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ABSTRACT 

Various methods for termite detection have been developed, one of which is purely based on their 

acoustic signals. However, this method has a weakness, as it is difficult to separate the signals 

generated by the termites from noise in the environment. A combination of the feature extraction 

of the acoustic signals and a classification model is expected to overcome this weakness. In this 

investigation, we inserted 220 subterranean termites Coptotermes curvignathus into pine wood 

for feeding activity and observed their acoustic signals. In addition, three acoustic features (short-

term energy, entropy and zero moment power) were proposed to recognize the termites’ acoustic 

signals. Subsequently, these features were analyzed and combined with discriminant analysis to 

produce a robust classification model. According to the numerical results, the integrated 

discriminant analysis and the acoustic feature in our termite detection system has an accuracy of 

83.75%. 
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1. INTRODUCTION 

Termites are social insects that live in colonies and are an extremely destructive pest in destroying 

wood. It has been reported that termites also attack buildings, furniture and books; according to 

Nandika et al. (2015), the spread of termites in Indonesia reached 49.9% of the total land area, 

with 93.92 million hectares of forests being the natural habitat for termites. There are 

approximately 2,200 recognized worldwide species of termite, with 200 species occuring in 

Indonesia. According to Arinana et al. (2016), the subterranean termite Coptotermes curvignathus 

is responsible for a high intensity of attacks in Indonesia. Moreover, it is also able to make 

secondary nests in high buildings. Nandika et al. (2015) report that subterranean termite have 

attacked apartments and hotels up to the 33rd floor in Jakarta, Indonesia. Furthermore, they also 

destroy trees, resulting in their eventual death. Nandika et al. (2015) estimate that economic losses 

due to termite attacks on buildings in Indonesia reached 8.7 trillion IDR in 2015. The threat of 

such attacks is predicted to continue to increase. The initial step to control termite infestation is 

by using a detection system. However, due to the cryptic behaviour of termites, manual detection 

of their infestation in wood or wood products is difficult.
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A basic termite detection system is based on the phenomena which occur when the wood is being 

infested by termites, such as temperature, humidity, moisture, acoustics and gas. Hence, the 

termite detection systems which have been developed to date are based on acoustic emission, 

microwave radar, temperature sensors, measurement of wood moisture content, geophones, X-

rays and borescope cameras. Acoustic emission is one of the nondestructive methods that is the 

most widely applied to detect the existence of termites in wood. Acoustic signals can be produced 

by simple termite activities; for instance, when termites are feeding and moving in the wood, they 

generate acoustic signals. Acoustic signals can also be produced by termites as alarm signals 

through head banging to the wood (Hager & Kirchner, 2013).   

Farkhanda (2013) proposed that biosensor devices could be a combination of several factors, such 

as temperature, moisture, movement, feeding and behavior of the termites, in the sensing 

technology. However, no experimental results, especially on termite detection performance using 

multiple parameters, are reported by Farkhanda. Most researchers have used piezo probe sensors 

to detect the existence of termites based on acoustic signals (Lewis et al., 2004; Indrayani et al., 

2007). On the other hand, there are various alternatives to acoustic sensors to detect termites; for 

example, geophones, piezo disks, piezo probes, accelerometers, microphones, microwave radar 

and piezo film (Mankin et al., 2011). Rach et al. (2013) suggest the use of an electret microphone 

sensor for insect detection within wood, since this type of sensor is more sensitive to vibration. 

Therefore, our research on termite detection uses an electret microphone sensor. Lewis et al. 

(2004) used an acoustic sensor (insect detector®, DowAgrosciences) installed on the subsurface 

of the wood to detect the drywood termite Incitermes minor (Hagen). This technique proved to 

be effective in reducing background noise, achieving an accuracy of 89.45%. However, the 

method is destructive, since the wood must be peeled for acoustic sensor installation. This differs 

from our method, that has been developed based on a non-destructive method.  

