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ABSTRACT 

Road accidents are a major issue in Indonesia, and their number increases every year. Based on 

previous studies, mental fatigue is one of the biggest factors leading to road accidents and is 

majorly affected by mental workload. Driving duration is one of the factors that triggers mental 

fatigue. The prior literature cites electroencephalogram (EEG) measurement as the gold 

standard for measuring fatigue. However, there has been only limited study to examine the EEG 

indicators that are affected by driving duration, and the prior research still contains 

disagreements regarding the best EEG parameter for use in measuring fatigue. Therefore, this 

study aimed to evaluate the effect of driving duration on EEG fluctuation and determine the 

best EEG parameter related to fatigue. Seven participants were asked to spend three hours 

driving in a medium-fidelity simulator. A one-way ANOVA and correlation analysis were 

performed to measure the effect of driving duration on the EEG indicators and determine the 

correlation of the indicators. A Receiver Operating Characteristics (ROC) curve was also 

utilized to determine the variable with the greatest correlation with the subjective sleepiness 

indices. The results showed that at the end of three hours’ driving, there was an increment in 

delta and theta activities, followed by a decrement in alpha and beta activities. In addition, the 

correlation of all bands was significant, with positive results for the alpha-beta and theta-delta 

bands, and a negative result in relation to each other. Furthermore, the results from the ROC 

curve revealed the Relative Power Ratio (RPR) of theta, the RPR of alpha, and the ratio of 

θ/α+β to be the best indicators among others, demonstrating a high degree of accuracy (above 

85%). 
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1. INTRODUCTION 

Fatigue is one of the fundamental factors contributing to road accidents. According to Zhang et 

al. (2013), fatigue contributes to 20% of road accidents, as it stimulates vigilance loss (Desai & 

Haque, 2006) and performance decrement (Williamson et al., 2011). Previous research has 

settled on a definition of fatigue as a non-optimal psychophysiological condition that affects 

performance and is caused by time of day, homeostatic, and task-related factors (May & 

Baldwin, 2009; Williamson et al., 2011; Phillips et al., 2015).  

Driving duration is one of the factors that induces fatigue (Williamson et al., 2011; May & 

Baldwin, 2009). Previous research has investigated the driving duration effect on physiological 

                                                      
*Corresponding author’s email: mayaarlini@s.itb.ac.id, Tel: +62-22-2504551, Fax: +62-22-2509406 
Permalink/DOI: https://doi.org/10.14716/ijtech.v8i6.716 



1090 Effect of Driving Duration on Egg Fluctuation 

and performance decrement (Schleicher et al., 2008; Di Stasi et al., 2012; Wang & Pei, 2014; 

Gastaldi et al., 2014). However, most of the prior research has studied the effect of short driving 

duration, which is defined as below two hours (Schleicher et al., 2008; Di Stasi et al., 2012; 

Gastaldi et al., 2014). Wang and Pei (2014) investigated the effect of four hours of driving on 

performance measures; however, a study looking at the possibility of using other indicators has 

not yet been conducted. 

Electroencephalogram (EEG) has been accepted as the ‘gold standard’ of fatigue measurement 

in much of the prior literature (Jap et al., 2011; Jagannath & Balasubramanian, 2014; Perrier et 

al., 2016). Previous studies have suggested that prolonged driving duration had varied effects 

on EEG fluctuations, consisting of disappearance of the alpha band with increments in theta and 

delta (Cajochen et al., 1995), increments in the alpha and theta bands (Jagannath & 

Balasubramanian, 2014; Perrier et al., 2016), and a decrement in the beta band (Otmani et al., 

2005). Furthermore, Jap et al. (2011) studied the effects of the monotony of train driving for 30 

minutes and compared several parameters of EEG; θ/β, θ/(α+β), (θ+α)/β, and (θ+α)/(α+β). 

Parameter (θ+α)/β was concluded to be the best indicator of fatigue. Yet the aforementioned 

studies continued to show disagreement with regard to the best EEG parameter to measure 

fatigue. There is thus a need to conduct an in-depth study that focuses more on EEG indicators 

and driving duration as a factor that induces fatigue. 

