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ABSTRACT 

This paper presents an application of the DKMQ24 element for error estimation using error 

estimator Z
2 

and various recovery methods such as Averaging (AVR), Projection (PROJ) and 

Superconvergent Patch Recovery (SPR). The stresses found by using these recovery methods 

were compared to the reference solution. It was found that the AVR and SPR methods gave 

better results than PROJ method. 
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1. INTRODUCTION  

The rapid advancement of technology in computation and material for civil engineering has 

encouraged construction designers to create more sophisticated and futuristic building. When 

dealing with complex structures, it is difficult to determine the deformation that occurs, as there 

is no exact solution. To understand such a structure, modeling of the structure, it is necessary to 

model the structure using numerical simulation. The Finite Element Method (FEM) is a 

numerical method which can be used to solve various problems in structures, soil mechanics, 

fluids, etc. More specially, FEM is an approximation method where the exact solution is 

estimated using a repetitive discretization process by increasing the element number or refining 

the element size. A discretization strategy must be taken in each mesh refinement process in 

order to obtain a solution that is as close as possible to the exact one.  

Errors in FEM are unavoidable; these may be caused by inappropriate models and numerical 

integration, inaccuracy of the numerical solution, or rounding errors in the numerical process. 

The errors produced in FEM are difficult to determine since complex problems usually have no 

exact solution. Therefore, an error estimator is developed to get a solution as close as possible 

to the exact one. 

A simple error estimator, called error estimator ‘Z
2
’, was proposed by Zienkiewicz and Zhu 

(1987) and can be applied easily in FEM programs. In addition, they also presented recovery 

methods, called Averaging (AVR) and Projection (PROJ). The application of error estimator Z
2
 

in plate bending problems was then presented by Zienkiewicz and Zhu in 1989. Triangular 

elements with uniform and adaptive meshes were used and it was found that error estimator Z
2
 

is very effective. Zienkiewicz and Zhu (1992a, 1992b, 1992c) also introduced the first 

superconvergent method, called the Superconvergent Patch Recovery (SPR) method, where the 

element nodal forces are recovered by the least square fit. Yunus et al. (1990) demonstrated the 
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effectiveness of the AVG and PROJ methods by analyzing plate and shell problems. However, 

these two methods are less precise than the SPR method. Another superconvergent method 

called Recovery by Equilibrium in Patches (REP), was proposed by Boroomand and 

Zienkiewicz (1997a, 1997b) and Boroomand et al. (2004). This method uses the equilibrium of 

the solution to produce recovered internal forces. A recovery method called the Recovery of 

Stresses by Compatibility in Patches (RCP) was proposed by Ubertini (2004). Other recovery 

methods have also been presented by different authors, including Zhang and Naga (2004) and 

Payen and Bathe (2011, 2012). 

In FEM, the use of many different types of elements have been proposed by different authors. 

DKMT and DKMQ elements, which are able to analyze thick to thin plate bending problems 

have been proposed by Katili (1993a, 1993b). DKMT and DKMQ elements are free of shear 

locking in thin plate problems and give good results for thin to thick plate problems. The 

formulation of DKMQ and DKMT plate elements is based on the Reissner–Mindlin hypothesis 

(Mindlin, 1951; Reissner, 1972) which only requires C
0
 continuity. Batoz and Katili (1992) 

proposed another triangular element called DST-BK, based on the free formulation method. 

