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ABSTRACT 

In this paper, a 2-degree of freedom dynamic model of an unbalanced rotary engine is designed, 

in a manner that has the effect of modal coupling. After designing the dynamic model in order to 

reduce the vibrations generated due to the unbalancing mass and modal coupling, the active force 

control (AFC) method is implemented along with a conventional proportional integral derivative 

(PID) controller with linear actuators, meaning that the AFC loop is applied as a supplement to 

the conventional PID controller. The obtained results show that, when the AFC loop was engaged 

with the PID controller, the vibrations were reduced to nearly zero in both aspects of frequency 

and amplitude when compared to the case in which only a PID controller was operating in the 

control system.    
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1. INTRODUCTION 

The most important features of rotary and reciprocating engines are the crank, connecting rod, 

and piston. The main cause of vibrations in rotary engines are the inertia forces caused or 

generated by the moving components (Crede, 1951; Rao, 2016). Analysis of these forces 

produced due to inertia are explained in detail in normal vibration texts (Rao, 2016).  

Vibrations caused by unbalancing usually lead to the damaging of different components in an 

engine and other parts of the machine, such as the vehicle or turbine (Ogbonnaya et al., 2013; 

Warminski & Balthazar, 2003). Therefore, it is important and essential to reduce as much as 

possible the vibrations that are created by an unbalanced rotary engine and rotary mechanisms, 

(Kolhar & Patel, 2013; Ogbonnaya et al., 2013; Warminski & Balthazar, 2003). 

The isolation method is a common and usual method that is implemented for the reduction of 

unbalanced vibrations of rotary mechanisms and engines, (Soliman & Hallam, 1968) and in which 

a flexible platform isolator is taken into consideration for absorbing the vibrations to stop them 

from damaging other parts and components. An alternative method used for the reduction of the 

vibrations caused by rotary engines is the active vibration control method (Ruzicka, 1969; Vilnay, 

1984). In the active vibration control method, through the implementation of actuators, external 

forces are applied to the vibrational system, leading to a reduction of the overall vibrations.  

To reduce the noise and vibrations produced by rotary engines, the active force control (AFC) 

method is considered as a closed loop control system. The main advantage of the AFC technique 

is its ability to  discard  disturbances  or  noises that are  applied on the  system  through suitable 
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selection of the parameters. Furthermore, the AFC technique leads to less computational 

difficulties and problems, and it also is appropriately established for use in real-time situations. 

The AFC method was first proposed by Hewit and Burdess (1981), and it was noticed that the 

AFC method was very robust and operative in controlling a robot arm. Afterward, other 

researchers implemented the AFC method very successfully for a robot arm by taking into 

consideration artificial intelligence techniques (Mailah, 1998; Mailah & Rahim, 2000), in 

addition to controlling actuators of pneumatic types (Mailah et al., 2009). The AFC method was 

successful for reducing friction induced vibrations (Hashemi-Dehkordi et al., 2009a; Hashemi-

Dehkordi et al., 2009b; Hashemi-Dehkordi et al., 2010; Hashemi-Dehkordi et al., 2012; Hashemi-

Dehkordi et al., 2014). The AFC method was implemented for dynamic models of friction-

induced vibrations that were generated by negative damping and modal coupling.  

In this paper, the AFC method is applied to a new 2-degree of freedom model of an unbalanced 

rotary engine, which has the effect of modal coupling in which the AFC loop along with the PID  

controller was able to reduce the vibrations to a very low amount, in both frequency and 

amplitude. 

At first the design of the 2 degree of freedom model of an unbalanced engine is discussed, and 

afterwards, the control strategy and methodology is explained. 

 

2. THE 2-DEGREE OF FREEDOM DYNAMIC MODEL 

In this section, the 2-degree of freedom (DOF) model is designed, and its performance is studied. 

Until now, almost all dynamic models of an unbalanced rotary engine were represented in 1-

DOF, as shown in Figure 1 (Crede, 1951; Rao, 2016). The 1-DOF model provides the benefit of 

easy modeling, controlling, and analyzing. 