The improvement of our method for termite detection is based on a mathematical model using 

the feature of discriminant analysis of acoustic signals. The advantages of discriminant analysis 

are that the matrix dimension from the observational data can be represented by several principal 

components, allowing for consideration of all the characteristics, including the interaction of the 

variables under consideration (Altman, 1968). This method has recently been applied 

successfully to agricultural problems (Agusta & Ahmad 2016). Moreover, discriminant analysis 

can be utilized to differentiate between the acoustic signals generated by termites and those 

generated otherwise (background noise).  

The remainder of the paper is organized as follows. Section 2 presents the methods for data 

collection, including the feature extraction of the acoustic signals and the discriminant analysis 

guidelines. Section 3 then explains the development of the classification model and the 

performance of the proposed system (i.e., accuracy and apparent error). Section 4 presents a 

detailed discussion of the results and possible future research directions, while some concluding 

remarks are made in Section 5. 

 

2. METHODOLOGY 

The subterranean termite Coptotermes curvignathus was obtained from the termite cultivation 

room in the Termite Laboratory, Faculty of Forestry, Bogor Agricultural University. The pine 

wood merkusii Jungh et de Vries was selected as the medium for termite infestation. It had a 

geometrical parameter of 20 (l) × 9.5 (w) × 2.5 (h) cm, with a cavity size of 12 (l) × 6 (w) × 0.5 

(h) cm. In the experiment, the wood was divided into two groups: infested and uninfested. The 

infested group was defined as the wood attacked by termites, and the uninfested group was the 

wood without termites (normal condition). Each group consisted of four samples of pine wood 

with an initial moisture content of 8.75±0.05%. We first inserted 220 termites (200 termite-
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workers and 20 termite-soldiers) into the wood for seven days at a room temperature of 28oC with 

70% relative humidity. Furthermore, each piece of wood in each group was monitored for 

acoustic signals ten times. 

Figure 1a shows the acoustic signal monitoring of the termites in the wood. The two electret 

microphone sensors (Itead studio. China), a frequency range of 0.1−10 kHz and sensitivity of −50 

dB, were used to obtain the termites’ acoustic signals. The sensors were then connected to the 

Arduino microcontroller (ATmega328P) to convert the analog signals to digital ones. The 

microcontroller was also connected to the computer (Lenovo ThinkPad X-240) using Arduino 

IDE software. Therefore, the data detected by the sensors were automatically displayed on the 

computer. Figure 1b shows the placement of the sensor relative to the center point, which was a 

diagonal intersection between diagonal lines on the top surface the wood under investigation. The 

distance of the sensors from the center point was 3 cm to the right and left. This distance was 

considered safe because it was still in the area of the cavity where the termites were actively 

performing the attack process. 

 

Figure 1 (a) Test apparatus for acoustic signal monitoring of Coptotermes curvignathus; (b) Top view of 

the sensor placement 

2.1.  Acoustic Signal Processing 

In the study, the acoustic signal processing activities are data acquisition, normalization, feature 

extraction, and classification. First, in the data acquisition process, the acoustic signals produced 

by the termites were passed through the microcontroller with a sampling rate setting of 100 Hz. 

To obtain the acoustic signals for one observation, we used a frame size consist of 300 data 

(within 3 seconds). Second, a normalization process was used to produce clean, ready-to-use data. 

Third, the feature extraction process was the stage of reducing the data to produce the features 

that describe the characteristics of the observation object.  Figure 2 shows an example of an 



Nanda et al. 843 

acoustic signal visualization ready to be extracted. Two domain approaches were used to produce 

features, i.e., time domain (Figure 2a) and frequency domain (Figure 2b). The feature generated 

in the time domain is a feature obtained without first requiring a signal transformation, meaning 

it can be directly obtained from the sensors.  

