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ABSTRACT 
Genome Sequence Analysis for genetic datasets by using ORF (Open Reading Frames) 
techniques is an interesting area of research for bioinformatics researchers nowadays.  There is 
a strong research focus on comparative analysis between genetic behaviors and diversity of 
different species. Contrary to whole genome sequence analysis, scientists are now trying to 
concentrate specifically on layered analysis to get a better insight of relevancy among genetic 
datasets. This phenomenon will help to better understand species. An ORF statistical analysis 
for genetic data-sets of species Chimera Monstrosa and Poly Odontidae is presented. For 
completion of this analysis, we use a hybrid approach that combines a generic mechanism for 
statistical analysis with specific approach designed for out performance. At first instance, 
genetic datasets are refined for better usage at next level. These sets are then passed through 
layers of filters that perform DNA to Protein translation. Statistical comparison is performed 
during this translation. This layered architecture helps in better understanding of the degree of 
similarity and differences in genomic sequences.  
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1. INTRODUCTION 
Due to existing and continuously growing bulk of biological data coming from genome projects 
and experiments nowadays, protein structure prediction and its systematic translation need an 
efficient and effective way to sequence, analyze and compare coded biological DNA sequence 
information. The genome sequence analysis is directly related to the sequence comparison and 
alignment. Sequence similarity is a way to predict the functional similarity among genes and 
this has been used as a tool for functional prediction. Analysis and Comparison of DNA 
sequences and genes is useful for finding the facts about how these genes are organized and 
what are the similarities and differences (Gupta, et al., 2007). These fundamental problems are 
NP hard (Weng, et al., 2006; Kumar, et al., 2007) and need optimal solutions that can be 
achieved by improving algorithms and computing architecture. (Ma & Chan 2003). A little 
work has been done in hybrid statistical analysis of genomic data against exponentially 
increasing problem size. Usage of Computer aided techniques are not the solution. 
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There is need to work in computational molecular biological experiments by means of DNA 
sequence analysis. Finding a unique sequence on the entire target genome is one of the most 
important problems in molecular biology (Gowda, et al., 2007). 

The overall goal of this paper is to present an integrated approach that performs comparative 
analysis between same species revealing that peptide translation in both has a degree of 
differences. This task is accomplished by using ORF with statistical analysis. The method used 
for this purpose is a composite technique that consists of a series of filter from preprocessing 
level to final analysis.  

The human genome project has built rich databases which attracted research interests from 
biologists and computer scientists to explore and mine these precious data-sets. The computer 
aided applications now can reveal the hidden information in complex helix DNA structure. 
They also made it possible to perform fast and accurate analysis. This has been made effective 
with the availability of cost effective and handy analysis tools. Scientists have developed novel 
ideas, implemented and resolved complex situations in computational biology whose direct 
feasible solutions were not possible in yielding optimal solutions in some cases for sequence 
analysis, an NP hard problem (Kurata, et al., 2003; Weng, et al., 2006; Kumar, et al., 2007; 
Miranker, 2008). 

This paper is organized as follows: Section 1 is the Introduction. Section 2 highlights some 
related work. Section 3 describes the proposed technique (elaborated in subsections). Section 4 
contains fundamentals concluding remarks for this comparative analysis. Section 5 represents 
an acknowledgement and Section 6 contains references. 
 
2. RELATED WORK 
Kumar, et al., (2007) gives an approach for a distributed bioinformatics computing system. It 
was designed for disease detection, criminal forensic and protein analysis. It is a combination of 
different distributed algorithms that are used to search and identify a triplet repeat pattern in a 
DNA sequence. It consists of a search algorithm that computes the number of occurrences of a 
given pattern in a genetic sequence. The distributed subsequence identification algorithm was to 
detect repeating patterns with sequential and distributed implementation of algorithms relevant 
to different triplet repeat search patterns and genetic sequences. The result of this system shows 
that as complexity of the algorithm increases, the response time also increases. There is space to 
make this work better for more DNA sequences of various lengths.  

Kurata, et al., (2003) presents a technique to find unique genome sequences from distributed 
environment databases. Kurata used implementation of the method upon the European Data 
Grid and showed its results. The author worked on the unique sequences of E. Cole 0157 (12 
genome). The genome is divided into smaller pieces being processed individually. In an 
example quoted by author, the total file size is 256 MB when it is hashed to 7. It is possible to 
divide the genomic files into at most 47 = 16384 pieces of 15 KB each. This method results in 
memory consumption and increases file size. This data grid method is not useful for 
parallelizing biologically important data. 