The novelty of this study is seen in how it addresses several parameters of EEG that are valid as 

measurements of driving fatigue, as the previous research still contained disagreements 

regarding this matter. Driving duration was used as an independent variable that induces 

fatigue. Thus, this study aimed to investigate the effect of a long driving duration on EEG 

fluctuation and determine the best EEG parameter to measure fatigue. 

 

2. METHODS 

Seven commercial drivers aged 25 to 35 years were involved in this study. They were asked to 

drive a medium-fidelity driving simulator for three hours. The driving simulator was a Logitech 

series with three pedals and embedded Citycar Driving software. This research used an 

electroencephalogram (EEG) headset (Emotiv, US) as the device to measure fatigue. The 

devices used in the research are shown in Figure 1. 

The participants were prohibited from consuming caffeine and smoking prior to the experiment. 

They had slept for a minimum of seven hours prior to the experiment and their activity levels 

were measured using an activity tracker (Fitbit Charge HR, US). They consumed meals 

provided by the researcher on the day of the experiment.  

Emotiv EEG was measured before and after the driving task. The measurement points were six 

frontal channels (F3, F4, F7, F8, AF3, and AF4) out of a total of 16 channels (as shown in 

Figure 2). This brain measurement followed previous studies (Otmani et al., 2005; Jagannath & 

Balasubramanian, 2014; Perrier et al., 2016), which stated that the frontal part of the brain 

controls cognitive skill and is affected by fatigue. 

EEG data were taken for a period of five minutes before and after driving and these were then 

aggregated into one minute each for advanced measures, based on Gillberg et al. (1996). The 

EEG data processing was conducted as per the five steps below: 

1) Pre-processing (Band Pass Filter) to eliminate the noise of outside brain frequency signal 

(below 0.1 Hz and above 25 Hz, based on Yeo et al. (2009)) 

2) Signal decomposition (Fast Fourier Transform), which decomposited the brain waves 

based on their frequency (delta for 0–4 Hz, theta for 4–7 Hz, alpha for 7–13 Hz, and beta 

for 13–20 Hz), based on Tatum (2014) 
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3) Power Spectral Density processing that measures the power of brain waves (in dB unit) 

4) Formulation of the Relative Power Ratio (RPR) to determine the variables of alpha, beta, 

theta, and delta, using the following formula: 
 

            (1) 

5) Determine the ratio of the EEG parameters (θ/β, θ/(α+β), (θ+α)/β, and (θ+α)/(α+β)). 
 

 

   

   

Figure 1 The devices used in this research  

(Source: emotiv.com, citycardriving.com, and photos taken during the experiment) 

 

 

Figure 2 The six measurement points used in this research 
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Besides using EEG measurement as an objective indicator, this study also employed a 

subjective scale as a reference point for fatigue measurement. The Karolinska Sleepiness Scale, 

which consists of a 9-point scale, was used in this study based on its validity as stated in several 

previous studies (Kaida et al., 2006; Abe et al., 2011; Jagannath & Balasubramanian, 2014).  

A one-way ANOVA with the driving duration factor was performed on each EEG indicator, 

along with correlation analysis. A Receiver Operating Characteristics (ROC) curve was also 

utilized to determine the best parameter to measure fatigue, along with the sensitivity and 

specificity of each parameter (Abe et al., 2011). A comparison of each band was also discussed 

along with the previous literature. 

 

3. RESULTS AND DISCUSSION 

3.1. Results 

The descriptive statistics for RPR in each band (beta, alpha, theta, and delta) and all ratios (θ/β, 

θ/(α+β), (θ+α)/β, and (θ+α)/(α+β)) can be seen in Table 1. 

