
Mental Workload: A Review of the Definition and Measurement 
 
Abstract. The assessment of mental workload (MWL) is pivotal for understanding human 
performance limitations, optimizing task design, and enhancing overall system efficiency and safety 
across various domains, including aviation, healthcare, and technology interfaces. However, 
reaching agreement on its definition, whether in technical or philosophical terms, is highly 
challenging. This paper aims to critically examine the theories of MWL and offer a conceptual and 
operational definition for future researcher in the field. This paper also provides a review of the 
MWL measurement by exploring the progress made in measuring MWL, including the development 
of novel techniques. We searched literatures from scientific database covering the topic of limited 
and multiple resource theories, along with the measurement of MWL, covering the topics of 
performance, psychophysiological, and subjective techniques. A narrative review was applied to 
appraise the literature, particularly using theoretical integrative reviews (TIR) approach. Based on 
our review, MWL definition consists of four elements: cognitive processing, task demand, 
performance and physiological changes, and subjective experience. Furthermore, our review 
provides a framework for measuring mental workload that encompasses the interplay between 
performance and psychological changes, demands, and subjective measures. Several theoretical and 
practical issues regarding the measurement approach are also discussed. 
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1. Introduction 

Mental workload (MWL) has been a concern in many modern work environments as 
automated jobs has replaced physical demand with mental demand (Young et al., 2015). It 
has a significant contribution to mental fatigue by increased workload (Nealley and 
Gawron, 2015) or prolonged time-on-task (Zhang et al., 2017). Furthermore, the relation 
between MWL and fatigue is complex, where these two constructs can influence each other 
in a feedback loop. Increased mental workload can lead to increased mental fatigue (Fallahi 
et al., 2016b), while increased fatigue can affect MWL (Fan and Smith, 2020). The most 
notable consequence of suboptimal workload and fatigue is performance and safety 
deterioration (Jalali et al., 2023). When such performance is not maintained at an 
acceptable level, it poses a risk, particularly to individuals employed in safety-critical 
positions. The primary objective of measuring MWL is therefore to quantify the mental cost 
associated with task completion in order to anticipate the responses of operators and 
systems (Longo et al., 2022). 

However, the idea of MWL is often criticized due to its inherent complexity and 
subjective nature. Critics argue that establishing a universal definition of MWL is difficult 
due to its complex nature, which includes cognitive, emotional, and physiological elements 
(Young et al., 2015). In numerous studies, MWL is frequently defined in operational terms 
as the cognitive demands or effort encountered during tasks (Mohammadian et al., 2022; 
Piranveyseh et al., 2022; Safari et al., 2024, 2024), with additional variables of interest such 
as emotional/psychological aspect (López-López et al., 2018; Piranveyseh et al., 2022) or 
individual factors (Nino et al., 2023; Van Acker et al., 2018). This diversity in definitions 
arises from varied research objectives, and it has consequences on the way the concept is 
measured. Due to its subjective nature of cognitive demands, most of MWL studies utilise 
subjective measurements, such as NASA-TLX (Galy et al., 2018; Mohammadian et al., 2022; 
Safari et al., 2024). In addition, behavioural measurement is also employed in most studies 



due to the presumed connection between cognitive demands and performance (Fallahi et 
al., 2016b; Lobjois et al., 2021; Zakeri et al., 2023), and to minimise potential bias and poor 
reliability arising from subjective measurements (Fista et al., 2019). Furthermore, recent 
studies in MWL have included physiological changes as indicators for MWL changes using 
various sensors, such as electroencephalogram/EEG (Aghajani et al., 2017; Ahn et al., 2016; 
Cabañero et al., 2019), functional near-infrared spectroscopy/fNIRS (Aghajani et al., 2017; 
Foy et al., 2016; Verdière et al., 2018), electrocardiogram/ECG (Ahn et al., 2019; Mansikka 
et al., 2016; Tjolleng et al., 2017), or eye-tracker (Appel et al., 2018; Rodemer et al., 2023; 
Zhang et al., 2017). The interplay between cognitive activation and physiological responses 
from the autonomous nervous system facilitates this measurement (Ben Mrad et al., 2021; 
Eckstein et al., 2017). These show that both conceptual and operational definition of MWL 
vary among researchers. 

