stability and accuracy of position estimation. Based on 
several advantages explained above, the contributions made in this paper include proposed 
anchor auto calibration for compensating antenna delay effect during distance 
measurement. This method succeeded in decreasing the error measurement range for each 
UWB sensor under 5 cm. This improvement has a significant impact on the final position 
estimation. Proposed machine learning-based 3D localization using 1DCNN based on 
measurement data between tag-anchor and previous position. This approach has less error 
than conventional positioning like trilateration, and multilateration. Implementing motion 
threshold to prevent fluctuated position estimation. Machine learning, such as 1D-CNN, 
improves UWB localisation by eliminating signal errors and improving the accuracy of 
position estimations. Anchor Auto-Calibration (AAC) provides reliable calibration through 
constant input and changes. To maintain the system's effectiveness, the 1D-CNN is 
optimised for real-time application with minimal latency, and its integration with a Kalman 
Filter further improves accuracy without increasing complexity. 

 
2. Methods 
To obtain accurate 3D localization results, the distance measurement between the 

UWB tag and anchor needs to be improved first. This improvement is done by automatically 
calibrating the antenna delay on the UWB anchor. This procedure is called Anchor Auto 
Calibration (AAC). The distance measurement results are then entered into ML-based 3D 
localization using Convolutional Neural Network (CNN). For the last stage, a motion 
threshold has been implemented to eliminate fluctuating position estimation that is greater 
than the possible maximum drone velocity (0,2 m/s). The main proposed method of this 
paper is illustrated in Figure 1 below. 
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Figure. 1.  Proposed Method Block Diagram 
 
The raw data for determining the distance between anchors is referred to as radnm. The 

raw data is further calibrated using Anchor Auto Calibration (AAC) to generate calibrated 
anchor data (adt). The adt value is used as a calibration constant in Tag to Anchor 
Calibration. This aims to convert the raw data from measuring the distance between tags 
and anchors (rtdn) into calibrated data (dn). Then, dn is input into CNN 3D Localisation to 
ascertain Position (P). The estimated location P may still provide outliers; therefore, a 
Motion Threshold is implemented to achieve a more refined position estimate (P’). 

 
2.1.  Basic Ultra-Wideband Based 3D Localization 
The issue of inaccurate 3D localization arises in situations where the GPS signal is weak 

or lost, particularly during indoor drone flights. This challenge can be effectively solved 
through UWB-based 3D Localization. This technique starts by measuring the relative 
distance between the UWB tag and the UWB anchor. A minimum of 3 UWB anchors is 
required to estimate a 2D position, while for a 3D position estimation, a minimum of 4 UWB 
anchors is essential. Position estimation can be calculated by trilateration based on the 
relative distance of the UWB tag with several UWB anchors. Basic indoor UWB-based 3D 
localization in this paper is illustrated in Figure 2. 
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Figure. 2.  Basic UWB 3D Localization for indoor drone (a) isometric view, (b) top view 

 
The UWB module used in the test is the DW1000. The DW1000 is an Ultra-Wideband 

(UWB) transceiver developed by Decawave Ltd., a company based in Dublin, Ireland. The 
module has been equipped with an ESP32 microcontroller so that it can perform data 
acquisition and communication via wifi without additional devices. This module works at a 
frequency of 3774 MHz to 4243.2 MHz. This module is capable of measuring distances up 
to 100 meters and can be increased to more than 200 meters with additional antennas and 
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lower working frequencies. However, in this study, no additional antennas were used 
considering that the room used only has a maximum length dimension of 20m. 

  

Figure. 3. Two-Way Ranging UWB Distance Measurement 

 
To perform distance measurements, data acquisition is carried out using the Two Way 

Ranging (TWR) method. This method is quite good at eliminating errors caused by 
unsynchronization between modules. To run TWR, two UWB modules are needed, each of 
which functions as a tag and an anchor. A tag is a UWB device that is attached to a moving 
object as well as a position measurement point, while an anchor is a UWB device that is 
used as a reference point and is positioned statically. The measurement process begins with 
the tag sending data to the anchor and starting to calculate the time (t1). The time it takes 
for the data to reach the anchor is usually called the time of flight (tOF). After the data is 
received by the anchor, the anchor immediately sends data and an ACK signal to the tag. 
The time it takes for the anchor to process the data until the signal is transmitted is called 
the time process. In the UWB DW1000, this time is called the Antenna delay (tant). 
Furthermore, the time it takes for the signal to propagate from the anchor to the tag is tOF. 
The final stage of this process is carried out by the tag sending ACK2 to the anchor. This 
process requires data processing time of tant and tOF. TWR is illustrated in Figure 3. 