 

  
(a) (b) 

Figure 2 Acoustic signal visualization ready to be extracted in the: (a) time domain; (b) frequency 

domain 

 

The features proposed in the time domain as are follows: (a) short-term energy (E), defined as 

the sum of the squares of the amplitude in the frame. This can be calculated using Equation 1, 

where 𝑊𝐿 = frame size, (𝑛 = 1, … , 𝑊𝐿), and 𝑋= amplitude (Nandhini & Shenbagavalli, 2014; 

Potamitis et al., 2006); and (b) entropy (H), defined as a measure of abrupt changes in the short-

term energy level from the acoustic signals in the frame. This can be computed using Equation 

2, where 𝑒𝑗  is the ratio of short-term energy 𝐸(𝑖)  in the half frame to the frame size 

(Giannakopoulos & Pikrakis 2014). 
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The feature generated from the frequency domain is a feature that requires signal transformation 

from the time domain to frequency domain. One of the well-known methods applied to signal 

transformation is fast fourier transform (FFT). The result of the FFT is given in Figure 2b. 

Visually, it has a significantly different signal shape compared to the signal in the time domain. 

In this study, the proposed feature of the frequency domain is zero moment power (M0), which is 

defined as the area under the peak of magnitude. This can be computed using Equation 3, where 

𝑊𝑓= frequency length (𝑛 = 1, … , 𝑊𝑓), 𝑃(𝑛) = magnitude and 𝑃(𝑛)max = maximum value of the 

magnitude. 
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Finally, the classification process recognizes the termite acoustic signals and classifies the 

infested and uninfested wood. At this stage, we use discriminant analysis to build a classification 

model. 

2.2.  Discriminant Analysis 

Discriminant analysis is a classification model based on multivariate statistical techniques. 

Classification by discriminant analysis is made because of the interactions of one or more 

independent variables. In this study, we set the acoustic features (i.e., E, H, M0) as the independent 
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variable. The basic model of discriminant analysis is the linear model, which can be shown in 

Equation 4 (Uddin et al., 2013), where d = canonical discriminant function, 𝑏0 = intercept, 𝑏𝑛= 

coefficient, 𝑥𝑛 = independent variable and 𝑖 = 1, … , 𝑛. 
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In discriminant analysis, there are three main assumptions which must be fulfilled; if they are not 

be fulfilled, it will affect the significance and accuracy of the classification result. 

1. Multivariate normal distribution 

In constructing the classification model, the independent variable should follow multivariate 

normal distribution. This is checked by using the chi-square plot against the mahalanobis 

distance. This distance can be calculated using Equation 5 (Uddin et al., 2013): 

𝑑𝑖
2 = (𝑣𝑖 − 𝑣)𝑇𝑆−1(𝑣𝑖 − 𝑣) (5) 

where  𝑑𝑖
2  = mahalanobis distance, 𝑇  = vector to be transposed, 𝑣𝑖  = the sample vector 

(𝑖 = 1, … , 𝑛), 𝑣 = the vector of mean values and 𝑆−1 = the inverse variance/covariance matrices. 

Furthermore, if the points follow a straight line pattern of more than 50% of mahalanobis 

distance, then it can be ensured that the independent variable follows multivariate normal 

distribution ( Ramzan et al., 2013; Agusta & Ahmad, 2016). 

2. No multicollinearity 

Multicollinearity is a statistical phenomenon in which two or more independent variables in 

multiple regression models are highly correlated to each other. Multicollinearity can be mainly 

detected with the help of tolerance and its reciprocal, called the variance inflation factor. 

Tolerance (t) and the variance inflation factor (VIF) are defined by Equations 6 and 7 sequentially 

(Midi et al., 2010), where 𝑟2  is the coefficient of determination for the regression of that 

explanatory variable on all independent variables. Finally, if t > 0.1 and VIF < 10, the independent 

variable is not multicollinear (Akinwande et al., 2015). 
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3. Homogeneity of variance-covariance matrices 

The assumption in building the classification model using discriminant analysis is that the groups 

have different variance-covariance matrix homogeneity. This assumption can be tested using 

Box’s M, which transforms the independent variable to an F statistic with df1 and df2 degrees of 

freedom. In this test, we set the null hypothesis (H0) as  

The homogeneity of the variance-covariance matrices of the groups is equal. 

