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ABSTRACT 

In this paper, we propose a design and implementation of a Direct Memory Access Controller 

(DMAC) as a part of an SoC. The main purpose of the DMAC design is to integrate it into a 

System on a Chip (SoC) for the exchange of a large volume of data between the memory and 

peripherals at high speed. The proposed DMAC works on Advanced Microcontroller Bus 

Architecture (AMBA) specifications. Internally, these specifications define two buses, Advanced 

High-performance Bus (AHB) and Advanced Peripheral Bus (APB). The Direct Memory Access 

(DMA) controller functions as the bridge between AHB and APB and allows them to work in 

parallel. It works either in buffer or non-buffer data transfer mode, according to the peripheral 

speed. This is synchronized with an asynchronous FIFO. Fast data reads can be achieved by using 

an AMBA based DMA controller with a processor in the SoC. This means that the DMAC 

provides a high volume of data transfer. Hence, the proposed DMAC is a better option for high 

volumes of data, as well as for timing. It can be concluded that if using this AMBA-based DMA 

controller the issues of high speed and high volume data have been resolved. Comparison is made 

with ARM processors, such as Cortex A8 and ZC702, and design comparison with Xilinx DMA 

is also made. The DMAC is viewed as a more appropriate choice. 
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1. INTRODUCTION 

The purpose of DMA is to reduce the load on the processor. As the term indicates, it accesses 

memory directly for peripheral devices. If DMA is used with a processor, then data access from 

the memory is made by the DMA instead of the processor. DMA permits peripheral devices to 

access the memory directly, without dependency on the processor. Hence, the processor can 

execute other tasks concurrently, while the DMA is accessing the memory. As such, the overall 

performance of the system is boosted (Aljumah & Ahmed, 2016). DMA appears to be an easy 

concept, but system implementation with other hardware subsystems is cumbersome. DMA has 

many other vital applications, such as network cards, graphics cards and disk drive controllers. 

In computer systems, DMA plays a significant role in accessing the memory, and is a vital part 

or entity of an embedded system. Moreover, it plays a crucial role in SoC systems, providing 

fairly good speed for transferring data to externally connected peripheral devices. The 

performance of DMA improves when it works with a bus architecture.  This is available in the 

design literatures of DMA using bus architectures. Intel designed the first DMA, which known 

as IC 8237. In 1981, IBM used DMA IC 8237 for the first time in its products. 
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It uses bus architecture, with industry standard architecture (ISA) to improve its performance and 

was designed to transfer data between the system memory and peripherals (Zayati et al., 2012; 

Oded, 2012). The DMA design had four channels and transferred 1.6 megabytes of data every 

second. The individual channels had 64 kilobytes of memory address and were capable of 

transferring 64 KB of data with a single programming instruction (Barry, 1997). Initially, the 

system bus and ISA bus were identical. As the CPU of the IBM AT was cloned to work at higher 

frequencies than an ISA expansion bus, they were separated. An ISA bridge was used for 

separation (Hou, 2013). 

In 1992, the Peripheral Component Interface (PCI), a new bus architecture, was introduced. 

Communication between the PCI and ISA was through the board. Subsequently, a PCI to ISA 

adapter was recommended (Jinbiao, 2013); for this reason, the basic architectural design used to 

contain an adapter block of logic. The hardware block, therefore, includes PCI bus interface 

circuit design, ISA bus interface circuit design and an I/O finding module logic block to find the 

peripherals (Hou, 2013). The PCI-bus architecture works on the principle of the master and the 

master will only have full control of the bus at a time. Only using certain arbitrary techniques, 

multiple devices can access the bus. An enhancement in the bus architecture took place when the 

concept of packet switching in full duplex mode was used to interface multiple devices and 

system memory. This enhanced the bus architecture and was termed PCI express (PCIe) (Li et 

al., 2009; Anand, 2013; Shengwei, 2016). It had an x1 link pair in its architecture, which contained 

channels for transmitting and receiving separately. Therefore, bandwidth was doubled compared 

to the previous architecture. 

Apart from these buses for DMA operation, embedded products employ a very useful specific 

bus architecture in SoCs, known as advanced microcontroller bus architecture (AMBA), which 

is a registered trademark (ARM, 2017) in the IC industry for Advanced Reduced Instruction Set 

Computer (RISC) Machines (ARM Ltd). Subsequently, by the end of 1997 the first native AMBA 

interfaces with cache memory cores were introduced. AMBA was an interconnect specification 

(on-chip), which was used for managing and connecting the various functional blocks under the 

SoC. It provided support to various controllers, processors, multiprocessor systems and 

peripherals and was an open standard system in the industry. Two types of bus system were 

defined in the specification of AMBA architecture, namely AHB and APB. Nowadays, AMBA 

is widely used in Application Specific Integrated Circuits (ASIC)-based and SoC-based modern 

mobile devices. Such products use state machines separately for transmission and reception, 

achieving moderate data transfer rate (Berawi, 2013; Ahmed et al., 2015; Ejidokun et al., 2018). 