       

𝑡1 + 𝑡𝑎𝑛𝑡 = 𝑡𝑎𝑛𝑡 + 𝑡2        (1) 

𝑡1𝑡𝑎𝑛𝑡 − 𝑡𝑎𝑛𝑡𝑡2 = 2𝑇𝑂𝐹(𝑡2 + 𝑡𝑎𝑛𝑡)      (2) 

𝑡𝑂𝐹 =
𝑡1𝑡𝑎𝑛𝑡−𝑡𝑎𝑛𝑡𝑡2

𝑡1+𝑡2+2𝑡𝑎𝑛𝑡
        (3) 

 
The process of converting tOF into distance estimation is done by multiplying tOF with 

electromagnetic wave velocity (c) of 3x108 m/s. tOF is calculated based on (3), where the 
values of t1 to t2 are calculated using (1) and (2). However, a common problem is the 
inaccuracy of time calculation, especially the processing time or antenna delay on the 
DW1000. The DW1000 antenna delay may be fine-tuned to give the best possible range or 
location. Antenna delay will affect the calculation process of time t1 and t2 so that the error 
that appears due to antenna delay is formulated with (4). This paper has the main objective 
to improve the accuracy of antenna delay values automatically. The accuracy of tant values 
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is determined by the automatic calibration process based on equation (5) where d is the 
tag-anchor actuation distance, and c is the electromagnetic wave velocity. 

 

𝑡𝑎𝑛𝑡 =
𝑡1+𝑡2−4𝑡𝑂𝐹

2
        (4) 

𝑡𝑎𝑛𝑡 =
𝑡1+𝑡2−(

4𝑑

𝑐
)

2
        (5) 

 
Multilateration is the most widely used method for 3D localization using UWB. The 

distance between the drone and the UWB anchor is denoted by (rtdn). The rtdn value is 
obtained from the square root of the sum of the differences in the drone's position on each 
axis (6). To implement 3D localization, a minimum of 4 anchors are required. 
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Position estimation (P) based on the distance between the tag and anchor can be done 

using the following equation (7). 

𝑷 = [

𝑃𝑥

𝑃𝑦

𝑃𝑧

] = (𝐴𝑇. 𝐴)−1𝐴𝑇. 𝐵       (7) 

 
Where the values A and B are described in (8) and (9) respectively. 
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  (9) 

 

In this paper, the multilateration method as a conventional 3D positioning will be 
compared in performance with Machine Learning Based 3D Localization created using 
Convolutional Neural Network (CNN). So to get the P value, it is done by entering the rtdn 
value into the CNN feed forward network. 

 

2.2.  Anchor to anchor distance measurement 
Accurate distance measurement is the most important part so the accuracy of this 

measurement needs to be considered first. Distance measurement using UWB requires two 
UWB devices, each activated as a tag and anchor. Each device must be given a different 
address to avoid conflict. However, UWB devices cannot be activated as tags and anchors 
simultaneously at one time. So, a scheduling mechanism is needed to activate an anchor 
into a tag in a certain duration and time interval. In this paper, round-robin scheduling is 
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proposed. This technique has the advantages of being simple, easy to implement, and 
starvation-free. The scheduling mechanism used is shown in Figure 4. This process begins 
by setting UWB A to be a tag, while the other three UWBs become anchors. This 
configuration is updated every 5 seconds and begins with an initialization process for 2 
seconds for UWBs that experience a function transition. 
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Figure. 4. Round-robin scheduling for anchor-to-anchor distance measurement 
 

2.3.  Anchor auto-calibration algorithm 
The Anchor Auto-Calibration (AAC) algorithm is an algorithm that improves the 

accuracy of distance measurements between anchors in a positioning system that utilizes 
anchors and tags. AAC begins with measuring the distance between anchors through a 
round-robin scheduling mechanism, where each anchor takes turns measuring the distance 
to each other. At this stage, the initial antenna delay (tant) value of 16580 is used as the initial 
parameter. After all measurements are completed, the distance values obtained are 
averaged to produce an estimate of the average distance between anchors. Furthermore, 
the calibration coefficient is calculated by dividing the actual physical distance between 
anchors by the average value of the measurement distance. This coefficient functions as a 
multiplier in the calculation of the new antenna delay, where the initial antenna delay value 
is multiplied by the calibration coefficient. The updated antenna delay value is then 
implemented in the system to be used in subsequent distance measurements between tags 
and anchors. By updating the antenna delay value based on this calibration, the system can 
perform more accurate and consistent distance measurements, by actual physical 
conditions. The AAC process is explained in Algorithm in Table 1 below. 
 