Li, et al., (2003) proposes a genome sequence learning method by simplifying Bayesian 
network. The nodes in Bayesian networks are selected as features. A feature selection algorithm 
is used for structure learning. This algorithm is based on genetic algorithm. The researcher used 
dataset of 570 vertebrate sequences, including 2079 true donor sites. This approach is limited to 
the donor site prediction and also confirms that the nucleotides closer to donor site are the key 
elements in gene expression. There is need to improve the structure learning method, valuable 
features and analysis etc. 
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DNA chips (Garbarine & Rosen 2008) have a main role in disease diagnosis, drug discovery 
and gene identification. They used an approach to detect unique gene regions of particular 
species. This technique named as an information theoretic method exploits genome 
vocabularies to distinguish between pathogens. This approach is useful only for finding the 
gene sequences and most distinguished similarities between two organisms. Oligo probes were 
used to distinguish between two genes. Experiments were conducted to data from Sanger 
Institute. Currently 32 out of 92 bacterial pathogen sequencing projects are completed. The 
author selected a pair of genomes to test the algorithm. Results were shown for a 12-mer and 
25-mer Oligo pathogen probe set and confirmed the Garbarine method is less likely to cross-
hybridize. 

Lousado and Moura (2008) developed a software application for large-scale analysis of codon-
triplet associations to shed new light onto this problem. This algorithm describes codon-triplet 
context biases, codon-triplet analysis and identification of alterations to standard genetic code.  
The method presents an evolutionary understanding of codons within open reading frames 
(ORF). 

Gene-Split (Chang, et al., 2004) is an application that shows codon triplet patterns in genomes 
and complete sets of ORFs. Generally this application gives an opportunity to study the 
characteristics of codon and amino acids triplets in any genome for extraction of hidden 
patterns.  

Zheng, et al., (2006) present a technique that integrates the low pass filter and wavelength de-
noising method. Conventional techniques use the low pass filter with cheap hardware resulting 
in degraded de-noising quality. By properly choosing the cut-off frequency and wavelength de-
noising frequency, some enhancement can be made for signal to noise ratio and processed 
signals can be made for requirement of single base pair resolution in DNA sequencing and 
vector of targeting signal can be decomposed into the orthogonal matrix of wavelength 
functions. This is an iterative method with levels n and can be conventionally reconstructed by 
inverse DWT.  

Weng, et al., (2006) apply wavelength transform to extract features from the original 
measurements. They partition the data in subsequent partitions by a hierarchal clustering 
method, the terahertz spectroscopy of different DNA samples show the wavelength domain 
analysis aids the clustering process, authors have clustered six DNA samples into two groups, 
the data has been cleansed before processing, wavelet function utilized the Haar wavelet 
methods. The signal trend is separated from the original records. The size of clusters may be 
calculated by the maximum distance between two points within cluster. Another preprocessing 
step is balancing the data which can achieve normalization of data.      

Bilu, et al., (2006) propose an alignment algorithm for NP hard alignment problem of 
sequences, the authors outperform an alignment procedure by sufficing optimal alignment of 
predefined sequence segments. They concentrate on a whole sequence rather than letters and 
estimate running time by restricting the search space of dynamic programming algorithm. 
Authors take aid from the observation that encoding sequences used in NP hard problems are 
not necessarily depictions of protein and DNA sequences. Time expedition is calculated by 
taking advantage of the biological nature of sequences contrary to traditional approaches that 
offer good computation leading to optimal alignment; more stress is given to the structure of 
input sequences. 

Tuqan and Rushdi (2008) propose an approach for finding the complete periodicity in DNA 
sequences. The approach is spliced in three channels: firstly, the authors explain the underlying 
mechanism for period 3 components; secondly, they directly relate the identification of these 
components for finding nucleotide bias in codon spectrum; thirdly, they completely characterize 
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the DNA spectrum by a set of numerical sequences. The authors relate the signal processing 
problem with genomic one through their proposed multi-rate DSP model. The model identifies 
the essential components involved in the codon biased, distilling the dual nature of the problem. 
This phenomenon can further help in understanding the biological significance of codon bias. 
The period 3 component detection works for a kind of genes and may not be suitable for all 
genetic datasets.         

Ma, et al., (2006) has shown the functionality of popular clustering algorithms for analysis of 
microarray data and concluded that performance of these algorithms can be further increased.  
Authors are also proposing an evolutionary algorithm for microarray data analysis in which 
there is no need for calculation of number of clusters in advance. The algorithm was tested with 
simulation and different datasets. The noise and missing values are a big issue in this regard. 
The phenomenon is depicted by encoding the entire cluster grouping in a chromosome so that 
each gene encodes one cluster and each cluster contains the labels of data used in it. Cross over 
and mutations are performed suitably. The proposed algorithm has been observed to be slow as 
compared to other prevailing algorithms.  
 