In this proposed research study, we designed a direct memory access controller (DMAC) for 

embedded system-based products, working on advanced microcontroller bus architecture 

(AMBA). DMA performance and data transfer speed for large volumes of data improve when it 

uses bus architecture such as AMBA. In this way, we first improved the performance of the DMA 

controller and then used this DMA engine in the embedded system to improve the performance 

of the system and of the processor. The performance characteristics of the embedded processor 

with the DMA controller are consistently better than those without the controller. These 

performance characteristics are presented in an article on Cypress Semiconductor (Gupta & 

Natarajan, 2010). 

The proposed DMA engine was found to have superior speed and data transfer rates compared to 

the existing DMA controller used in Xilinx Embedded FPGA (Faezeh & Mohammad, 2017) and 

the Xilinx logic core IP XPS Central DMA Controller (Xilinx, 2010). A comparison is made in 

the discussion in section 4. Subsequently, it is explained how the proposed DMAC is better at 

transferring data compared to the existing ARM cortex-A8 processor and ZC 702 processor. The 

design frequency of the proposed DMAC is achieved as 478 MHz, with the use of only 167 LUTs 
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as area occupation in the FPGA Spartan 3 device. This is better than that of the existing DMA 

shown in Table 4 and of the xilinx and cortex-A8 processor. Therefore, the proposed 

design provides rich features, while keeping the gate count low. This DMA controller can be used 

for transferring data, while keeping the processor in a very light state when integrated with the 

SoC. The design is implemented in Field Programmable Gate Array (FPGA) Vertex family. 

The paper is organized as follows: section 2 consists of the methodology, while section 3 presents 

the performance and results. Sections 4 makes an analysis and discussion to suggest the scope for 

further research work. Section 5 is the conclusion and is followed by the list of references. 

 

2. METHODOLOGY 

2.1.  DMA Principle 

Direct memory access (DMA) is a technique for transferring data between main memories and 

requesting input-output devices, and vice versa, independent of the processor. The principle of 

accessing data independently for the input-output device from the main memory is shown in 

Figure 1. DMA can be used for intra-chip data transfer in multi-core CPUs and for copying data 

transfer between the storage systems. The hardware entity which performs the address generation 

and reading and writing operations is called a DMA Controller (DMAC).  For data transfer, the 

DMAC is configured by the processor, while continuing its individual function. At the instant the 

processor is granted the system bus, the DMAC performs all the functions of the input and 

output device. 

 

 

Figure 1 DMA controller principle. Data transfer between input output devices and memory flow-

through and fly-by 

 

During data transfer operations, DMAC sends one control signal to the processor, known as the 

bus request (BR) signal.  In response to the BR, the processor completes its current job and sends 

a signal called the bus grant (BG). Once the BG is received, the DMAC takes hold of the CPU 

bus and initiates the signal required for the data transfer operation. DMA works in two modes: 

flow-through and fly-by. In the first of these, the data transfer between the memory and input-

output devices is through the DMAC, while in the second mode the transfer is made when the 

DMAC writes the address and control signals onto the bus and gives access to the device for 

transfer. This will transfer data between the I/O ports and memory address, but not between more 

than one I/O port and memory location. Before the DMAC transfer is configured by the processor, 

the I/O address, read/write memory address, data size, and transfer modes are written in the 

DMAC register. A similar DMA principle is used in the proposed AMBA architecture-based 

system for embedded products.  
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2.2.  Proposed Architecture 

2.2.1. AMBA system 

An AMBA based DMA controller for the SoC is proposed for embedded system products, in 

order to access the data between the memory and connected devices. Figure 2 shows a generic 

system based on AMBA, which consists of two types of bus: an Advanced High-Performance 

Bus (AHB) and an Advanced Peripheral Bus (APB) (Aljumah & Ahmed, 2015). AMBA is 

generally used in several SoCs as an on-chip system bus (Sinha et al., 2014). It is an open standard 

for the 32-bit embedded processor. Presently, it stands as a benchmark for the SoC model (Flynn, 

1997). It provides various single transfer and bus transfer functions, in which the single data 

packet and the multiple data packets are exchanged. The ARM documentation is very useful for 

reference (ARM, 1999). Generally, an AMBA system is built using a processor, memory (on-

chip RAM), AHB/APB bridge and certain peripherals, such as UART, timer, interrupt and GPIO 

(general-purpose input/output) devices. 