Table 1 Anchor Auto Calibration Algorithm 

Step Algorithm 

1: pd= physical distance, md=measurement distance 
2: for anchor=1 to 4 
3:      for i=1 to n UWB  
4:           for t=1 to 3 
5:                md[t]=anchor to anchor distance 
6:           coeff = average pd / average md 
7:           new antenna delay = last antenna delay * coeff 
8:      anchor antenna delay update 
9: end 

 

2.4.  Machine Learning Based 3D Localization 
The use of trilateration and multilateration in localization is quite effective in 2D space. 

However, when applied to 3D space, the localization accuracy will decrease drastically. This 
is because the error on the z-axis is very high. In this paper, 3D localization is proposed 
using the CNN machine learning approach. This CNN is created by modeling all possible 
drone positions in its workspace. At each possible position, the ideal distance between the 
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tag and anchor will be determined using trigonometry. These values are used as input for 
the CNN network created. Based on this modeling, the distance between the tag and anchor 
must be calculated for each possible position in the workspace. Assuming the UWB 
DW1000 has a default error of 10 cm, then the possible positions calculated are 10 cm 
intervals in the entire workspace. Each measurement distance and possible position are 
used as input and target in the dataset. Figure 5 is the CNN architecture used in this paper. 

 
Figure. 5.  CNN architecture for 3D Localization 
 

2.5.  Motion Threshold 
Rapid changes in the distance reading between the tag and the anchor can cause a 

decrease in the accuracy of the drone's position estimation. This decreased accuracy often 
results in significant errors in the drone's positioning. Given the speed limitations of the 
drone, such large changes in position in a short period should be unlikely. Therefore, when 
a change that appears too large occurs, it can be considered an anomaly or estimation error. 
By eliminating these excessive changes, the accuracy of the position estimation can be 
improved and unnecessary errors can be minimized. This error elimination process is 
called motion threshold with the following algorithm in table 2. 

 
Table 2 Motion Threshold Algorithm 

Step Algorithm 

1: P= Position Estimation 
2: vth=motion threshold (0.2 m/s) 
3: v=√(𝑃𝑛(𝑥) − 𝑃𝑛−1(𝑥))2 + (𝑃𝑛(𝑦) − 𝑃𝑛−1(𝑦))2 + (𝑃𝑛(𝑧) − 𝑃𝑛−1(𝑧))

2/dt 

4: if v>vth: 
5:      Pn=Pn-1 
6: else: 
7:      Pn=Pn 

 

2.6.  Evaluation Metrics and Benchmark 
 In the evaluation of position methods, techniques and filters such as moving average 
and polynomial regression are used to improve measurement accuracy by reducing noise 
in the data, where moving average smoothes out fluctuations and polynomial regression 
captures more complex data patterns. Multiple Simultaneous Ranging (MSR) improves 
simultaneous distance measurement by utilizing multiple sequence signals to improve 
accuracy by combining data from multiple sources, which helps identify and correct errors. 
Temperature Compensation (TC) includes temperature variables as compensation in 
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distance measurement, ensuring accuracy is maintained despite changes in ambient 
temperature. In conducting distance measurements, the observed metric is the distance 
error value (de) in meters. The distance error (10) is obtained from the difference between 
the actual distance (da) and the measured distance (dm). For position estimation 
measurements, the observed metrics are the Average Absolute Translation Error (ATE) 
value and its standard deviation. ATE is obtained from the root of the squared position 
difference on each axis. The smaller the ATE value, both the average and the standard 
deviation, the better the position estimation system. The ATE value is calculated using (11). 
 

𝑑𝑒 = 𝑑𝑎 − 𝑑𝑚        (10) 

𝐴𝑇𝐸 = √(𝑥𝑒𝑠𝑡 − 𝑥𝑎𝑐𝑡)
2 + (𝑦𝑒𝑠𝑡 − 𝑦𝑎𝑐𝑡)

2 + (𝑧𝑒𝑠𝑡 − 𝑧𝑎𝑐𝑡)
2  (11) 

 
 Where de is the distance error, da is the actual distance, dm is the measured distance, 
xest is the estimated position on the x-axis, xact is the actual position on the x-axis, yest is 
the estimated position on the y-axis, yact is the actual position on the y-axis, zest is the 
estimated position on the z-axis, zact is the actual position on the z-axis. 
 