The application of DKMQ element in composite structures has been presented by (Katili et al., 

2015). Another application of DKMQ for buckling analysis is presented in (Wong et al., 2017) 

and for stochastic finite element analysis in (Mahjudin et al., 2016) 

Moreover, the development of the DKMT element for error estimation in composite plate 

structures has been presented by Maknun et al. (2015). Meanwhile, Katili et al. (2015) have 

presented the development of the DKMQ plate element to the DKMQ24 shell element using the 

Naghdi/Mindlin/Reissner shell theory, which takes into account warping effects and coupling 

bending-membrane energy effects. This element passed the patch tests for membrane, bending 

and shear problems. It also successfully passed benchmark tests for the cases of thick and thin 

shells without shear locking. The numerical results obtained with DKMQ24 converge toward 

the reference solution. Furthermore, Maknun et al. (2016) have compared the application of the 

DKMQ24 element for twist thin-walled beams to the Vlassov theory based on simplification 

(Hamdouni et al., 2016). A new development of the DKMQ20 shell element with five degrees 

of freedom has been presented by Irpanni et al. (2017).  

In this paper, the application of the DKMQ24 element for error estimation using error estimator 

Z
2 

and various recovery methods such as AVR, PROJ and SPR will be analyzed. The stresses 

found by using these recovery methods will be compared to the reference solution.  

 

2. FORMULATION OF DKMQ24 ELEMENT 

The DKMQ24 element that will be used in this study for the numerical simulations is 

developed from the DKMQ plate element using the Naghdi/Mindlin/Reissner shell theory. 

Therefore, the warping and coupling bending-membrane energy effects are taken into account 

in the formulation of the element. The reader may find more details about this in Katili et al. 

(2015). The finite element formulation of DKMQ24 is based on the Naghdi shell model (see 

Katili et al. 2015). Introducing the interpolation functions ( , )iN   , the position vectors qx


of a 

point q of the shell can be written as: 
 

    
4 4

1 1

, , ( , ) ( , )q i i i i

i i

x z N x z N n
 

        
  

                                    (1) 

 

The displacement of qu


is given by: 
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      0, , , , withq p nu z u z          
 

                          (2) 

 

where  ,  


represents the rotation vector. Moreover, we have: 

 

       
4 4 8

1 1 5

θ

, , ,  θ   β

θ

i Xi

q i i i i Yi k sk sk

i i k

i Zi

U

u z N V z N RN P t

W
  

    
    

           
    
    

  


       (3) 

 

where Ni are linear functions of interpolation and Pk are incomplete quadratic functions (see 

Table 1). 

 

Table 1 Linear interpolation functions Ni and quadratic functions Pk 

  1

1
1 ξ 1 η

4
N       2

5

1
1 ξ 1 η

2
P     

  2

1
1 ξ 1 η

4
N       2

6

1
1 ξ 1 η

2
P     

  3

1
1 ξ 1 η

4
N       2

7

1
1 ξ 1 η

2
P     

   4

1
1 ξ  1 η

4
N   

 
   2

8

1
1 ξ  1 η

2
P   

 

 

The vector 
ks ji k

t x L /
 

 (k = 5, 6, 7, 8) is a unit vector tangential on the side of the element. 

Moreover, β
ks (k = 5, 6, 7, 8) is a temporary degree of freedom in the middle side of the 

element and will be eliminated using the discrete Kirchhoff-Mindlin method (Katili et al., 

2015).  Figure 1 show the nodal degrees of freedom for the DKMQ24 element.  
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Figure 1 Degrees of freedom DKMQ24 element 
 

3. RECOVERY METHODS 

While the FEM solution has been known to provide continuity in displacement at nodal points, 

it yields discontinuity and inaccuracy problems when used to calculate internal forces at the 

joined sides of the boundary elements. The nature of the FEM solution, which means that 
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internal forces are calculated using the derivation of the displacement function, has created such 

a problem. To obtain continuity in the internal force, there are several methods that can be used. 

These are outlined below: 

3.1. Averaging Method 

The recovery of internal forces is taken from the average value of the finite element results for 

each element: 
 

           * * *1 1 1
; ;

m m m
h h h

i i i i i i
i i i

N N M M T T
m m m

               (4)  

 

where {N
*
}i , {M

*
}i and {T

*
}i are the recovered membrane, moment and shear forces, while, 

{N
h
}i , {M

h
}i and {T

h
}i are the finite element results of the membrane, moment and shear forces 

at node i, and m is the number of elements connected at node i. 