The authors propose that the diverse measurement techniques for MWL fundamentally 
seek to quantify cognitive demands by including multiple dimensions for its measurement. 
Nonetheless, existing framework in the literature inadequately encompass these 
dimensions. The unavailability of universal MWL definition may lead to a dilemma. It may 
generate flexibility in applying and measuring the concept in various work environments, 
however, it can also create confusion and unclarity of the concept. Past reviews have 
attempted to clarify the concept definition, but they are either limited to a certain field 
(Pearson et al., 2006) or they concentrate on a singular facet of MWL measurement (Charles 
and Nixon, 2019). This paper therefore aims to review the concept of MWL more 
comprehensively and provide theoretical framework for future researcher in the field. By 
articulating a comprehensive definition of mental workload, one can facilitate the 
development of more efficient methodologies for the management of workload, in addition 
to the establishment of standardised measurement and conceptual frameworks. 

 
2. Methodology 

A paper review would often employ systematic literature review (SLR), which relies on 
a systematic approach to identify, evaluate, and integrate evidence from prior investigations 
to address a precisely articulated and focused inquiry. In this review, however, a narrative 
review approach was deemed more suitable. Unlike the SLR method, the narrative review 
can better describe information in a more qualitative manner (Bui and Deakin, 2021). The 
theoretical integrative reviews (TIR) (Sukhera, 2022), a technique within the narrative 
review approach, was employed in this investigation. Theoretical integrative reviews (TIRs) 
function as an essential approach for the synthesis and advancement of theoretical 
constructs pertinent to phenomena. In contrast to conventional literature reviews, TIRs 
incorporate an array of theoretical perspectives, fostering a discourse that has the potential 
to enhance established theories or to engender the development of novel theoretical 
frameworks (Battistone et al., 2023).  

As the first step, we identified two foundational theories that arguably form the basis 
of the mental workload construct: Limited Resource Theory (LRT) and Multiple Resource 
Theory (MRT). This is attributable to the fact that both theoretical frameworks concentrate 
on comprehending the mechanisms by which cognitive resources are distributed and 
regulated throughout the execution of tasks (Chen et al., 2018; Pei et al., 2023). A systematic 
search of the literature was then conducted in Science Direct database, covering 
publications from conception to 2023. Search terms included (1) “limited resource theory” 
AND "mental workload"; (2) “multiple resource theory” AND "mental workload"; (3) 



”performance measurement" AND "mental workload"; (4) “subjective measurement” AND 
"mental workload"; and (5) “psychophysiological measurement” AND "mental workload”. 

The next phase encompassed a detailed analysis of the manuscripts that conform to the 
inclusion criteria. To be included in the review, sources had to meet the following criteria: 
(1) peer-reviewed articles, proceedings, textbooks, or book chapters, (2) publications in 
English, (3) publications supporting theoretical concept in relation to limited or multiple 
resource of MWL, and (4) publications discussing about the measurement of MWL. The final 
step of this search strategy was to review abstract and articles to ensure that they align with 
our objective. It is important to note that, with narrative review, it is not necessary to 
encompass all publications pertaining to a subject (Demiris et al., 2019). The synthesis 
approach employed thematic analysis grounded in the following themes: LRT and MRT as 
the fundamental theories along with the relevant measurement methodologies. The 
summary of the search is shown in Table 1.  