 

Figure 1 The conventional 1-DOF dynamic model of an unbalanced rotary engine 

  

Yet, in reality or a more complicated manner, it can be seen that in an unbalanced rotary engine 

or mechanism, vibrations are observed in a plane, meaning that more than one direction of 

vibration can be seen. This effect could be due to the structure of the supports or fixtures that 

hold the unbalanced rotary engine; for example, in a vehicle, when the engine is running, 

vibrations can be felt in all directions of the vehicle chassis and body.  Thus, in order to have a                                 

more accurate dynamic model of an unbalanced rotary engine, a 2-DOF dynamic model is 

designed in a manner that also has the effect of modal coupling. Figure 2 shows the 2-DOF model 

of an unbalanced rotary engine with modal coupling. 
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Figure 2 The 2-DOF dynamic model of an unbalanced rotary engine with modal coupling 

 

Figure 2 shows that there are 2 degrees of freedom in plane (x,y) and that there is an unbalanced 

mass m that rotates at a distant r from the center of the main mass of the engine M with an angular 

velocity of w. 

The diagonal spring k' is added in order to couple the modes of vibrations and equations. The 

equation for the motion of the dynamic model is written in Equation 1: 
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where M is the mass of the rotary engine, m is the mass of the unbalanced rotation, r is the radius 

of the unbalanced mass form the axis of rotation, w is the angular velocity, and t is time. 

By using Matlab Simulink, the equation of motion was simulated, and the behavior of the 2-DOF 

model was studied. It should be mentioned that nearly zero damping was considered for this 

simulation. The values of the variables that were considered and assigned for this simulation are 

as follows: 

M  = 20 kg 

m  = 0.6 kg 

r  = 0.15 m 

w  = 5000 rpm 

Θ  = 60o 

k  = 1.8 × 107 N/m 

k1  = 1×k 

k2 = 0.75×k 

k’  = 0.35× k 

c1 and c2 = 0.0005 N.s/m 

The block diagram of the 2-DOF model (also called the passive system) by Matlab Simulink is 

represented in Figure 3. After executing the simulation by Matlab Simulink in a 120-seconds time 

span, the results were obtained in both time and frequency domains. Figure 4 represents the 

obtained results. 

As seen from the results in Figure 4, for direction x, the amount of amplitude is around 4.8 mm, 

and for direction y, the amplitude is around 3.1 mm. There are also 3 frequency pikes for each 

direction with almost the same hertz.   
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Figure 3 The block diagram of the 2-DOF dynamic model (passive system) 

 

 
                                         (a) ‘x’ Frequency                                                         (b) x(m) 

 
(c) ‘y’ Frequency                                                       (d) y(m) 

 

Figure 4 The obtained results of the 2-DOF model in time domain  and frequency domain 

(passive system) 

 

3. CONTROL STRATEGY AND ITS SIMULATION 

To reduce the noise and vibrations of the 2-DOF dynamic model of an unbalanced engine, the 

AFC method is taken into consideration. Figure 5 shows the schematic diagram of the AFC loop. 
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Figure 5 The block diagram of active force control 

 

The main AFC equation is obtained by calculating the disturbance Fd as in Equation 2:  

 

 d EMF F m a 
  (2) 

 

where F is the force that is applied by the actuator, a represents acceleration, and mEM is the 

estimated mass. The value Fd is later multiplied through the inverse transfer function of the 

actuator and, at the end, is summed up with the signal of the PID control. More detail of the 

analysis of the AFC methodology is explained by Burdess and Hewit (1986). 

To simulate the control strategy, Matlab Simulink was implemented, and in order to tune the PID 

controller, the Ziegler-–Nichols method was taken into consideration afterwards for better 

performance the values which were obtained for the PID controller were manipulated by crude 

approximation. The values of the estimated masses were obtained by the trial-and-error method. 

