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ABSTRACT 

A phase field model has been successfully constructed to simulate the behavior of the semi-

crystalline polymer solidification phenomenon. It is a model that has been widely and 

successfully utilized to simulate solidification phenomena in metals. However, the non-conserved 

phase field equation can be extended to include unique polymer parameters that do not exist in 

metals; for example, polymer melt viscosity and the diffusion coefficient. In order to extend this 

model, we incorporate free energy density and non-local free energy density based on the 

Harrowell-Oxtoby and Ginzburg-Landau theorems for polymer. By using the expansion principle 

for the higher order of binary phase field parameter, a full modified phase field equation can be 

obtained. The solidification phenomenon in polymer is very important to optimize the final 

properties of the products. Here, we use our modified equation to investigate the effect of melting 

temperature on the rate of solidification. It was found that the rate of solidification is correlated 

with melting temperature in a non-straightforward manner. 
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1. INTRODUCTION 

The demand for geometrically complex plastic products has been rising over the past 20 years, 

and this trend may continue for a further 10 years. This preference for the use of plastics is 

partially due to their light weight (Corinaldesi et al., 2015) and the relative ease with which they 

can be manufactured (Atzeni et al., 2010) in comparison to other materials. In order to produce 

geometrically complex plastic products, it is very important to control the solidification and 

morphology of the melted plastic in both the injection/extrusion machine and mold. To control 

the solidification and morphology of melted plastic, the basic mechanism by which melted plastic 

becomes solid should be well understood. The basic mechanism of plastic solidification involves 

a connection between complicated conservation and transport laws as well as the micro phase 

transformation phenomena that govern the plastic/polymer melt flow and 

solidification/crystallization. However, it is very difficult to describe these connections 

analytically. Advances in computational modeling can address this difficulty and enhance the 

prediction of solidification and morphology during the product manufacturing process.  

Solidification in polymers differs from that in metals due to the higher melt viscosity and lower 

thermal properties (such as melting temperature). The high melt viscosity, low melting 

temperature, and partial crystallization characteristics of polymers all have a major effect on 
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solidification, and morphological evolution in the manufacturing process of polymer products. 

Furthermore, the complicated kinetics involved in the solidification of polymers due to their 

molecular chain folding adds further difficulty to the task of physically describing them, when 

compared to metals. 

Various techniques have been used to model solidification in polymers. Lovinger et al. described 

single crystal growth from Poly (trifluoroethylene) in the melted phase using a diffusion 

mechanism explanation (Lovinger & Cais, 1984). Micheletti and Burger (2001) examined the 

non-isothermal solidification of polymers using a stochastic birth-and-growth-based algorithm. 

Raabe and Godara (2005) examined the kinetics and topology of polymer solidification using a 

three-dimensional cellular automaton model. Xu et al. (2005) discussed the solidification of 

isotactic polystyrene single crystals using the phase field method. In this paper, intrigued by the 

simplicity of the phase field model, we modify a phase field model that has been established in 

metal counterparts and calculate the solidification rate in polystyrene. 

Phase field theory has been used in diverse problems involving the microstructural evolution of 

materials. Phase field theory has been successfully employed to calculate the motion of interfaces 

and phase boundaries without explicitly tracking those interfaces (Warren et al., 2003); for 

example, it has been successfully used to model solidification in pure materials/compounds 

(Collins & Levine, 1985) and alloys (Wheeler et al., 1992). Warren et al. developed a two-

dimensional phase field model of grain boundary statics and dynamics for polycrystalline 

materials (Warren et al., 2003). In this paper, we extend the phase field model and simulate 

solidification in semi-crystalline polymer under the effect of melting temperature using phase 

field theory. 

 

2. EXPERIMENTAL  

2.1. Landau Theory  

To describe the Ginzburg-Landau (GL) theory, it is convenient to begin with the Ising model of 

magnetism (Provatas & Elder, 2005). According to this model, the energy of a second 

microscopic system can be described in terms of a collection of magnetic spins. The system has 

a domain of atoms, each of which carries a magnetic spin with the value 𝑠𝑖 = ±1 that shows 

whether an atom’s magnetic moment is pointing up or down. The energy of the system can be 

written as 

         (1) 

where J and B, respectively, are the coupling constant or pure energy that adheres to each spin 

and its interactions, and the external magnetic field (Ruderman & Kittel, 1954; Kittel, 2005). The 

first term of the equation sums up all of the energies that are caused by the interaction of each 

spin (“i”) with all other adjacent spins (“j”), while the second term adds the energy due to the 

interaction of each spin with an externally imposed magnetic field (B). This magnetic field in 

some cases can also be considered as the chemical potential of the system. 
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According to the Landau theory, the partition function of the system can be formulated from the 