Table 1. Search strings and results 
No. Search string Initial 

results 
Inclusion 
criteria 
fulfilled 

Abstract 
and article 
screened 

1 "limited resource theory" AND "mental workload" 1 1 1 
2 "multiple resource theory" AND "mental workload" 93 93 37 
3 "performance measurement" AND "mental 

workload" 
138 130 26 

4 "subjective measurement" AND "mental workload" 129 125 21 
5 "psychophysiological measurement" AND "mental 

workload" 
48 45 25 

 
3. Results 

3.1.  Limited Resource Theory (LRT) 
The underlying assumption behind LRT is that all cognitive tasks compete for the single 

central attentional resource. Primarily focused on comprehending attention, the theory 
may also be expanded to encompass the knowledge of MWL. Kahneman (1973) suggested 
that when presented with several stimuli, the core attentional resource is required to 
handle the demands, leading the operator to make strategic choices and allocate attentional 
capacity accordingly. The theory considers the level of demand generated by the task at 
hand or stimuli, including mental rehearsing, timed activities, mental arithmetic, or 
activities that require the use of working memory (Oberauer, 2019). These tasks can place 
certain level of demands on attentional resource, which has limited resource capacity. 
Furthermore, human operators could regulate the distribution of the resources, that is, the 
strategies to allocate the limited capacity of attentional resources. Wickens et al. (2012) 
asserted that individuals tend to prefer heuristic-based methods that provide satisfactory 
results requiring little effort. Moreover, individual preferences influence the demands 
placed on resources, particularly in terms of perceived acceptable degree of effort and 
performance. The allocation approach may include task complexity, as it is linked to the 
perceived effort expenditure (Pickup et al., 2005).  

 



 
 
Figure 1 The graphical representation of LRT 
 

According to this theory, the basic concept of MWL can be viewed as the interaction 
between demands placed by the task and the information processing resource allocated to 
the completion of the task. The more resource allocated to complete the task, the higher the 
MWL will be. Figure 1 shows a visual depiction of the LRT (Wickens et al., 2012). As depicted 
in Figure 1, the left vertical axis reflects the number of resources used to complete the task 
and the maximum quantity of resources available. Meanwhile, the performance in the 
primary task is shown as a dashed line on the right vertical axis. The left portion of the 
image exhibits acceptable task performance due to a surplus of resources exceeding the 
demands of the task. This region also contains spare capacity or attentional resources. The 
MWL is negatively correlated with the amount of available spare resource capacity in this 
area, indicating situations where task demands are minimal. The right portion of the image 
depicts a region where the available resources are not enough to meet the requirements of 
the task, since the maximum resource capacity has been achieved. This is a domain 
characterized by high demands, where performance of primary task and MWL exhibit an 
inverse relationship. Therefore, in this area, a measure of primary task performance can 
determine the MWL level. 

3.2.  Multiple Resource Theory (MRT) 
In contrast to the LRT, the primary proposition of MRT is that a person possesses 

various or distinct resources for processing information. The idea was not specifically 
formulated for the purpose of addressing MWL. However, it may be employed to 
comprehend MWL by examining how individuals perform many activities, especially in 
terms of their capacity to allocate time (Wickens et al., 2012). At first, there were three 
distinct stages related to information processing. These stages described the various phases 
of cognitive processing, the process of encoding information, and the diverse ways in which 
information is received. Later, the model was expanded to include the fourth element, 
which is the visual channel. Figure 2 depicts the 'cube' that represents the model. 

 



 
 
Figure 2 The graphical representation of MRT 
 

As posited by this theory, information processing occurs in three distinct phases. 
Cognitive and perceptual activities are two distinct types of mental processes. Perceptual 
activities, such as visual search, are often less difficult than cognitive activities that include 
intricate tasks such as decision-making. However, both types of activities need the use of 
working memory and rely on a shared resource for processing information (Oberauer, 
2019). Another component is the utilization of its resources for processing information in 
selection and response tasks, such as speech production (Serences et al., 2009). The 
separation of resources has an impact on performance (Grinschgl et al., 2023). Specifically, 
if two activities differ in their processing phases (perceptual-cognitive versus 
response/selection), the performance of both tasks will not decline simultaneously. 
However, the performance of dual activities that involve separate phases but rely on the 
same perceptual and cognitive resources may be negatively impacted by interference. 
Engaging in a phone call while driving can impair performance since both activities need 
the same mental and sensory resources (Horrey and Wickens, 2006). 