3. Results and Discussion 

3.1.  Distance Measurement Result 
 Accuracy of distance measurement is one of the main factors in UWB-based position 
estimation. So, in this paper, the performance of the UWB-based measurement system is 
first tested using the Anchor Auto Calibration (AAC) algorithm. The AAC algorithm is the 
proposed method in this paper. This test was also carried out by comparing the proposed 
method with several conventional algorithms such as moving average (MA), polynomial 
regression (PR), and comparing it with previous research algorithms, namely Long Short-
Term Memory (LSTM)-based (Liu and Bao, 2023), Multiple Simultaneous Ranging (MSR) 
(Shah et al., 2022) and Temperature Compensation (TC) (Liu et al., 2023).  
 

Table 3 Distance error measurement comparison with other methods 

Distance 
(m)  

Distance Error (m) 

MA PR LSTM** TC** MSR** AAC * 

1 0.315 0.017 0.002 0.217 0.010 0.008 
2 0.245 0.047 0.005 0.152 0.006 0.004 
3 0.290 0.043 0.015 0.192 0.140 0.058 
4 0.211 0.034 0.016 0.113 0.009 0.004 
5 0.142 0.073 0.068 0.091 0.010 0.005 
6 0.214 0.059 0.038 0.129 0.010 0.009 
7 0.183 0.025 0.011 0.085 0.007 0.007 
8 0.156 0.067 0.035 0.076 0.006 0.004 
9 0.149 0.063 0.027 0.064 0.007 0.006 

10 0.156 0.128 0.056 0.125 0.003 0.006 
Average 0.206 0.056 0.027 0.124 0.021 0.011 
Std Dev 0.061 0.031 0.022 0.050 0.042 0.017 

Min 0.142 0.017 0.002 0.064 0.003 0.004 
Max 0.315 0.128 0.068 0.217 0.140 0.058 

* Proposed method 
** Benchmark method 
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 Testing is done by measuring the distance between the tag and each anchor used. The 
measurement results between the tag and anchor at each measurement distance are 
searched for the average value. The distances measured range from 1 m to 10 m with an 
interval of 1 m. Based on the test in Table 1, the proposed method produces the smallest 
average error value of 0.011 m, smaller than LSTM, TC, and MSR which are each worth 0.027 
m, 0.124 m, and 0.021. The proposed method also provides the smallest standard deviation 
value so that it can be claimed that the proposed method has good precision. The proposed 
method is the method proposed in this paper, while the benchmark method is a 
comparative method that has been carried out by previous research. 
 

3.2.  3D Localization Result 

3.2.1. Trained data 
 Before conducting experiments on 3D localization based on machine learning, the 
machine learning model to be used is first prepared. The model is first trained using the 
prepared dataset. The model is trained until the smallest validation loss is obtained. In all 
experiments in this paper, up to 10 trainings were carried out. However, the data presented 
in this paper is only the model with the best training results. Historical training 
performance is shown in Figure 6. With a validation loss of 0.014, it is expected that the 3D 
localization results produced will also have good accuracy. In this training process, the 
variables observed are training loss and validation loss. Training loss measures how 
accurately a model learns from the dataset it was trained on, whereas validation loss 
evaluates the model's performance on an independent dataset that was not used during 
training. In figure 6, train loss is larger than validation loss because the data used is more 
diverse and complex.  

 

Figure. 6.  Best Training Performance 

 