3. THE PROPOSED TECHNIQUE 
Our interest mainly lies in finding genome regions that are responsible for protein translation. 
We have developed a layered architecture shown in the Figure 1 for this analysis that starts 
from pre-processing of raw data to final translation analysis. For the sake we have used genetic 
datasets of Chimaera Monstrosa (rabbit fish, NC_003136) and Poly Odontidae (paddle fish, 
NC_004419) (Anonym).  
 
 

 

 

 

 

 

 

 

 

Figure 1 A layered architecture 
 

At pre-processing stage raw data sets are passed through a filter that outputs a more refined 
form of data which can be further used for actual comparative analysis between species. It is 
evident from Figure 2 that dataset contains characters other than pure nucleotide bases. These 
illegal characters are removed by application of a cleansing filter. At first instance it is worth 
noting that analysis should be made with original data values, any garbage collection may lead 
to a detrius of results. 

Figure 3 depicts that preprocessed data contains only pure nucleotide base pairs without any 
anomalies. This refined data is later fed into next layer for actual analysis. First we display the 
ORF in a nucleotide sequence and find the start and stop codon. By using the sequence indice 
for start and stop, we can extract the subsequences and can determine the codon distribution 
effectively. The most informative and interesting phenomenon, that whole process is broken 
into steps and each step fully performs the comparative analysis relevant to DNA to protein 
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translation. 
 
 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

 Figure 2 Dataset before filter application Figure 3 Pre-processed dataset 
 

 

3.1.  Size of datasets 
1. Chimaera Monstrosa contains 18580 nucleotides of Adenine, Guanine, Thymine and 

Cytosine. Cumulative size of data becomes 37160 bytes arranged in the form of a uni-
vector. 

2. Poly Odontidae contains 16512 nucleotides of Adenine, Guanine, Thymine and 
Cytosine. Cumulative size of data becomes 33024 bytes arranged in the form of a uni-
vector. 

 
3.2.  ORF in nucleotide sequences 
It is worth noting that comparative analysis between both species is being done at translation 
level, so this level is vital in analysis. We split this layer into three more layers to get a better 
benefit of this layered analysis. In each phase, our interest lies in determining the accurate start 
and stop position of codons that perform the relative analysis. 
3.2.1.  ORF primary Frames 
At ORF primary frame level, Figure 4 shows that the start position for the first frame is at 7156 
and second at 8761. These start positions represent the major translation regions in entire 
frames. These regions are pure depiction of tri-nucleotide molecules. This process leads 
towards the extraction of sub-chains that later will be shifted to peptide regions. 

    
 
 
 
 
 
 
 
 
 
 

 Figure 4 ORF of Chimaera Monstrosa in Frame 1  Figure 5 ORF of Poly Odontidae in Frame 1 
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Likewise we obtain the ORF in the second data set of Poly Odontidae shown in Figure 5. The 
by entering the start positions we can get stop codons. The start positions of the second dataset 
Frame 1 are 10798 to 11395, 14641 to 15559. It is clear that there is an evident difference in 
codon regions for both frames of these species. The corresponding translated regions are so 
entirely different that we cannot even guess the idea of sub-channel similarity. 
 
3.2.2.  ORF secondary Frames 
At second level, we intend to find the codon positions for Frame 2 of both species, Figure 6 
describes that major ORF start from 2753, 5426 and 10325, this represents that there are series 
of other regions occupied between the first and second frames that do not contribute to the 
peptide translation regions.   
 
 
 
 
 
 
 
 
 
 
 
 

 

 Figure 6 Frame 2 (Chimaera Monstrosa) Figure 7 Frame 2 (Poly Odontidae) 
 
Similarly the frame 2 of Poly Odontidae shown in Figure 7 describes its codon position from 
11120 to 11465 and 12464 to 12887. This shows a massive difference in datasets at this level. 
As we move with increasing nucleotide subsequences, we may get larger differences, but this 
case does not seem to be true for all genetic datasets. This is the reason that phenomenon has 
been given importance in selection of these particular sets.  
 
3.2.3.  ORF Tertiary Frames 
Discussing the last frame set in this sequence, we first find the codon composition for these 
frames, for instance, when we consider frame 3 of Chimaera Monstrosa. Figure 8 shows that 
major ORF starts from 4019, 11948 and 14328. This massive difference in codon compositions 
also provide evidence that first translated region lies in the region of some four thousand while 
second and third regions have jump gaps. This is the variation in translated regions in species. 
 