When it comes to processing encoding, MRT model delineates a distinction between 
analogue-spatial and categorical-symbolic processing, namely in the domains of language 
or verbal communication. According to the theory, spatial and linguistic processes, also 
known as codes, depend on distinct resources when they are utilized in the stages of 
perceiving, thinking, or responding during information processing. Driving (spatial) and 
listening to an unfamiliar voices (verbal) simultaneously might be challenging due to the 
distinct processing codes involved in spatial and linguistic tasks (Rann and Almor, 2022). 

Another crucial aspect of this model is the variation of perceptual modalities, which 
refers to the way our sensory organs receive information. The two predominant modalities 
of task presentation are visual (the eyes) and auditory (the ears). According to this model, 
allocating attentional resource to both visual and auditory modalities lead to superior 
performance compared to allocating attention to either auditory or visual modalities (Atkin 
et al., 2023). This might be attributed to the fact that tasks utilising identical modalities 



would deplete the resource more rapidly compared to activities that utilise distinct 
modalities. Using a navigation device (visual) while driving (visual) would have a greater 
negative impact on driving performance compared to listening to the radio (auditory). 
However, in addition to visual and auditory senses, the sense of touch, or tactile perception, 
is also being recognized as additional pathway for gathering sensory information (Scott and 
Gray, 2008). Stick-shakers in contemporary aircraft cockpits, which alert pilots to stall 
situations, exemplify this aspect of the theory. 

The last aspect of this theory pertains to the different forms of visual processing: 
focused and ambient. Focal vision is responsible for seeing tiny details, such as reading text. 
On the other hand, ambient vision mostly includes peripheral vision and is used for sensing 
direction. The example of this aspect is a driver maintaining the vehicle's position on the 
correct lane (ambient) while simultaneously comprehending a traffic sign (focal). The 
utilization of distinct resources within the visual modality channel enhances the probability 
of successful completion of these tasks (Lenneman and Backs, 2018). 

3.3.  Measurement Techniques 

3.3.1. Performance techniques 
Performance or empirical approaches aim to comprehend MWL by immersing an 

operator in an actual task. By imposing task, demand will be placed in operator’s cognitive 
processing system. There are two distinct techniques under this category: primary and 
secondary task evaluations. Primary task measurements are derived from the direct 
evaluation of variables that are associated with the main task. For example, one way to 
measure an aircraft pilot's MWL is by evaluating their proficiency in controlling the airplane 
during flight, utilizing pertinent indications such as altitude, speed, and horizontal position. 
The core concept of the main task measurement approach may be summarized as follows: 
when the difficulty of the task increases (such as flying into adverse weather conditions), 
the performance indicators will diverge farther from their desired objective. Therefore, 
MWL may be deduced from these objective indices, meaning that a greater divergence from 
the ideal aim may suggest a larger MWL. A potential drawback of primary task approaches 
is that performance may not decline even as demands grow if the demands remain within 
the operator's total resource capacity (Young et al., 2015). 

To address the problem, the secondary task strategy is employed. The fundamental 
principle of the secondary task strategy is to provide a task that can compete the primary 
task for the same attentional resources. The measurements obtained from the secondary 
task have the potential to be utilized to ascertain the level of MWL generated by the primary 
task. In this scenario, the secondary task might serve as a proxy for the remaining spare 
resource capacity of the primary task. Hence, if the primary task demand increases, spare 
capacity will diminish, leading to a decline in performance in the secondary task (Hart and 
Staveland, 1988). For instance, drivers must prioritize the main objective of driving, such 
as staying in their lane, even when they are requested to configure a satellite navigation 
system (satnav) if it is feasible. The variability in the precision of establishing a satnav, for 
example, might serve as an indicator of the MWL needed for the main driving task. However, 
the key issue with secondary tasks is the lack of experimental control over the allocation of 
attentional capacity to them, resulting in their interference with the primary task that is 
being used to evaluate workload. 