 

Table 1 Descriptive statistics for RPR and ratios in the beta, alpha, theta, and sdelta bands 

Variables Before Driving After Driving 

RPR alpha 0.239 ± 0.003 0.232 ± 0.010 

RPR beta 0.289 ± 0.004 0.266 ± 0.041 

RPR theta 0.222 ± 0.002 0.228 ± 0.010 

RPR delta 0.248 ± 0.006 0.271 ± 0.041 

θ/β 0.769 ± 0.019 0.895 ± 0.244 

θ/(α+β) 0.421 ± 0.009 0.467 ± 0.085 

(θ+α)/β 1.595 ± 0.022 1.788 ± 0.379 

(θ+α)/(α+β) 0.873 ± 0.010 0.936 ± 0.119 

 

From Table 1, the alpha band decreased by 2.3% in period 2 (after driving) compared to before 

driving. The beta band also decreased by 6.8% in period 2. However, there were increments in 

the theta and delta bands of 2.1% and 8.2%, respectively. All of the ratios of θ/β, θ/(α+β), 

(θ+α)/β, and (θ+α)/(α+β) increased after driving by around 7 to 16%, suggesting the influence 

of the theta, alpha, and beta bands on fatigue. All of the measured parameters showed 

significant changes in relation to driving duration. The statistical results are shown in Table 2. 

 

Table 2 Statistical results of RPR 

Variables F p-value 

RPR Alpha 6.94 0.011 

RPR Beta 6.06 0.017 

RPR Theta 6.59 0.013 

RPR Delta 6.17 0.017 

θ/β 5.29 0.026 

θ/(α+β) 5.70 0.021 

(θ+α)/β 5.17 0.027 

(θ+α)/(α+β) 5.55 0.023 

 

The statistical results show that all bands and ratios had a significant difference from before to 

after driving. Correlation analysis (Pearson-p) also revealed all bands to have significant 

correlation, with alpha-beta and theta-delta having positive correlation (Pearson-p of 0.989 and 
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0.994, respectively), and alpha-theta, alpha-delta, beta-theta, and beta-delta displaying negative 

correlation (Pearson-p of -0.993, -0.992, -0.995, and -1.000, respectively).  

Moreover, Karolinska Sleepiness Scale (KSS) was set as the reference point of fatigue, which 

was divided into two categories: alert condition (KSS 1–6) and fatigue condition (KSS 7–9), in 

line with Pauly and Shankar (2015). The EEG data were then mapped onto the reference points 

and analyzed using the ROC curve. The cutoff point, accuracy, sensitivity, and specificity were 

obtained for each of the parameters, as shown in Table 3. 

 

Table 3 Results from receiver operating characteristics 

Variables AUC p Cutoff value Sensitivity Specificity 

RPR Alpha 89.4% <0.001 0.238 96% 64% 

RPR Beta 85.9% <0.001 0.286 88% 76% 

RPR Theta 91.2% <0.001 0.223 88% 88% 

RPR Delta 85.6% <0.001 0.251 92% 76% 

θ/β 86.7% <0.001 0.779 92% 76% 

θ/(α+β) 89% <0.001 0.426 92% 80% 

(θ+α)/β 86.4% <0.001 1.604 96% 72% 

(θ+α)/(α+β) 86.7% <0.001 0.879 92% 76% 

 

The results in Table 3 reveal RPR theta, RPR alpha, and θ/(α+β) to be the three parameters with 

the highest AUC scores. These three parameters also demonstrated good sensitivity and 

specificity (from 64 to 96%). It can thus be concluded that the participants were classified as 

being in a fatigued state if they had an RPR theta in excess of 0.223, RPR alpha higher than 

0.238, and θ/(α+β) greater than 0.426. The ROC curve for RPR theta can be seen in Figure 3. 

 

 

Figure 3 ROC curve of RPR theta 

 

This study utilized seven participants and had a sufficient sample size. The power of the 

experiment was calculated using effect size d (Maxwell & Delaney, 2003). The mean and 
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standard deviation of all of the average parameters of EEG before and after driving were 

compared using formula 2. 
 