 

 

Figure 2 Generic AMBA-based system 

 

a) Advanced High-performance Bus (AHB) 

The AHB is used in high-performance systems, and sustains a maximum of 128 bit transfer. It 

can also support several bus masters.  It generally comprises the AHB master, AHB slave, arbiter 

and decoder; it was introduced in AMBA 2, and subsequently improved in AMBA 3. In the 

simplest AMBA architecture, multiple masters are connected to multiple slaves. If more than one 

masters have to be used, arbiter will select one master at a time. One master can be connected to 

multiple slaves called AHB-Lite. This bus is placed at the processor side. 

b) Advanced System Bus (ASB) 

The Advanced System Bus (ASB) is a high-performance bus and is synchronous if multiple 

masters are connected to the arbiter, allowing access to the master using arbiter logic.  The ASB 

works on a pipeline approach, in which the address and data can be transferred concurrently. This 

bus is also placed at the processor side. 

c) Advanced Peripheral Bus (APB) 

This is a low-performance bus, which is adapted for connecting SoC peripherals. It is interfaced 

with a system bus (such as the AHB), using a link between the two. It allows the AHB master to 

address one of the slaves of APB system. It only makes a connection between master and slave, 

but it is not error free. This bus is placed at the peripheral side. 

2.3. Proposed DMA Block Diagram 

The proposed AMBA-based DMA controller architecture for SoCs is shown in Figure 3.  It is 

composed of a processor, embedded memory, AHB/APB bridge, peripherals, first-in first-out 

(FIFO- a buffer memory) and controller state machine. The DMA controller is divided into AHB 

and APB and functions in one master and many slaves mode (like the AHB-Lite protocol) and 

multiple masters and multiple slaves mode. 
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Figure 3 Proposed AMBA-based DMA 

controller for SoCs 

Figure 4 Single master connected to multiple 

slaves 

 

As it works in both master and slave mode, the master and slave interface work separately. An 

AMBA finite state machine works to control the two modes, Master and Slave by using these 

two interfaces. The FIFO block is for the synchronization between the peripherals and the 

processor speed while exchanging data from the memory. 

If we compare this architecture with the ARM Cortex A8 processor, the ARM cortex-A8 

processor does not support the master slave mode and there is no arbitrary mechanism for 

accessing the bus during read-write operations in it.  It is good in data transfer, but it is not an 

appropriate choice for high volume data transfer. The difference in architecture appears in the 

technical architectural product specification (ARM, 2019). 

Hence, it is well suited to AHB-lite protocol, in which one master is connected to multiple slaves, 

as shown in Figure 4. It does not require an arbiter block, as there is only one master to select. 

Single master with multiple slave operations are presented for the proposed DMA in Figure 4. 

A multiplexer is used to ensure that only one slave can hold or access the data bus at a single time 

from several slaves. The decoder selects the slave from the various options in order to perform 

the transfer operation. It also sets the selection input of the multiplexer at the same time. The 

multiplexer is used for selecting respective slaves for reading from and writing to the data bus. 

The DMA functions in multiple master and multiple slave mode. The format of this mode for the 

proposed DMA is illustrated in Figure 5. 

 

 

 

Figure 5 Multiple masters connected to 

multiple slaves 

Figure 6 Master slave data transfer operations through 

address and data bus 



314 Design and Implementation of a Direct Memory Access Controller  
for Embedded Applications 

Arbiter logic is used in this mode for selecting one or more masters from multiple options. In this 

logic, multiple masters may request the arbiter, but it only grants the request of one of these. A 

pipeline protocol is offered by this protocol, in which the transfer of address and data, as well as 

arbitration, can take place instantaneously. For example, in the Figure 5, there are two masters, 

Master 1 and Master 2. The arbiter grants the request of any one of the masters to access the bus. 