If the p-value is lower than the significance level (𝛼), then H0 is rejected. As a result, the 

homogeneity of the variance-covariance matrices of the groups is different. 

2.3.  Classification Process 

After all the assumptions are fulfilled, the next step is to build the classification model. First, all 

the acoustic features of the groups are converted into a principal component using the principal 

component analysis (PCA) technique. PCA is a statistical method whereby the matrix dimension 

from the observational data can only be represented by some principal components (PCs), where 

𝑠 = 1, 2, 3, … , 𝑛 (Ciptohadijoyo et al., 2016). Every PC has cumulative variance; for example, 

PC1 and PC2 have a cumulative variance of 78% and 30% respectively. This means that the PC1 

and PC2 can explain the variance in the observational data of 78% and 30% sequentially. 
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Furthermore, an eigenvalue is used to check the significance of the PC. The minimum acceptable 

eigenvalue is 1.00; the higher the better (Uddin et al., 2013). Finally, the PC will generate the 

specific canonical discriminant function. 

In this study, the observations of the groups have many scores generated by the canonical 

discriminant function. To obtain the weight of a particular group, we used the centroid, which 

can be achieved by calculating the average of the scores. When the centroid is obtained, we also 

determine the optimal cutting score, which is the weight that shows the separating point between 

the groups. This can be derived by Equation 8 (Kantardzic, 2011), where, 𝑧𝑐𝑠  is the optimal 

cutting score between the groups, 𝑛𝑖 is the total number observations in the infested group, 𝑛𝑢 is 

the total number of observations in the uninfested group, 𝑧𝑖 is the centroid for the infested group, 

and 𝑧𝑢 is the centroid for the uninfested group. After the centroid and the optimal cutting scores 

are obtained, then the classification model for each group can be produced. 

𝑧𝑐𝑠 =
𝑛𝑖𝑧𝑢 + 𝑛𝑢𝑧𝑖

𝑛𝑖+𝑛𝑢
 (8) 

2.4.  Performance Assessment 

Before this system can detect automatically whether the wood is infested by termites or not, we 

need to train the datasets that contain the distinctive acoustic features of a known group. In this 

study, we used the same data both for training and validating the classification model. To assess 

the reliability of the model, we used the cross-validation technique, which produces a confusion 

matrix of 2×2 size. In Figure 3, the predicted results are the proceeds assessed by the classification 

model using discriminant analysis, whereas the actual results are the proceeds based on 

observation (reality). We divided the confusion matrix into four cases: TP, FP, FN, and TN. For 

example, the TP case is when the actual result and the predicted result reach the same conclusion, 

i.e., infested. The FP case is when the actual result has an uninfested conclusion, but the predicted 

result gives an infested conclusion. To calculate the accuracy (AC) and the apparent error (APER) 

of the predicted results assessed by the classification model, Equations 9 and 10 are used 

respectively (Rach et al., 2013). 

𝐴𝐶 = (
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
) 100(%) (9) 

𝐴𝑃𝐸𝑅 = (
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
) 100(%) (10) 

 

 

Figure 3 Confusion matrix of discriminant analysis 

where: 
True positive (TP): correctly classified positive case 

False positive (FP): incorrectly classified negative case 

False negative (FN): incorrectly classified positive case 

True negative (TN): correctly classified negative case   
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3. RESULTS  

3.1.  Acoustic Feature 

We can see in Figure 4 that the infested and uninfested groups can be distinguished according to 

the performance of E, H, and M0. Equation 11 is used to find the average value from the 

distribution of each acoustic feature in a particular group, where N = total number observations 

of each group, and �̅�, �̅� and �̅�0 are the average values of short-term energy, entropy and zero 

moment power, respectively.  
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According to the numerical calculation, the infested group has a higher �̅� (0.99926 ± 0.039) than 

the uninfested group (�̅� = 0.99850±0.042). In addition, the value of �̅�0 from the infested group 

is 6.65733±3.11, which is also greater than that of the uninfested group (�̅�0 = 5.34948±2.257). 

