

Heat Exchanger Secondary

Air Flow

Secondary Exchanger

(Tube Type) Part

(d)

Figure 1 Detail dimension of the machine: (a) overall dimension, (b) furnace dimension, (c) primary HE dimension, and (d) secondary HE dimension

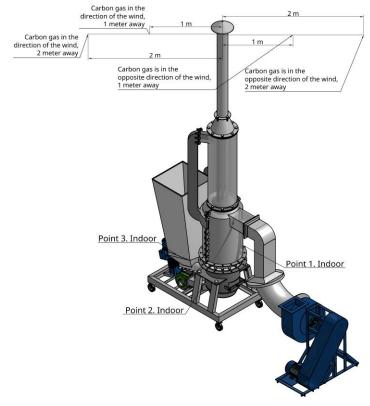


Figure 2 CO measurement position

Table 1 The design requirements of the biomass pellet burner

		The second section is a second
Name		: Prototype Mobile Vertical Burner
Function		: Heating fresh air
Working		: Based on fresh air passing through the tube type and plate type heat
Principle		exchangers drawn by the blower, heat comes from wood pellets that are burned
		in the combustion chamber and then flow through the heat exchanger and exit
		vertically into the chimney.
Operation		: Continuous
Capacity		: 15 kg/hr
Required	hot	: 80-120 °C with 800-1000 CFM
air output		

 $\textbf{Table 2} \ \text{The usage of LPG for tea drying using ball tea machine July-October 2024 at PPTK Gambung }$

Month	Fresh Tea Leaf (kg)	Dried Tea (kg)	Yield (%)	LPG consumption (kg)	Energy Ratio (kg LPG/kg dried tea)	Cost (\$/Kg dried Tea)
July	296,763	79,619	26.83	11,000	0.138	0.167
August	292,040	81,254	27.82	8,550	0.105	0.127

 September	109,830	31,815	28.97	3,850	0.121	0.146
October	90,177	25,580	28.37	3,600	0.141	0.170
Average	197,203	54,567	28.00	6,750	0.126	0.153

Table 3 The proximate value of biomass pellets.

Testing	Testing Report
Water content (%)	7.36
Bulk Density (gr/cm3)	1.37
Fixed Carbon Content (%)	85.02
Volatile matter (%)	3.72
Burning Rate (gr/hour)	3.03
Calorific Value (Cal/gr)	4331.96

Table 4 Calibration of instruments used in experiment

No	Instrument Name	Serial Num ber	Calibrati on Date	Reference Standard Used	Measur ed Value	Standa rd Value	Deviati on	Status (Pass/F ail)
1	Elitech Thermohygrometer	RC- 4HC	6/12/2024	Calibrated Thermohygro meter	50.20%	50%	0.20%	Pass
2	Thermometer data logger and Thermometer type K	TA- 612CI	6/12/2024	Mercury Thermometer	99.5 °C	100.0 °C	-0.5 °C	Pass
3	Anemometer	NTC GM81 6	6/12/2024	Calibrated Wind Tunnel (traceable)	5.08 m/s	5.00 m/s	+0.08 m/s	Pass
4	Digital Scale	ACIS AW- X-7.5	6/12/2024	100 g Class F1 weight	100.2 g	100 g	+0.2 g	Pass

Table 5 Calibration of fuel feeding input rate using a screw motor

Revolution Time (s)	Volume (ml)	Mass (gr)	Density (g/ml)
2	70.70	106.00	0.67
4	148.50	232.00	0.64
6	207.40	330.10	0.63
8	257.70	430.10	0.60
10	319.10	536.00	0.60

, 1	0.4.00	- 4.60	0.60
average/second	34.23	54.68	0.63
<u>average</u> , second	0 1 .2 0	0 1.00	0.00

Table 6 Calibration of fuel feeding input rate using a screw motor

Number of revolutions					Revolut	ion Time	e				
revolutions		2 Second			4 Second				6 Second		
	Mass (gr)	Volume (ml)	Densit y (gr/ml)	Mass (gr)	Volume (ml)	2	Bulk Density (gr/ml)	Mass (gr)	Volum e (ml)	Bulk Densit y (gr/ml)	
2 revoluti	ions	159.0	253.0	0.63	301.5	466.67	0.65	395.5	658.3	0.60	
4 revoluti	ions	312.0	520.00	0.60	638.8	996.67	0.64	830.6	1366.7	0.61	
6 evoluti	ons	450.3	780.0	0.58	919.0	1503.33	0.61	1251. 5	2070.0	0.60	
avg/sec/	rev	38.76	64.46	0.60	38.64	61.09	0.63	34.11	56.44	0.60	

Table 7 Suction air setup calibration

Electromotor Frequency	Suction Air Velocity (m/s)			Average (m/s)	CFM	
(Hz)	Point 1	Point 2	Point 3	Point 4		
50	17.86	14.46	13.96	18.72	16.25	895.23
55	20.35	17.15	16.45	20.73	18.67	1028.55
60	21.26	18.38	17.58	22.90	20.03	1103.47