The AHB master then performs a burst transfer, in which multiple data element exchanges data 

from selected slave at a single time. The master-slave data transfer operations through the address 

and data bus for the proposed design are demonstrated in Figure 6. In this case, the processor 

initially configures the DMA, then the arbiter grants the request of an AHB master, which then 

obtains permission to use the bus. After gaining access, the data transfer into the AHB and FIFO 

is completed by the AHB master. This then requests hold or control of the APB, as arbitration is 

completed in association with the APB link. It obtains permission to use the bus and completes 

the data transfer process to the APB and FIFO. The APB and AHB operations are accomplished 

separately and independent of each other. Because of this, the DMAC is able to accomplish these 

two operations in parallel, as shown in Figure 3. The AHB side signals are presented in Table 1 

and the APB ones in Table 2. 
 

Table 1 AHB side signals 

Description 
Length 

(bits) 
Name 

System clock 1 CLK 

Reset is active low 1 RESET 

Bus request used by the master to request the bus 1 BUSREQ 

Indicates master has been granted the bus 1 GRANT 

Address bus of 32-bits 32 ADDR 

Four types of transfer: idle, non-sequential, sequential or busy 2 TRANS 

Indicates write or read transfer. High indicates a write transfer, 

and low a read transfer 
1 WRITE 

Size of transfer: byte, half word or word 3 SIZE 

Indicates if the transfer forms part of a burst 3 BURST 

Indicates if the transfer is an opcode fetch or data access 4 PROT 

Write operations, used for transferring data from master to 

slaves 
32 WDATA 

Read operations, used for transferring data from slaves to 

master 
32 RDATA 

High indicates transfer has finished 1 READY 

Status of transfer: okay, error, retry or split 1 RESP 

Slave selected 1 SEL 

 

Table 2 APB side signals 

Name 
Length 

(bits) 
Description 

CLK 1 The system clock 

RESET 1 Reset signal is active low 

ADDR 32 Address bus of 32-bits 

SEL 16 Specifies the slave selected and that data transfer is desired 

ENABLE 1 Enables signal 

WRITE 1 
Indicates read or write operations: high indicates write, and low 

indicates read 

WDATA 32 Bus driven by peripheral bridge during write operations 

RDATA 32 Driven by slave during read operations 
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3. PERFORMANCE AND RESULTS 

The high-performance DMA controller was built using AMBA architecture and implemented in 

Verilog hardware descriptive language (HDL). The efficacy of the simulation and synthesis was 

performed with the Mentor Graphic’s Modelsim tool and Xilinx, respectively. The simulation 

process was programmed for design strategy. It shows different test specifications for the reading 

and writing operations; Figure 7 displays the respective waveforms. 

The read operations are performed when access to the bus is granted. This design is synthesized, 

while simulation with Modelsim was found to be error free. Virtex-5 was selected as a target 

device and the synthesis procedure was conducted on an FPGA device. The synthesis results are 

tabulated in Table 3 for the area, maximum frequency and time. 

 

 

Figure 7 Read mode operations, 2-word transfer 

 

Table 3 Proposed DMAC synthesis results 

Design 
Max Frequency 

(MHz) 
Time (nsec) LUTs 

Cycles per 

sec 

DMAC 478 2.092 167 478 mega 

 

4. DISCUSSION 

The DMA controller design on the Xilinx FPGA device (Faezeh & Mohammad, 2017) works at 

a maximum frequency of 100MHz with a 100 Mbytes/Sec data transfer rate. The design uses 

around 4000+ LUTs. There is another DMA design by Xilinx (Xilinx, 2010) and implemented 

on Virtex 5 FPGA as the target device. This design works at a maximum frequency of 170 MHz, 

occupying 801 LUTs. Similarly, the basic DMA 8237 which works on ISA bus architecture 

provides a data rate of 1.6 Mbytes/sec (Zayati et al., 2012; Oded, 2012), whereas the proposed 

DMA controller achieves a maximum frequency of 478 MHz, with the use of only 167 LUTs on 

the same Virtex 5 device. Therefore, the proposed DMA design is a better choice in terms of 

speed, data transfer rate and area utilization. A performance comparison is shown in Table 4. 

From the results, a maximum frequency of 478 MHz, or 478,000,000 cycles/sec, is achieved. 

This means DMAC is able to transfer [4×478 M = 1912 megabytes/sec] 1912 MB/sec data. To 

better understand the role of DMA after integration into the SoC with the processor, we took two 

examples of the processors used in existing SoCs. An SoC-embedded processor such as the ARM 

ZC702 Zynq-700 Xilinx series processor works at a frequency of 200 MHz (Xilinx, 2017). The 
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data transfer rate of this processor with 32-bit data width results in 800 M bytes per second 

[4×200M = 800 megabytes/sec]. The second ARM series processor, the Cortex A8, is a 32-bit 

processor which works at a frequency range of 600 MHz to 1 GHz (ARM, 2019; Cadence, 2018). 