However, the infested group has a lower value of �̅� (-0.30062±0.034) compared to the uninfested 

group (-0.30002±0.024). The differences in each characteristic of the acoustic signals feature 

confirm that there is a significant difference between the normal wood and that infested by the 

220 termites, although several observations overlap. 

 

Figure 4 Acoustic feature distribution of the groups 

 

 

Figure 5 Chi-square plot 
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3.2.  Discriminant Analysis Assumptions and Guidelines 

As explained in Section 2.2, before we build the classification model using discriminant analysis, 

there are three main assumptions which must be achieved. First, to check the multivariate normal 

distribution, we use the chi-square plot against the mahalanobis distance. As can be seen in Figure 

5, the points follow a straight line pattern of more than 50% of mahalanobis distance. As a result, 

the acoustic features (i.e., E, H and M0) follow multivariate normal distribution. 

It is well-known that multicollinearity must be avoided in order to obtain a good statistical model 

(Midi et al., 2010). According to Table 1, the numerical results of all the acoustic features have 

t>0.1 and VIF<10, so the acoustic feature is not multicollinear. 

Table 1 Multicollinearity testing 

Statistic Short-term energy  Entropy  Zero moment power 

t 0.3169 0.3077 0.8932 

VIF 3.1553 3.2496 1.1195 

The homogeneity of the variance-covariance matrix test between the infested and uninfested 

groups can be determined using Box's M test. As can be seen in Table 2, the p-value is less than 

𝛼, i.e., 0.0058 (<0.05). Therefore, we reject H0. As a result, the homogeneity of the variance-

covariance matrices of the groups is different. 

Table 2 Results of the homogeneity variance-covariance matrices using Box’s M test 

Result 

Box’s M 12.8869 

df1 3 

df2 1095120 

p-value 0.0058 

𝛼 0.05 

 

 

Figure 6 Cumulative variance and eigenvalue of the PC1  

 

3.3. Classification Process 

3.3.1. Determination of the canonical discriminant function 

Based on numerical analysis, the PCA technique produces only one PC, namely PC1. As shown 

in Figure 6, the PC1 has a cumulative variance of 100%, indicating that it can explain 100% of 
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the variance of the observational data. Therefore, the canonical discriminant function will be 

constructed by the PC1. To check the significance of this, an eigenvalue is used, because the 

cumulative variance is ordered by its eigenvalue (Rivai & Tasripan, 2015). According to Figure 

6, the PC1 has a significant eigenvalue, i.e., 1.1162.  

Table 3 shows the parameters of the canonical discriminant function from the PC1. As can be 

seen, the function has an intercept of −1686.0142 and involves only two acoustic features, E and 

H (because the coefficient M0 is 0). These features are 1032.5838 and -2179.5874 respectively. 

Finally, the canonical discriminant function by PC1 can be written as in Equation 12. In other 

words, the contributions of this canonical discriminant to the classification model between groups 

do not overlap. 

Table 3 Parameters of the canonical discriminant function generated by PC1 

Parameter Value 

Intercept -1686.0142 

E 1032.5838 

H -2179.5874 

M0 0 

 

𝑑 = -1686.0142 + 1032.5838E - 2179.59874H (12) 

There is an interesting occurrence of the canonical discriminant function, in which the acoustic 

feature M0 is 0. This means that the feature is not used in the classification model development. 

Although at the beginning of the process all features meet all the assumptions, we cannot 

guarantee that all the features will be used. This is a result of the DA itself; optimization is still 

done through a statistical approach, such as identification of Wilks' lamda value in order to select 

the relevant features (Uddin et al. 2013). This is an advantage of DA in producing a robust model. 

3.3.2. Classification model 

As shown in Figure 7a, each group has many scores generated by the canonical discriminant 

function. In this study, two centroids are used to classify the particular group, i.e., that of the 

infested and uninfested groups. According to the numerical results shown in Figure 7b, the 

centroids of the infested and uninfested groups are 1.0432 and −1.0432, respectively.  