3.3.2. Subjective techniques 
As previously stated, the experience of operator MWL is highly subjective. 

Consequently, the assessment of MWL frequently involves inquiring about the subjective 
experience of operators during or after task completion. The NASA Task Load Index (NASA-



TLX) (Hart, 2006; Hart and Staveland, 1988), is a highly used measure for measuring MWL. 
Many studies have utilized the NASA-TLX to assess the amount of operator workload 
associated with specific tasks. This instrument is commonly used to identify the level of 
MWL in a preliminary investigation (Fairclough et al., 2005; Hsu et al., 2015) or to serve as 
a main measure for a dependent variable (Takae et al., 2010). Other popular subjective 
scales of MWL includes The Subjective Workload Assessment Technique (SWAT) (Reid and 
Nygren, 1988) or Workload Profile (Tsang and Velazquez, 1996). 

These subjective scales are typically administered after the completion of the task. 
Although it is possible to administer during the completion of the task, it appears unsuitable 
because the scale consists of questions that need to be responded, which might potentially 
disrupt the continuity of the task. The practical alternative for this issue is provided by the 
Instantaneous Self-Assessment of Workload instrument (ISA) (Brennan, 1992), which 
appears to be suitable for monitoring subjective MWL changes while completing tasks. The 
ISA is a method used to promptly evaluate the MWL experienced during a task. It was 
initially designed to measure the workload of air traffic controllers (ATC). The scale's 
instantaneity makes it less obtrusive and more suitable for real-time evaluation. The scale 
employs a five-point rating system to assess the perceived workload of the operator, with 
“1” indicating low workload and “5” indicating high workload. The scale is delivered at 
different intervals during a task, such as every 45 seconds (Marinescu et al., 2018) or every 
two minutes (Kirwan et al., 1997). 

3.3.3. Psychophysiological techniques 
As mentioned earlier, the rationale for the psychophysiological measurement of MWL 

is clear: an increase in MWL leads to an increase in arousal, which is reflected in the activity 
of the ANS. The purpose of developing these techniques is to enable the continuous 
assessment of MWL in actual work settings. Prior to the emergence of psychophysiological 
measurements, subjective methods, particularly NASA-TLX, have gained widespread 
popularity as the primary instruments in MWL studies. As stated before, like other 
subjective methods, NASA-TLX is inherently retrospective, meaning that the tool is used 
after the task has been completed. Administering it during a task might be challenging due 
to potential operator distractions. Subjective measuring tools are sometimes impracticable 
and might compromise safety in operational contexts, such as while driving a car or flying 
an aircraft. 

As a result, psychophysiological measurements appear to be gaining prominence in 
MWL research. The advancement of more sophisticated and practical measuring 
instruments has facilitated this tendency. Various prominent psychophysiological 
indicators have been employed to measure changes in MWL, including heart rate variability 
from electrocardiography (ECG) signals (Chowdhury et al., 2018; Mansikka et al., 2016; 
Puspita et al., 2015), brain activation derived from fMRI (Causse et al., 2022), EEG 
(Dahlstrom et al., 2011; Wanyan et al., 2018; Wilson, 2002), or fNIRS (Ayaz et al., 2012; 
Causse et al., 2017; Foy et al., 2016; Verdière et al., 2018), eye-gaze behaviour using eye-
tracker (Di Nocera et al., 2007; He et al., 2022; Rodemer et al., 2023; Widyanti et al., 2017), 
and facial thermography (Marinescu et al., 2018). Nevertheless, the performance of these 
physiological measurements is subject to debate. For example, fNIRS is not sufficiently 
sensitive for tasks with small demand variations, such as office works or tasks with great 
number of elements (Argyle et al., 2021). With respect to heart-rate variability parameters, 
an increase in low frequency (LF) and high frequency (HF) ratio (LF/HF ratio) is commonly 
considered as indicators of increased MWL (Li et al., 2021), although findings from Tao et 
al. (2019) demonstrated that decrease in both LF and HF reflects an increase in MWL. 