3.2. Projection Method 

The recovered bending moments M
*
 is assumed as: 

 

 * *

nx xM N M                                                  (5) 

 

where N is the interpolation function (see Table 1). Using the weight residual method proposed 

by Zienkiewicz and Zhu (1987) gives: 
 

  *   0h
x x

A

N M M dA              (6) 

 

Substituting (5) into (6), we have: 
 

   *  
n

h
x x

A A

N N dA M N M dA                             (7) 

 

With a little simplification, we obtain: 
 

         
1*   with  

n

h
x x

A A

M P N M dA P N N dA


                    (8) 

 

3.3. Superconvergent Patch Recovery  

The SPR method is relatively simple and may easily be used in finite element analysis. The aim 

is to recover the finite element result with the least square fit method analogy. The recovered 

moment (or membrane or shear) force M* is assumed as: 
 

   

 

 

*

2 2 2 2

1 2 3 4 5 6 7 8

ξ,η

ξ,η 1 ξ η ξ ξη η ξ η ξη

x n

T T

n n

M P a

P

a a a a a a a a a a





 

                     (9) 

where <P> is the polynomial expansion function in  parametric local coordinate system ( ξ , η ) 

in the local patch (see Figure 2). The unknown parameter {an} is solved by minimizing the 

following function 
 

     
2

Φ ξ η ξ η
n

h
x k k k k n

k 1

M , P , a


  
                                       (10) 
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where (ξk ,ηk) is a Gauss point in the local patch coordinate system, n is the Gauss point number 

in the patch, and (ξ ,η )h
x k kM  is the finite element result. The minimization yields: 

 

         ξ η ξ η ξ η ξ η
n n

T T h

k k k k n k k x k k

k 1 k 1

P , P , a P , M ,
 

             (11) 
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Figure 2 Nodal based Patch
 

 

Finally the unknown parameter {an} is: 
 

     

     

1

with and ξ η

n n

n n
T T h

k k n k x k k

k 1 k 1

a A b

A P P   b P M ,



 



  
               (12) 

 

The recovered internal forces can be calculated by using Equation 8. 

 

4. ERROR ESTIMATOR Z
2
 

Since the calculation will not stop until the element size is close to zero, an effective condition 

is required as a criterion to terminate the discretization process. The factor for the relative error 


* 

of a structure using the recovery method is shown in Equation 13. The error indicator 

represents the value that is used as a criterion to terminate the refinement process. Usually, 
*
= 

5% is taken as a limit. Following Zienkiewicz and Zhu (1987), the factor for the relative error is 

calculated as: 
 

*

*

*
100%

e

u
                                                         (13) 

where 
 

               
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2 2

1
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1
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1 1* * h * h * h * h
m b

i
A A
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s

A

e e
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 


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
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and 
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           

2 2
* *

1

2 1 1 1* * * * * * *

m

i
i

m b s
i

A A A

u u

u N H N  dA  M H M  dA T H T  dA


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

 



  
 

 

5. NUMERICAL RESULTS AND DISCUSSION 

In this section, the results of the error estimation using various recovery methods and the error 

estimator Z
2
 are presented. A relative error factor of 

* 
= 5 % was used as a limit to terminate 

the refinement process. Mesh N×N = 4×4, 8×8, 16×16 and 32×32 were employed. 

5.1. Scordelis–Lo Roof Problem 

Owing to its symmetry, only a quarter of the structure was analyzed. In this example, the 

membrane effect was more dominant. The boundary conditions were U = W= Y= 0 on the side 

AD, while the symmetry conditions were U = Y = Z = 0 on the side CD and V = X = Z = 0 

on the side CB. 
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Figure 4 Relative error Indicator 
* 
Scordelis–Lo roof problem 

 

The results of the numerical test are presented in Figures 4 and 5 and Table 2. For the 32×32 

mesh, as can be seen in Figure 4, the relative error indicator 
* 

results are close to the limit of 

5%. It was observed that all recovery methods gave the similar relative error factors 
* 

for this 

case. However, it can also be seen that the AVR and SPR methods converged faster than the 

PROJ method.  