 
(a) 

 
(b) 

Figure 7 (a) Plot of scores to classify groups; (b) Centroids of the groups 
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Accordingly, the optimal cutting score of both groups is zero. Finally, the classification models 

of the infested group (IG) and the uninfested group (UG) are derived in Equations 13 and 14, 

respectively. 

IG = −3213122.7853 + 7524125.8260E + 3633565.4725H (13) 

UG = −3209605.0053 + 7521971.3942E + 3638113.0671H (14) 

3.4. Performance of Validation  

Figure 8 shows the confusion matrix results between the actual and predicted results. The 

numerical results of cases TP, FP, FN, and TN are 33, 7, 6, and 34, respectively. Furthermore, 

according to the numerical calculation, the classification model embedded in the termite detection 

system has an accuracy of 83.75% and an apparent error of 16.25%. 

 

Figure 8 Confusion matrix from the validation 

 

4. DISCUSSION 

In 2001, termite control in Indonesia developed rapidly, as shown by the establishment of more 

than 151 companies, especially for controlling termite attacks, and the registering of more than 

32 termiticide trademarks (Nandika et al., 2015). One of the ways to control termites is by 

spraying termiticide on the wood surfaces infested by termites. However, before this control is 

carried out, the wood should be initially checked to determine whether termites are already inside 

the wood. To avoid higher damage, detecting termites as early as possible is very important.  

Termite acoustic signals are one of the most widely used phenomena in the development of 

termite detection systems. Our results indicate significant differences in the acoustic features of 

the infested group and the uninfested group. Termite activity generates acoustic signals, such as 

from feeding, moving and head banging on the wood. Research explains that termites bang their 

heads on the wood as a mode of communication, known as vibrational alarm communication 

(Lehrer, 2013). This habit is performed by all termites, both termite workers and soldiers. This 

alarm is transmitted inside the nest and the gallery system at a distance of several meters (Lehrer, 

2013). In the literature, the vibration alarm signal is generally <2 kHz and acoustic emission with 

the ultrasonic signal is > 60 kHz (Evans et al., 2005). 

The acoustic features used to build the classification model in our termite detection system were 

short-term energy and entropy. Both features were obtained in the time domain, which certainly 

eases computational complexity; when compared with the frequency domain, which first requires 

signal transformation, short-term energy is one of the feature extractions commonly used in 

acoustic signals processing. This feature has been successfully applied to solve problems in 

agriculture, such as detection of the red palm weevil within wood (Hussein et al., 2010); the 

cricket family (Potamitis et al., 2006); and beetle larvae (Schofield, 2011). 

In this investigation, our termite detection system, which has 83.75% accuracy, was built on two 

classification models, i.e. Equations 13 and 14. Both models were developed using discriminant 

analysis. The rule of the models is that we classify the groups (i.e., IG or UG) corresponding to 

the classification model that gives the greatest value. For example, if IG>UG, then the 

observation is classified into IG. Moreover, these classification models can be used to classify 
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new observations into pre-existing groups. These findings indicate that discriminant analysis can 

be implemented in termite detection systems. However, the type of wood also plays a significant 

role, affecting the behavior of termites and related production of acoustic signals (Lewis et al., 

2004). Therefore, in future studies various types of woods should be investigated to obtain 

comprehensive information about the performance of our termite detection system. 

 

5. CONCLUSION 

This study has successfully demonstrated a classification model based on discriminant analysis 

in a termite detection system. In the selection of the principal component process, short-term 

energy and entropy were the acoustic features used to build the classification model of the groups. 

According to the numerical results, the performance of the proposed termite detection system 

using discriminant analysis has an accuracy and apparent error of 83.75% and 16.25% 

respectively. These findings indicate that the combination of discriminant analysis and feature 

extraction of the acoustic signals can be integrated into termite detection systems.  
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