3.2.2. Static Positioning 
 Static positioning testing is done by placing the UWB tag in a static position and a fixed 
coordinate. The limitation set in this experiment is that the UWB tag position is always 
within the square area between the four UWB anchors. This experiment was conducted by 
applying the AAC distance measurement method and several benchmarks including TC, 
MSR, and LSTM. The Basic Trilateration method shows varying performance depending on 
the distance measurement method used. AAC and MSR provide lower average errors, with 
values of 0.71 m and 0.81 m, respectively. However, when the TC and LSTM methods are 
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used, the average error increases to around 1.35 m, with high stability, as indicated by the 
relatively low standard deviation. This indicates that Basic Trilateration performs better 
when combined with AAC and MSR compared to TC and LSTM. 
 Furthermore, Trilateration with the Expand Circle method shows slightly better results 
than Basic Trilateration, especially when combined with AAC and MSR. The average error 
for both methods is at the same number, which is 0.95 m. However, this combination still 
shows an increase in error compared to the Multilateration method, indicating that the 
development of the Trilateration method with this circle expansion is not yet effective 
enough to reduce errors significantly. 
 Multilateration gives the most promising results, especially when combined with AAC 
and MSR, with average errors of 0.38 m and 0.42 m, respectively. The relatively low 
standard deviation indicates that this method is not only more accurate but also more 
consistent in producing precise measurements. Even when using TC and LSTM methods, 
which generally show larger errors, Multilateration is still able to maintain a better level of 
accuracy than other localization methods. The ML-based method shows competitive 
results, especially when used with AAC and MSR, with average errors of 0.39 m and 0.54 m, 
respectively. However, the very high maximum values indicate significant outliers, which 
have the potential to reduce the overall stability of this method. So the potential for outliers 
caused by data fluctuations needs to be minimized using the motion threshold algorithm. 
 The Basic Trilateration method shows varying performance depending on the distance 
measurement method used. AAC and MSR provide lower average errors, with values of 0.71 
m and 0.81 m, respectively. However, when the TC and LSTM methods are used, the average 
error increases to around 1.35 m, with high stability, as indicated by the relatively low 
standard deviation. This indicates that Basic Trilateration performs better when combined 
with AAC and MSR compared to TC and LSTM. 
 Furthermore, Trilateration with the Expand Circle method shows slightly better results 
than Basic Trilateration, especially when combined with AAC and MSR. The average error 
for both methods is at the same number, which is 0.95 m. However, this combination still 
shows an increase in error compared to the Multilateration method, indicating that the 
development of the Trilateration method with this circle expansion is not yet effective 
enough to reduce errors significantly. 
 Multilateration gives the most promising results, especially when combined with AAC 
and MSR, with average errors of 0.38 m and 0.42 m, respectively. The relatively low 
standard deviation indicates that this method is not only more accurate but also more 
consistent in producing precise measurements. Even when using TC and LSTM methods, 
which generally show larger errors, Multilateration is still able to maintain a better level of 
accuracy than other localization methods. The ML-based method shows competitive 
results, especially when used with AAC and MSR, with average errors of 0.39 m and 0.54 m, 
respectively. However, the very high maximum values indicate significant outliers, which 
have the potential to reduce the overall stability of this method. So the potential for outliers 
caused by data fluctuations needs to be minimized using the motion threshold algorithm. 
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Figure. 7.  3D Localization Comparison (a) Basic Trilateration, (b) Expand circle 
Trilateration, (c) Multilateration, (d) Proposed Machine Learning-based 3D Localization 
 

3.2.3. Motion Threshold Implementation 
 The application of motion threshold in the context of Machine Learning-based 3D 
Localization shows a significant impact on the performance of different measurement 
methods. Data analysis reveals that the application of motion threshold substantially 
improves the accuracy of the AAC and MSR methods. In this case, the motion threshold 
successfully reduces the average error, decreases the standard deviation, and limits the 
maximum error value, which overall contributes to improving the measurement quality. 
This confirms that motion threshold is effective in filtering noise and improving the 
consistency and accuracy of the AAC and MSR methods. As seen in Figure 9, outliers that 
appear when applying a motion threshold can be minimized. Outliers are indicated by black 
circles. The addition of motion threshold successfully reduces the number of outliers. 
Absolute translate error is indicated by the red line. 
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Figure. 8.  Motion Threshold Implementation Result 
 

4. Conclusions 

This study successfully demonstrated that the measurement of distance between UWB 
devices using the Auto Anchor Calibration method is able to achieve a very high level of 
accuracy, with a measured error below 2 cm and a standard deviation of 1.7 cm. 
Furthermore, the application of the Machine Learning based 3D Localization method has 
been proven effective in reducing the absolute translation error, which is significantly 
lower than conventional methods such as trilateration and multilateration. The application 
of motion threshold in the filtering process of 3D Localization results based on machine 
learning also shows superior ability in eliminating unrealistic position estimates, especially 
estimates that exceed the maximum potential speed of the drone. Overall, these results 
indicate that the proposed approach not only improves the accuracy but also the reliability 
of the drone navigation system, making it a more optimal solution compared to previous 
methods. 
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