Ising model of magnetism. The partition function of the system is given by 

 .     (3) 

The average magnetization (“m”) of the system can be considered as the order parameter 𝛹, 

which is defined as (Ruderman &Kittel, 1954) 

.     (4) 

Using Equation 3, we can compute the free energy function as follows 

,     (5) 

𝐹 = −𝑘𝐵𝑇(𝐽 ∑ ∑ 𝑠𝑖𝑠𝑗
𝑣
𝑗

𝑁
𝑖 ) − 𝑘𝐵𝑇 (𝐵 ∑ 𝑠𝑖

𝑁
𝑖 ).   (6) 

The free energy, F, is called the Landau free energy. We can obtain the free energy of each spin 

by dividing Equation 5 by the number of spins, N (Kittel, 2005): 

.   (7) 

From here, we can use the partition function to calculate the free energy per spin by introducing 

a new term:  

.     (8) 

where F is the free energy function derived from the partition function. Substituting this into 

Equation 6 yields: 

.    (9) 

If we consider the jump to be small, then 𝑓𝑒(𝑚, 𝑇)  can be expanded using a Taylor series. 

However, 𝑓𝑒(𝑚, 𝑇) is an even function, thus we only need to consider the even terms. 

 .   (10) 

Adding this back into our equation, we obtain 

.  (11) 

In our paper, we are interested only in the perturbation or “noise” that occurs in the system. Thus, 

we can omit the 𝑓𝑖 + 𝑓𝑒(𝑚, 𝑇0) term. One thing that needs to be considered is that first-order 

transitions typically occur along phases of different topological symmetry. For instance, there 

will be some broken symmetry. Correspondingly, a first-order transition terminates at a critical 

point, i.e., the point at which two co-existing phases merge into one. We can break this symmetry 

by adding to the equation a cubic-order term with a negative sign. 
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.  (12) 

2.2. Ginzburg-Landau Free Functional Energy 

According to the GL theory, the interaction energy between elements can be assumed to be 

spatially dependent, and it varies between any two elements. Let ϵ be the separation between two 

elements (i and j), then the mean internal energy U can be defined as (Ginzburg & Landau, 1950): 

   
1

1
      `   1
2

N

ij i j i j

i j i

U x x
 

   ò .    (13) 

Equation 13 can be elaborated using an algebraic identity, 
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Assuming that 𝜖𝑖𝑗 is negligible for any j > 𝑣 and substituting Equation 3 back into equation U, we 

obtain: 
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We can add another assumption to simplify the equation, which is the interaction energy per 

particle 𝜖𝑖𝑗 approaching 
𝜖𝑖𝑗

𝑣
 . 𝜖𝑖 is the isotropic mean energy over.  
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2.3. Phase Field Model 

A phase field model describes phase transformation using a crystal order parameter. The crystal 

order parameter distinguishes the two phases of liquid and solid in terms of  .   is defined as 0 

and 1 for liquid and solid respectively. The solidification process can be described as a continuous 

increase in the ψ value from zero to one. The solidification process of polymers can be modeled 

based on GL theory based on the fact that GL theory incorporates the change in free energy on 

the boundary to explain the transformation of phase. This theory explains the solidification of 

polymer under the effect of decreasing temperature and distance from the nuclei. In this theory, 

one needs to define the anisotropy coefficient to induce solidification. In metal solidification, the 

anisotropy coefficient (ε) will be greater than zero. However, in polymer solidification, the 

anisotropy coefficient (ε) is zero. When the value is greater than zero, the microstructure of the 

material becomes dendritic, while a zero value leads to the microstructure becoming spherulitic. 

In this section, we derive phase field theory from the definition of free energy. 

A phase field model begins with the definition of free energy. A classical phase field model of 

the solidification of pure material/compound has free energy that can be written as follows:  
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The free energy in the system basically consists of local free energy  ,localf T  and non-local 

free energy  ,gradf T . This non-local free energy  ,gradf T  can be represented using a 

gradient term.   can be interpreted by phase, but here let us generally interpret   as the crystal 

order parameter. The evolution of the crystal order parameter can be described as a standard GL 

approach: 
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where  is the mobility coefficient. This coefficient is defined as inversely proportional to the 

melt viscosity. To accommodate the dynamics of the interfacial surface, mobility is introduced 

as a function of the order parameter   . In the case of the dynamic of the crystal (solid)-liquid 

interface, the functional form of    would be more reasonable (Harrowel & Oxtoby, 1987). 