Table 8 Experimental factors and its levels

Fuel Input Rate (kg/hour)	Output Airflow (CFM)
5	895.23
7	1028.55
9	1103.47

Table 9 Distribution of 4 air heating stages

Machine Operational Phase	Time Range (minutes)
Stage no 1	Interval 1-30
Stage no 2	Interval 31-60
Stage no 3	Interval 61-90
Stage no 4	Interval 91-120

Table 10 One-way ANOVA analysis of the correlation between time stages of temperature attainment using the Pairwise Comparisons method

Measure: Temperature changes

	Mean	Std.		95% Confidence Interval
(I) ΔT HE Primer	Difference (I-J)	Error	Sig.b	for Difference

			-		Lower Bound	Upper Bound
ΔT HE at stage	ΔT HE at stage 2	-15.367*	1.270	0.000	-19.787	-10.947
1	ΔT HE at stage 3	-19.264*	1.270	0.000	-23.684	-14.844
	ΔT HE at stage 4	-20.253*	1.270	0.000	-24.673	-15.833
ΔT HE at stage	ΔT HE at stage 1	15.367*	1.270	0.000	10.947	19.787
2	ΔT HE at stage 3	-3.897	1.270	0.092	-8.317	0.523
	ΔT HE at stage 4	-4.886*	1.270	0.029	-9.306	-0.466
ΔT HE at stage	ΔT HE at stage 1	19.264*	1.270	0.000	14.844	23.684
3	ΔT HE at stage 2	3.897	1.270	0.092	-0.523	8.317
	ΔT HE at stage 4	-0.989	1.270	1.000	-5.409	3.431
ΔT HE at stage	ΔT HE at stage 1	20.253*	1.270	0.000	15.833	24.673
4	ΔT HE at stage 2	4.886*	1.270	0.029	0.466	9.306
	ΔT HE at stage 3	0.989	1.270	1.000	-3.431	5.409

Based on estimated marginal means

Table 11 One-way ANOVA analysis of the correlation between combustion time stages

Pairwise Comparisons							
Measure: Effi	ciency						
(I) Panga Efi	95% Confidence In for Difference Wean Std. Sigh						
(I) Range_Efisie	Sierisi		Difference (I-J)	Error	Sig.b	Lower Bound	Upper Bound
Efficiency at stage 1	Efficiency stage 2	at	-18.425*	0.481	0.000	-19.850	-16.999
	Efficiency stage 3	at	-23.106*	0.603	0.000	-24.891	-21.320
	Efficiency stage 4	at	-24.783*	0.463	0.000	-26.156	-23.410

^{*.} The mean difference is significant at the 0,05 level. b. Adjustment for multiple comparisons: Bonferroni.

Efficiency at stage 2	Efficiency stage 1	at	18.425*	0.481	0.000	16.999	19.850
	Efficiency stage 3	at	-4.681*	0.292	0.000	-5.547	-3.815
	Efficiency stage 4	at	-6.358*	0.508	0.000	-7.863	-4.853
Efficiency at stage 3	Efficiency stage 1	at	23.106*	0.603	0.000	21.320	24.891
	Efficiency stage 2	at	4.681*	0.292	0.000	3.815	5.547
	Efficiency stage 4	at	-1.677*	0.489	0.018	-3.125	-0.229
Efficiency at stage 4	Efficiency stage 1	at	24.783*	0.463	0.000	23.410	26.156
	Efficiency stage 2	at	6.358*	0.508	0.000	4.853	7.863
	Efficiency stage 3	at	1.677*	0.489	0.018	0.229	3.125

Based on estimated marginal means

Table 12 Emission (CO) measured on using the proposed Mobile Vertical Burner Biomass Pellet

		Chimney		
Direc	tion Of Wind	Opp	osite Direction of Wind	
1m	2m	1m	2m	
CO ppm	CO ppm	CO ppm	CO ppm	
132.4	58.2	0.4	0.3	

Table 13 Stage II green tea drying process (Ball Tea Dryer Machine)

Process	Value	Unit	Reference
Inlet temperature	135	°C	(Bardant et al., 2019)
Machine Capacity	250	Kg	PPTK Gambung
Air supply			
Fill	710.49	CFM	Test Report
Blank	833.35	CFM	Test Report
Processing Time	13	Hours	(Lestari et al., 2022)
Initial water content	51.09	%	(Lestari et al., 2022)
Final water content	5.25	%	(Lestari et al., 2022)

^{*.} The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.

LPG requirements	0.1	kg/dried tea	PPTK Gambung
Drive Motor			
Ball tea cylinder	1.491	kW	PPTK Gambung
Blower Fan	1.491	kW	PPTK Gambung