 
 
 
 
 
 
 
  
 
 Figure 8 Frame 3 (Chimaera Monstrosa) Figure 9 Frame 3 (Poly Odontidae) 
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In Figure 9, third frame for Poly Odontidae goes from 2796 to 3242, 6315 to 6722 and 12753 to 
13217. Figure 8 shows that first 2 codon positions are relative similar while third position again 
describe a jump gap. Performing comparative analysis at this level, reveals the facts that both 
genetic data finds a kind of extremity in behavior which makes them relevant at certain codon 
compositions and different at others. 
 
3.3.   Codon Count 
The codon count describes the tri-nucleotide behavior of sequences. We need to find the degree 
of relevancy in terms of strengths of nucleotide bases. For instance, we have selected Frame 1 
from codon composition of both species and then we compare the strength.   
 

          
 
 Figure 10 Codon count  Figure 11 Codon count 
 (Chimaera Monstrosa in Frame 1)  (Poly Odontidae in Frame 1) 
 
Figure 10 represents the codon count for Chimera Monstrosa. Our aim focuses on comparative 
analysis of codon strength at this stage. For this purpose, we need to calculate the codon count 
for Poly Odontidae.  Figure 11 shows the codon count of the first ORF of the Poly Odontidae. 
The tri-nucleotide composition of these molecules represents the amino acids. By calculating 
these combinations, we can get the volume of the specific amino acids. Some of the amino 
acids for these codons ATA, CTA, ACC and ATC are as follows respectively. 

Ile: soleucine, Leu: Leucine, Thr: Threonine, and Ile: Isoleucine 
 

3.4.  Amino Acid Conversion and composition 
In this section, we try to obtain relative amino acid composition that will give us the 
characteristic profile of the protein. Once we get the Open Reading Frame in a genetic data, we 
can convert it into an amino sequence to bring in its acid composition. Consider first dataset 
Chimaera Monstrosa at first frame level for conversion from nucleotide sequence to an amino 
acid sequence. This conversion is shown in Figure 12. 
 

   

  Figure 12 Amino Acid sequence  Figure 13 Amino Acid sequence 
 (Chimaera Monstrosa)                  (Poly Odontidae) 
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From Figures 12 and 13, both genetic datasets have strongly different translated composition 
even at the primary frame level. This provides us evidence to strengthen the idea that both 
species will behave differently in other frames too. 
 
3.5. Strength of amino acid in the Protein sequence 
At last phase of this comparative analysis, we need to find the relevant strength of peptide pairs 
in protein sequences (resulted as a translation from DNA to protein). Figure 14 shows the 
strength of amino acid in Chimera Monstrosa. Now we will determine the atomic 
decomposition and molecular weight of the protein: 

C: 1220, H: 1886, N: 298, O: 341, S: 12, Molecular weight is 2.6569e+004 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The strength of amino acid in protein sequence of the Poly Odontidae is depicted in Figure 15. 
Similarly, the atomic decomposition and molecular weight of the protein are 

C: 940, H: 1488, N: 276, O: 266, S: 14, and Molecular weight is 2.1360e+004 

 
Table 1 Amino acid sequence comparison 

Amino acid 
Chimaera 
Monstrosa 

Poly Odontidae 

C 1220 940 
H 1886 1488 
N 298 276 
O 341 266 
S 12 14 

 
The comparison of amino acid sequences of both species obtained from the primary codon 
translation is shown in Table 1. The corresponding molecular weights are 2.6569e+004 and 
2.1360e+004 for Chimaera Monstrosa and Poly Odontidae respectively. These results clearly 
describe the phenomenon that despite both species from same class differ greatly in patterns of 
ORF. Their codon count and numerical measures of amino acid and molecular weights make 
them different in behavior, appearance, habits, characters and living. 
 
 

 

        Figure 15 Strength of amino acid  
(Poly Odontidae) 

 

   Figure 14 Strength of amino acid  
(Chimaera Monstrosa) 
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4. CONCLUSION 
An Open Reading Frame (ORF) contains a start codon region. This subsequent region contains 
pairs of nucleotides in length multiple of 3 and end with a stop codon. This paper describes the 
phase wise comparative analysis of two genetic data of species Chimaera Monstrosa and Poly 
Odontidae. It represents an integrated approach composed of step by step processes to elaborate 
the results effectively. The process gives more stress on peptide translation using Open Reading 
Frame concept and data refining methodology. At the end we look for all outcomes that make 
this effort optimal by performing a sensitive analysis of DNA to protein conversion. Variations 
at each step were observed even the data classes remained same.  
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