 



4. Discussions 

4.1.  The Conceptual and Operational Definition of MWL 
Based on the two previously reviewed theories, there are four elements that should be 

included in defining MWL conceptually. The first element concerns to the cognitive ability 
to process information. It is essential as there is a claim that humans possess a finite amount 
of resources for the purpose of information processing, from the classical hypothesis of "the 
magic number seven plus or minus two" (Miller, 1956) to more contemporary hypothesis 
stating that the number of information piece humans can retain is around three to four 
(Gilchrist et al., 2008) or five (Halford et al., 2007). Although there is ongoing discussion 
over the precise quantity of information that may be stored in a person's working memory, 
these experiments demonstrate that our cognitive processing ability is limited. This 
restriction is intended to either save energy or facilitate the retrieval of information in the 
future (Cowan, 2010). Due to its restricted capacity, individuals must choose which 
information they need to be conscious of to execute certain behaviour effectively. Attention 
plays a crucial role in the selection of information through three distinct processes: "input 
selection" guides processing toward particular information, "executive control" oversees 
ongoing tasks, and "alerting" interrupts ongoing tasks to concentrate on new information 
(Remington and Loft, 2015). Recent studies also connect cognitive activities with changes 
in physiological activities. An increase in MWL leads to an increase in arousal, which is 
reflected in the activity of the autonomous nervous system (ANS). The ANS controls 
involuntary physiological functions such as heart rate, blood pressure, and digestion 
through the parasympathetic nervous system (PNS) and the sympathetic nervous system 
(SNS). Simply put, the sympathetic nervous system (SNS) helps the body prepare to deal 
with stress by triggering the 'fight-or-flight' reaction, which can result in elevated heart rate 
and blood pressure. In contrast, the parasympathetic nervous system (PNS) promotes the 
activation of the "rest and digest" processes, such as heart relaxation (Waxenbaum et al., 
2021). 

The second element is the level of task demand. Task is a significant focus of human 
factors and ergonomics study, as they are closely linked to humans. A significant amount of 
endeavour in this field is focused on comprehending how individuals successfully 
accomplish desired goals, especially in their professional or everyday activities. According 
to Hollnagel (2021), tasks are defined as specific pieces of work that must be completed in 
order to achieve a desired outcome. This definition encompasses the actions and functions 
that are necessary to accomplish the intended goal. Tasks and humans engage in an 
interaction, by imposing physical and/or mental demands on humans, and humans must 
fulfil these demands to complete the tasks. Given the increasing cognitive demands of 
contemporary work (Young et al., 2015), comprehending task is crucial in the field of MWL. 
In an MWL study, tasks are the elements that are often altered by adjusting the amount of 
demand (Devlin et al., 2020). This allows for the observation and measurement of changes 
in MWL. 

The third element focuses on the task performance. The third attribute of the definition 
is task performance. Although a particular task consistently creates specific demands, the 
way in which a human operator accomplish the task might vary. It may be inferred that 
when the demands of a task are high, the performance of the operator would decline. 
Nevertheless, according to Sharples and Megaw (2015), this assertion is not universally 
true. Performance and task demands do not necessarily have a negative correlation, since 
operators prefer to actively check their performance and system’s feedback, such as via 
instruments and relevant indicators. This may subsequently influence their approach to 
completing the task, their comprehension of the task at hand, and their motivation to 



engage in the task; hence, ultimately changing their workload. Performance results might 
modify subsequent expectations by altering the task. For instance, if a pilot fails to execute 
their landing process correctly, they must carry out additional task to retake the 
landing operations from the initial stage. This undoubtedly amplifies their workload. In 
conclusion, performance must be included in defining MWL. 