The Simulink block diagram of the control strategy is shown in Figure 6 (the active system). The 

obtained values for the estimated masses for each direction of the degree of freedom are written 

below and they were obtained from Mohebbi and Hashemi (2016), and trial and error: 

For the horizontal direction x:  

Estimated mass (mEM): 6.3 

Actuator coefficient: 6.0 

Proportional value for the PID controller: 2.50 

Integrational value for the PID controller: 

4.10 

Derivative value for the PID controller: 6.40 

 

For the horizontal direction y:   

Estimated mass (mEM): 5.8 

Actuator Coefficientcoefficient: 5.7 

Proportional value for the PID controller: 2.20 

Integrational value for the PID controller: 3.65 

Derivative value for the PID controller: 6.25 
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Figure 6 The Simulink block diagram of the control strategy (active system) 

 

4. RESULTS AND DISCUSSION 

At first, the control system was considered to be operating with only having PID controllers, 

meaning that the AFC loop was not engaged. Afterwards the simulation was executed again but 

with the difference that the control system was operating with both PID controllers and the AFC 

loops engaged.  

 
                                          (a) PID + AFC                                                            (b) PID 

 
 

                           (c) PID + AFC (frequency domain)                          (d) PID (frequency domain) 

Figure 7 Results of the control system for the horizontal (x) direction 
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Figure 7 and Table 1 show the obtained results of the simulation for the horizontal x direction x, 

in both the time and frequency domains. It can be seen that, when the control system is operating 

with only PID controllers, the amplitude of the vibrations reduces (to 2.8 mm) in comparison to 

the case in which the dynamic model was operating without any controllers (passive system), and 

the frequency domain results show that the pikes have reduced from 3 to 1. On the contrary, when 

the control system is operating with the AFC loop involved, from the obtained results, it can be 

seen that the amount of amplitude reduces to less the 0.1 mm and the amplitude of the frequency 

reduces to nearly zero. 

Figure 8 and Table 1 show the results obtained from the simulation in the vertical direction y, and 

again it can be seen that, for both the time and frequency domains, when the control system is 

operating with only PID controllers, the vibrations reduce to less than 1.5 mm, but when the AFC 

loop is engaged with the PID controllers, the amplitude reduces to less than 0.2 mm. The same 

situation is observed for the frequency domain results. 

 

 
                                           (a) PID + AFC                                                          (b) PID 

 

 
                           (c) PID + AFC (frequency domain)                          (d) PID (frequency domain) 

Figure 8 Results of the control system for the vertical (y) direction 

 

Table 1 Obtained results 

Direction x (Normal load) y (Normal load) x (Overload) y (Overload) 

PID 2.8 mm 1.5 mm 4.5 mm 3.0 mm 

PID + AFC x < 0.1 mm y < 0.2 mm x <0.3 mm y <0.4 mm 

 

In order to examine the robustness of the control system when the external forces were increased, 

another simulation was executed, in which both the unbalanced mass and the rotational velocity 
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were increased from 0.6 kg to 1 kg and from 5000 rpm to 6000 rpm. The time domain results of 

this simulation are shown in Figure 9 and Table 1 for both directions x and y, and it can be seen 

that, when the control system is operating with both PID and AFC, the vibrations are still less 

than 0.5 mm in amplitude.   

 

 
                                        (a) PID + AFC (y)                                              (b) PID + AFC (x) 

Figure 9 The results of the control system when both unbalanced mass and rotational velocity are 

increased to 1 kg and 600 rpm, respectively 

 

5. CONCLUSION 

A novel 2-DOF dynamic model of an unbalanced rotary engine was designed, in which it also 

has the effect of modal coupling. The behavior of this model was simulated, observed, and 

studied. In order to reduce the vibrations and noise in the designed dynamic model, the AFC 

method was implemented. After designing and tuning the PID and AFC parameters, the 

simulation results were obtained. From the obtained results, it was noticed that, when the control 

system is operating with only PID controllers, the vibrations were reduced but not with a high 

level of amplitude. On the contrary, while the control system was operating with both PID and 

AFC, the amplitude of the vibrations was reduced to a very noticeable amount. This situation was 

also was observed in frequency domain results as well. Also, in order to examine the robustness 

of the control system, both unbalanced mass and rotational velocity were increased, and the 

obtained results proved that, when the control system is equipped with the AFC loop, the 

vibrations still are reduced to less than 0.5 mm.   
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