The average frequency can be taken as 800 MHz, which yields 3200 M bytes/sec [4×800 = 3200 

megabytes/sec] data transfer. A comparison is made in Table 5. 

 

Table 4 Performance comparison of proposed DMAC and existing DMA 

Sr. No. Design 
Max Frequency 

(MHz) 

LUT 

Utilization 

Transfer Rate 

(Mbytes/Sec) 

1 Proposed DMA 478 167 1912 

2 
DMA (Faezeh & 

Mohammad, 2017) 
100 4000 100 

3 
Xilinx DMA 

(Xilinx, 2010) 
170 801 680 

4 DMA 8237 - - 1.6 

 

Table 5 Transfer rate with respect to time 

Time Required 

for Transfer 

(msec) 

DMAC ZC702 Cortex A8 

Transfer 

Rate 

( Mbytes) 

Transfer 

Rate 

( Mbytes) 

Transfer 

Rate 

(Mbytes) 

0.01 0.01912 0.008 0.032 

0.1 0.1912 0.08 0.32 

1 1.912 0.8 3.2 

10 19.12 8 32 

100 191.2 80 320 

1000 1912 800 3200 

 

The proposed DMAC works at 478MHz maximum frequency, whereas the ARM series 

processors ZC702 and Cortex 8 work at 200 MHZ and 800 MHz respectively. DMAC is a 

separate entity and will only perform data transfer operations. This results in better performance 

when transferring large volume of data. On the other hand, the ARM series processor will perform 

multiple operations in parallel. Any single interrupt can divert the processor from its transfer 

operation at hand and force to attempt the new requested interrupt. In this way, it is effective in 

transferring large volumes of data and is consequently a better solution. A performance 

comparison graph is shown in Figure 8. 

Additionally, when DMAC is integrated with the processor in SoCs, it can off load the processor 

and perform fast and smooth operations, and simultaneously the processor can perform other 

operations side by side. In this way, system performance is boosted in terms of speed. The ARM 

Cortex processor works at higher frequency with respect to DMAC, hence it can 

transfer more bytes in the same time period. Nevertheless, DMAC is still able to send a 

considerable quantity of data. The data transfer rates between DMAC and ARM Cortex A8 

(Roberts-Hoffman & Hegde, 2009) are compared in Figure 9. 

The embedded processor Cortex A8 works at 800MHz but is not able to transfer a large volume 

of data at the same transfer rate. As the number of cycles increases, the transfer rate decreases. It 

is able to transfer data for 400 cycles or less at 800MHz and later it performs other concurrent 

operations. A comparison of the volume of data transfer by DMAC and Cortex A8 is tabulated 

in Table 6. The large volume of transfer is possible by using a choice of a DMA integration in 
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SoC with other entities including processor. A previous study has also focussed on this point 

concerning the ARM Cortex 8 processor (Roberts-Hoffman & Hegde, 2009) but considered it 

with an existing DMA. The DMAC inadvertently incorporated a significant volume of data 

transfer. Hence, using this DMAC we enjoy the benefit of a high volume of data transfer at 

increased transfer rate, which reduces stress on the processor. 

 

  

Figure 8 Performance graph of DMAC, ZC702 and 

cortex A8 
Figure 9 Rate of data transfer between DMAC 

and ARM cortex A8 for volume of data 
 

Table 6 Performance comparision for volume of data between DMAC and cortex A8 

Time Required to 

Transfer (msec) 

DMAC Transfer Rate 

(Mbytes) 

Cortex A8 

Transfer Rate (Mbytes) 

0.001 0.00191 0.0032 

0.01 0.01912 0.032 

0.1 0.1912 0.32 

1 1.912 3.2 

10 19.12 32 

100 191.2 320 

200 382.4 640 

300 573.6 960 

400 764.8 1280 

500 956 700 

1000 1912 1400 

 

5. CONCLUSION 

With regard to the performance characteristics of the proposed AMBA-based DMAC, based on 

the investigative observations we can state that it can be considered as a good alternative for SoC 

design. The volume of data transfer and timing are critical issues. This architecture is a good 

attempt at improving the characteristics of data transfer, and the DMAC has resolved both issues, 

which is highlighted by a comparison of the two cases. As illustrated in these, the suggested 

DMAC proves itself to be superior in the transfer of data at high speed; for example, in 

multimedia transfer operations. Future developments of this work could include extension to 

other peripherals, and the generation of a test bench in advanced verification language to 

stimulate the various peripheral modules connected. 
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