The fourth attribute is the subjective experience. MWL encompasses the subjective 
evaluation of the demands imposed by a task. Although the activity or job may 
be identical, various human operators may have varying perceptions of their experiences 
regarding MWL and situation appraisal. This unconscious process aims to assess the 
present levels of arousal, emotional reactions, and performance, and then adapts the 
allocation of effort to cognitive processing resources (Van Acker et al., 2018). These 
psychological elements are inevitable since most activities or occupations occur in a work 
environment, where external factors including job type, support, and culture are critical 
(Sharples and Megaw, 2015). In addition to external factors, internal factors such as skill 
and motivation (Smith and Hess, 2015) can also influence how operators perceive workload 
and adapt their strategies to meet task demands, ultimately impacting their experienced 
workload. 

Based on these elements, we proposed the conceptual definition of MWL as changes in 
cognitive activities in response to changes in task demands, and this can be indicated by 
changes in particular physiological indices, performance, or subjective experience. More 
operationally, higher MWL can be concluded by tendency to have poorer performance or 
higher score in subjective experience measurement, along with changes in various 
physiological indices, such as increased heart rate and decreased heart rate variability 
(Gullett et al., 2023; Tjolleng et al., 2017), increased oxygenation in prefrontal areas (Ayaz 
et al., 2012; Causse et al., 2017; Galoyan et al., 2021), or increased pupil diameter (Appel et 
al., 2018). 

4.2.  Measurement Framework 
Based on the review, a framework for measuring MWL can be utilised based on the 

components involved in the formation of MWL. Figure 3 depicts the components and their 
interplay. Operator workload refers to the level of effort or strain that an operator 
experiences while carrying out a task. This aspect is mostly subjective but can also be 
deduced from physiological or behavioural indicators. The cognitive and physical demands 
might be conceptualized as “the work” that the operator must perform. These factors 
explicitly encompass both the physical and psychological aspects of the task(s) that are 
highly probable to coexist during task completion, and they will influence the operator's 
experience with the work (Astin and Nussbaum, 2002). Operators will have the ability to 
observe the outcomes of their tasks, namely the performance feedback (Vitense et al., 
2003). Typically, an objective metric, such as reaction times (Makishita and Matsunaga, 
2008) or number of mistakes/error (Louis et al., 2023), is used to quantify this element. 
External factors, such as organizational culture, and internal factors, such as motivation, are 
unavoidable in today's work environment, which is mostly social in nature (Sweller, 1994). 
This factor, to a certain degree, is crucial in the construction of MWL. This framework, 
however, lacks an explanation about physiological changes and mechanisms. We argue that 
this element could be placed alongside with performance, as changes in this element occur 
immediately in response to demand, and thus MWL, changes (Puusepp et al., 2024).  

 



 
Figure 3 A dynamic framework for measuring MWL 

 
The interplay between these components is also distinctive. It is not as straightforward 

as deducing that, for instance, a heavy workload would inevitably lead to poor performance. 
The operator's workload can be attributed to the direct consequences of both physical and 
cognitive demands. However, the framework proposes that external and internal factors 
should be considered as they might define the magnitude of the demands. For instance, a 
task that is identical might result in varying demands for novice and expert operators 
(Byrne et al., 2013; Lassiter et al., 1996). Performance and physiological changes, on the 
other hand, is a direct result of MWL. Nevertheless, the connection may not always follow a 
linear pattern. The outcome of a challenging task might be superior if operators apply 
strategies to effectively maintain their performance (Gathmann et al., 2015). Operators can 
frequently get feedback of their performance by utilising self-assessment or by observing 
indicators or displays. Performance feedback might subsequently impact an operator's 
assessment of their workload, and has the potential to not only impact how heavy the task 
is perceived to be, but also to alter the level of expectations (Maior et al., 2018). Inadequate 
performance might lead to the emergence of additional unforeseen tasks aimed at restoring 
performance to the intended standard. As mentioned earlier, the perceived MWL can be 
influenced by internal and external factors, such as the selection of behavioural strategies, 
which can in turn affect task demands. 