                 (2) 

 

The value of effect size d for this data was 1.65. According to the table, the minimum sample 

size required to run the experiment with β = 0.5 and two levels is above five participants. It can 

thus be concluded that this study had a sufficient sample size.  

3.2. Hydrodynamic Performance 

The aim of this study was to investigate the effects of long driving duration on EEG fluctuation 

and to determine the best EEG parameter to measure fatigue. In general, this study shows a 

promising result that complements the previous research. 

The major findings of this study consist of two parts: fluctuation of EEG and best EEG 

parameter. The results showed an alpha-beta band decrement and theta-delta increment in line 

with fatigue onset, and this was consistent for all of the participants. The result is slightly 

different from those achieved by Jagannath and Balasubramanian (2014) and Perrier et al. 

(2016), whose results showed an increment in the alpha-theta band for fatigue. However, the 

result is in accordance with Cajochen et al. (1995), who stated that there is an increment in the 

theta-delta band as an indication of fatigue, and Otmani et al. (2005), who found a decrement in 

the beta band. On the other hand, the ratio of the EEG parameters (θ/β, θ/(α+β), (θ+α)/β, and 

(θ+α)/(α+β)) were all significantly affected by driving duration, with the after-driving period 

having a higher ratio than the before-driving period. This shows that the alpha, beta, and theta 

bands have a major effect in terms of their ability to indicate fatigue onset, which is in line with 

the results of previous studies (Otmani et al., 2005; Cajochen et al., 1995; Jagannath & 

Balasubramanian, 2014; Perrier et al., 2016). 

The results of this study showed that the RPR value of the theta band may present a robust 

indicator for detecting fatigue, as shown by the highest accuracy from the ROC curve, followed 

by RPR alpha and θ/(α+β). These results complement those from previous research by Jap et al. 

(2011) that stated a ratio of (θ+α)/β as the best indicator of detecting fatigue.  

The implication of this research is related to fatigue onset. Driving for three hours increases a 

driver’s subjective sleepiness from an alert to a fatigue condition (one participant experienced 

heavy fatigue, five participants experienced fatigue, and one participant experienced slight 

fatigue). It can thus be concluded that driving for three hours gives rise to varying fatigue 

conditions. A range of countermeasures are therefore needed, such as providing resting time 

and developing driving interventions. 

The practical implications of this study relate to transport safety in general. EEG signals, 

particularly RPR theta, can be employed as a practical parameter for detecting fatigue when 

driving. Technology utilizing EEG signals could thus be developed to contain a fatigue 

detection function using RPR theta and fatigue interventions using visual, auditory, or haptic 

countermeasures.  

The limitation of this study mainly relates to the instruments used. This study utilized a 

medium-fidelity driving simulator as the instrument to simulate real driving conditions. Based 

on Meuleners and Fraser (2015), the behavior of participants driving in a simulator is not 

significantly different from that seen in real driving situations. Davenne et al. (2012) stated that 

driving for four hours leads to a significant decrease in performance, yet this does not extend to 

subjective fatigue. It can thus be concluded that the driving simulator has relative validity that 
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represents real driving. This study also suggests that real driving or a high-fidelity simulator can 

be utilized in future research to obtain better results and external validity.  

 

4. CONCLUSION 

This study aimed to evaluate the effects of driving duration on EEG fluctuation and determine 

the best EEG parameter related to fatigue. This research used three hours of driving in a 

medium-fidelity driving simulator and measured EEG before and after the experiment. The 

results show that the alpha, beta, theta, and delta bands have a significant difference from 

before to after driving, with an increment in the theta-delta band and a decrement in the alpha-

beta band. The correlations of all bands show significant results, with alpha-beta and theta-delta 

having a positive correlation, and alpha-theta, alpha-delta, beta-theta, and beta-delta having a 

negative correlation. Furthermore, the results from the ROC curve reveal the RPR of theta, RPR 

of alpha, and the ratio of θ/α+β to be the best indicators among others, with accuracies of 

91.2%, 89.4%, and 89%, respectively. 
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