They derived the one-dimensional model of the crystal-liquid interface where the time and space 

evolution of phase   can be written as follows:  
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where K is the kinetics. If coupling of the motions between different timescales is weak, then the 

interface between the two parameters 1  and 2 can be written as: 
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The simplest form of 1f  and related 0f  can be written as 

  2 3 4
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Equation 5.b is the functional form of free energy that is used in this paper. For polymer, Equation 

5.b can be transformed to: 
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where W is the height of the energy barrier of nucleation,   is the unstable energy barrier, and 

0  is the stable solidification potential. In our calculation, we used three polymers/plastics: 

polypropylene (PP), polyethylene (PE), and polystyrene (PS) with the chemical structure shown 
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in Figure 1 and the physical properties shown in Table 1. According to (Xu et al., 2005), one can 

substitute Equations 20 and 21 into Equation 19 to obtain: 
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Assuming the process occurred in one dimension and was observed from a moving frame 

reference with a uniform velocity of υ = 𝜕𝜓/𝜕𝑡, Equation 25 can be re-written as:  
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According to (Harrowel & Oxtoby, 1987), by setting the boundary condition of ψ →  𝜁0 as x →

−∞ and ψ → 0 as x → +∞ ), we obtained 
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Figure 1 The chemical structure of: (a) polypropylene; (b) polystyrene; and (c) polyethylene 

 

Table 1 The thermophysical parameters of polymers (melting temperature and 

crystallization temperature) 

 

 

 

 

  

3.  METHODOLOGY  

For each polymer, we input a set of different ν values into Equation 27 and used the change of 

solidification surface at time t to plot Figure 2, which could be plotted using a standard home PC. 

In this calculation, it is assumed that the mobility value of all polymers is 105 because at this 

stage we are interested only in the thermal gap between the melting temperature and the 

crystallization temperature. All of the thermophysical parameters can be found in a polymer 

database. The thermodynamic parameters such as kinetic coefficient, density, free energy, etc are 

taken from Xu et al. (2005). 

 

4. RESULTS AND DISCUSSION  

Let us discuss the results obtained from Equation 27. Figure 2 shows the change of solidification 

surface in respect of time. The dots are obtained through calculations and the lines are fitted by 

assuming that the growth of crystal is linear at a small value of t. Our calculation shows that PP 

has the highest solidification rate (from the gradient), followed by PS and PE. This can be 

Polymer Tm0 (0C) Tm (0C) Tc (0C) 

PS 243 229 195 

PE 141 133.4 120 

PP 167 158 123 
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explained as follows. The solidification rate is dependent on the ratio between the difference of 

melting temperaturecrystallization temperature and equilibrium melting temperature (

  0

m mT T T ). This parameter is related to the heat dissipation that connects to the growth of 

crystal. PP has a higher value for this parameter compared to the other two polymers. This shows 

that in PP, heat dissipates faster and thus yields a high solidification rate. It can thus be seen that 

PP has a high relative difference between its melting temperature and crystallization temperature. 

Thus, to achieve equilibrium, PP needs to both dissipate heat faster and crystallize faster. 

 

 

Figure 2 The change of solidification surface, x, in respect of time, t 

 

The relation between the solidification rate and melting temperature is shown in Figure 3. 

Generally, a higher melting temperature yields a higher solidification rate, except for PS. 

However, the ratio between the difference of melting temperature - crystallization temperature 

and equilibrium melting temperature (   0

m mT T T ) is the one that relates directly to the 

solidification rate as this variable reflects the heat dissipation rate for each polymer. For this ratio, 

PP has a much higher value than the other two polymers and thus yields a high solidification rate 

despite its low melting temperature. In this calculation, we did not consider melt 

viscosity/mobility coefficient, which we suspect may change the results. However, it is difficult 

to predict the mobility coefficient as it may only be accessible via an NMR experiment. By 

assuming that the value of mobility is similar for every polymer, it is reasonable to use our 

approach.  

 

 

Figure 3 The difference in velocity of solidification, v, in respect of melting temperature, Tm 
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5. CONCLUSION 

We calculated that PP has the highest solidification rate (from the gradient), followed by PS and 

PE. This is due to the relatively large difference between the melting temperature and 

crystallization temperature for PP. Thus, to achieve equilibrium, PP needs to dissipate heat faster 

and crystallize faster. Generally, a higher melting temperature yields a higher solidification rate, 

except for PS. This shows that the melting temperature is not directly related to the solidification 

rate. There is a direct relation, however, for the ratio between the difference of melting 

temperaturecrystallization temperature and equilibrium melting temperature   0

m mT T T . 
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