4.3. Limitations and Challenges 
It is noteworthy that this review is not without limitations. The primary limitation of 

our analysis may be attributed to the implementation of a non-systematic review approach, 
specifically the narrative review methodology. While it allows for a broad exploration of 
topics, the narrative review (including TIRs) approach possesses some challenges, such as 
potential biases and variability in interpretation (Sukhera, 2022). Nonetheless, these 
challenges have been alleviated through the establishment of transparent methodological 
selections, encompassing the criteria for literature inclusion and the approach to synthesis. 
This review further employs structured frameworks and guidelines designed to reduce bias 
and enhance the reproducibility of the findings, including a clear delineation of the scope, 
boundaries, and pertinent terminology of the review. 

There are several challenges and issues that continue to surround MWL research. One 
of which is that most research on MWL are conducted in controlled laboratory settings 
(often using simulators) that can limit external validity. Nevertheless, the utilisation of 



MWL assessment is undeniably beneficial in practical situations. Given the progress made 
in psychophysiological theory and the development of methodologies to assess MWL, it is 
necessary to conduct research that applies these measures in actual work environments 
(Midha et al., 2021). The primary goal of real-time MWL monitoring is to offer operators 
immediate alerts and feedback regarding their existing workload. It is arguably 
advantageous for aiding an operator in handling their tasks. In a situation of excessive 
workload, the provision of feedback and warnings can prove beneficial in indicating the 
status of one's workload and identifying potential steps to address the problem (Maior et 
al., 2018). 

Furthermore, over the past decade, several studies have endeavoured to quantify MWL 
by employing diverse psychophysiological methods in actual work environments, including 
traffic control centres (Fallahi et al., 2016a), driving (Lei et al., 2017; Sahaï et al., 2021; 
Schoedel et al., 2018), and electric bike riding (Boele-Vos et al., 2017). However, the studies 
lacked the capability to offer immediate feedback and notifications regarding MWL, as 
demonstrated in Maior et al. (2018) research conducted within a controlled laboratory 
environment. These studies eventually can provide insights into the feasibility of 
implementing MWL measurement, particularly utilising psychophysiological approaches, 
in specific real-world work environments. Virtual reality (VR) can also be employed to 
provide a more realistic simulated environment in measuring operator’s MWL and 
performance (Sudiarno et al., 2024). Moreover, gaining insights into the perspective of 
operators or subject-matter experts/SMEs on MWL sensors and its implementation in 
actual workplaces is essential as it can predict the acceptance of the technologies (Salma et 
al., 2024). Additionally, incorporating MWL into brain-machine interfaces (BMIs) 
(Whulanza et al., 2024) is also potential to enhance the development and implementation 
of neurofeedback in workplace setting. 

4.4. Implications and Significance 
The outcomes of this review could function as a reference for the definition of mental 

workload. This can subsequently provide a framework for research, evaluation, and 
intervention across diverse disciplines. In the absence of a standardized definition, studies 
may yield contradictory results, as researchers may conceptualise mental workload 
differently based on their respective domains, such as psychology, engineering, or 
medicine. Furthermore, by looking at various measurement instruments—subjective 
scales, psychophysiological metrics, and performance indicators—this review directs 
forthcoming research towards the establishment of reliable, standardised methodologies, 
ultimately enhancing safer, more effective task design and promoting improved well-being 
within occupational environments. 

 
5. Conclusions 

This paper reviewed the definition and measurement of MWL. We approached the 
definition from two foundational theories: LRT and MRT.  From our review, we proposed 
that the conceptual definition should consider four elements, i.e. limited cognitive 
processing capacity, task demand variations, performance and physiological changes, and 
subjective experience. In more operational term, one could indicate higher MWL, as the 
function of high task demands, by observing tendency to have poorer performance, higher 
score in subjective measurement, and various changes in physiological measurement. 
Concerning the measurement of MWL, it usually involves a variety of approaches, with 
psychophysiological techniques currently being the primary indicators. This is because 
these techniques offer an objective measure of changes in MWL and can be implemented 



during the completion of tasks. Despite its potential, several theoretical and practical 
concerns with this approach still exist and require further research. 
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