Figure 5 and Table 2 present the effort membrane in the Y direction at point B (NYB) and the 

effort moment in the X direction at point C (MXC). The results from Scordelis and Lo (1969) 

L = 6 m;   

R = 3 m;   

h = 0.03 m;   

 = 40;     

E = 3×10
10

Pa;   

 = 0;    

Fz = -0,625×10
4
Pa 
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were used as the reference solution. For NYB, the convergence of the AVR and SPR methods 

was faster than that of the PROJ method. Meanwhile for MXC, it was observed that all recovery 

methods gave similar results. However, it can be observed that the AVR and SPR methods gave 

better results than the PROJ method in coarse mesh. The details of the results are displayed in 

Table 2. 
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Figure 5 NYB and MXC Scordelis–Lo roof problem
 

 

Table 2 NYB and MXC Scordelis–Lo roof problem 

N 
NYB MXC 

AVR PROJ SPR AVR PROJ SPR 

4 498.430 312.020 552.820 1873.80 1763.30 1805.00 

8 592.680 461.930 610.200 1998.30 1963.70 1979.80 

16 620.750 545.710 625.610 2041.30 2032.00 2036.30 

32 628.280 588.400 629.550 2053.80 2051.30 2052.30 

REF. 641 2056 

5.2. Pinched Cylindrical Shell with End Diaphragms 

The shell presented in Figure 6 is a pinched cylinder with two concentrated loads situated in 

opposite directions. At either end, there is a rigid diaphragm. Due to its symmetry, only 1/8 of 

the structure was analyzed. The boundary condition was U = W = θY = 0 on the side AD; 

meanwhile, the symmetry conditions were W = θY = θX = 0 on the side AB, V = θX = θZ = 0 on 

the side BC, and U = θY = θZ = 0 on the side CD. 
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Figure 6 Pinched cylindrical shell  
 

The relative error indicator 
* 
is presented in Figure 7a. Once again, it can be observed that the 

AVR and SPR methods converged faster than the PROJ method. In this case, the PROJ method 

gave a relative error indicator of 13.34% for the 32×32 mesh. Meanwhile, the AVR and SPR 

methods gave a relative error indicator equal to 7.5% by using similar meshes. Figure 8b 

L = 6 m;   

R = 3 m;   

h = 0.03 m;   

 = 0.3; 

E = 3×10
10

Pa   
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presents the effort moment along the side DC. The results from Lindberg et al. (1969) were 

used as the reference solution. It can be observed that the convergence of the AVR and SPR 

methods was faster than that of the PROJ method, and the results given by these two methods 

were closer to the reference solution.  
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(a)                                                                                                               (b) 

Figure 7 Relative error indicator 
*
  and MX  along side DC of pinched cylindrical shell 

 

6. CONCLUSION 

The application of the DKMQ24 element for error estimation in shell structure by using various 

recovery methods has been presented. The Scordelis–Lo roof and pinched cylindrical shell have 

also been analyzed. Regarding the relative error indicator 
* 
and internal forces after recoveries, 

it was found that AVG and SPR methods give better results than the PROJ method. This 

phenomenon can be seen in the NYB for the Scordelis–Lo roof problem and the relative error 

indicator 
*
 for the pinched cylindrical shell. For the Scordelis–Lo roof problem, the PROJ 

method gave NYB = 588.400 using 32×32 mesh, while the reference solution was equal to 641 (it 

produced 8% more errors than the reference solution). For the pinched cylindrical shell, the 

PROJ method gave a relative error indicator of 13.34% for 32×32 mesh. Meanwhile, the AVR 

and SPR methods produced a relative error indicator equal to 7.5% by using similar meshes. 
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