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ABSTRACT 

A multi model predictive control and proportional-integral controller switching (MMPCPIS) 

approach is proposed to control a nonlinear distillation column. The study was implemented on 

a multivariable nonlinear distillation column (Column A). The setpoint tracking and disturbance 

rejection performances of the proposed MMPCPIS were evaluated and compared to a 

proportional-integral (PI) controller and the hybrid controller (HC). MMPCPIS developed to 

overcome the HC’s limitation when dealing with very large disturbance changes (50%).  

MMPCPIS provided improvements by 27% and 31% of the ISE (integral of square error) for 

feed flow rate and feed composition disturbance changes, respectively, compared with the PI 

controller, and 24% and 54% of the ISE for feed flow rate and feed composition disturbance 

change, respectively, compared with HC. 
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1. INTRODUCTION 

One prominent issue that must be resolved in process control is process nonlinearity, which 

becomes more prominent when operating in high purity products and high profitability zones 

(Mathur et al., 2008; Bachnas et al., 2014). Nonlinearity can be a dynamic, which causes strong 

fluctuation of disturbances, and static (gain) nonlinearity requires manipulated variable change 

(Gustafsson et al., 1995; Chan & Yu, 1995). A high purity product requires the ultimate in 

accuracy, while the need for high profit demands operating near constraints and high process 

efficiency. In reality, both aspects are reinforcing complexities of the control problems. 

Among many control approaches, model predictive control (MPC) is considered qualified to 

deal with these problems (Dougherty & Cooper, 2003; Andrikopoulos et al., 2013). However, 

the performance of MPC controllers is highly dependent on the quality of the model used. For 

example, MPC based on linear model has limitations in handling nonlinearities, and its usage is 

restricted as a local MPC, in the region suited for the local linear model (Lundstrom et al., 

1995; Qin & Badgwell, 2003). 

An effective nonlinear MPC (NMPC) is the one that is supported by a model that can represent 

all the conditions of the process over a wider range of operations (Pearson, 2006). Under this 
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condition, effective control can be established for nonlinear processes. Nevertheless, the use of 

linear MPC is broader than NMPC, because of two issues. First, the identification of a linear 

models based on process data is relatively easier. Second, linear models show good result when 

the plant is operating nearby the operating condition in which the model fitting was done. Due 

to these reasons, NMPC is only used in cases where the linear MPC is not adequate (Allgöwer 

& Zheng, 2012). 

Wahid and Ahmad (2015) has successfully developed a HC by maximizing both controller 

output of MMPC and PI controller to reject disturbance changes in the multivariable nonlinear 

distillation column. Unfortunately, HC failed to reject the very large disturbance changes 

(+50% change). Therefore, this study intends to determine a means to improve this limitation. 

The aim of very large change in the disturbance is to know the controllability of the controller 

that has been designed (Skogestad, 1997; Luyben & Chien, 2010), so avoid the windup of the 

process (Åström, 2002). A very large disturbance could lead to an unsafe condition (Marlin, 

2000). 

 

2. CONTROLLER FORMULATION 

In a nonlinear distillation column control, there are two kinds of input (u): reflux flow (L) and 

boilup flow (V), two outputs (y): distillate (yD) and bottom (yB) composition, two disturbances 

(d): feed flow rate (F) and feed composition (zF), and set point tracking (w). 

 

 

Figure 1 MMPCPIS controller algorithm 
 

The proposed configuration is based on the idea of immediate switch of controller outputs in 

the presence of disturbances above specific threshold.  The configuration is shown in Figure 1, 

and formulated mathematically as: 
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where Su is controller outputs switch (used), 1d  is feed flow, 2d  is feed composition, id1  is 

initial feed flow, id 2  is initial feed composition, and  is noise, respectively. 

Equation 1 includes noise factor as a limiter to decide when controller switching is performed. 

In fact, a relatively small change (noise) always present in the process. Therefore, if the 

disturbance changes within a present limit, no switching is required. 
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3. SIMULATION/EXPERIMENTAL STUDY 

As shown by Figure 1, MMPCIS used to control a nonlinear plant in the form of the nonlinear 

distillation model of Column A (Skogestad, 1997). It has 40 theoretical stages and separates a 

binary mixture with relative volatility of 1.5 into products of 99% purity. The mathematical 

model was coded in MATLAB, and building blocks were constructed in SIMULINK 

environments to facilitate dynamics and control studies. 

The dynamic model of this process was developed based on the following assumptions: binary 

mixture; constant pressure; constant relative volatility; equilibrium on all stages; total 

condenser; constant molar flows; no vapor holdup; linearized liquid dynamics, but effect of 

vapor flow ("K2"-effect) is included. These assumptions may seem restrictive, but they capture 

the main important effects for dynamics and control studies (except for the assumption about 

constant pressure). 

There are four output variables considered, i.e., the molar fractions of distillate and bottom 

product (  and ), liquid holdup in condenser and reboiler (  and ), and seven input 

variables, i.e.,  L (reflux flow), V (boilup flow), D (distillate product flowrate), B (bottom 

product flowrate), F (feed rate), (feed composition), and  (fraction of liquid in feed). The 

dynamic response uses the LV-configuration, where reflux flowrate L and boilup V are 

considered as the independent variables for composition control and D and B are adjusted to 

establish level control. LV-configuration is known to be the common control strategy for one 

composition control (Skogestad, 1997) and the choice is bottom composition ( ). 

Two tests were conducted in the plant: 

a. SP (set point) tracking uses staircase change in order to analize the effect of SP change 

based on scheduled setpoint tracking tests of the bottom distillate composition (yB) at 0.01 

to 0.02 (at t = 30 min.), 0.02 to 0.03 (t = 80 min.), and 0.03 to 0.02 (t = 200 min, while the 

disturbance changes in feed flow disturbance (F) or the feed composition (zF) were 

scheduled in the 120th minute. The time between the disturbance change and the next SP 

change was made longer than the time of inter-SP in order to yD has an enough time to 

return to its SP. 

b. Disturbance rejection comes in three forms: normal (1%), large (20%) and very large 

(50%). A change of disturbance as much as 20% was also conducted by Skogestad (1997) 

in nonlinear distillation column (Column A) and also by Ogunnaike et al. (1983) and 

Luyben (2006) in C3-C4 distillation column. Luyben (2006) in the same process also 

made disturbance change of 50%, while Luyben and Chien (2010) made the same change 

in azeotropes distillation. Very large changes in feed flow rate will cause a drop in 

temperature at the feed tray and the tray underneath so that it will raise the reboiler heat 

input. Once heated by reboiler, vapor flow rate will be increased thereby increasing the 

heat removal as well. This tends to reduce pressure (Luyben, 2006). The aim of large 

change in the disturbance is for controllability analysis (Skogestad, 1997; Luyben and 

Chien, 2010), which is probably much larger than that to which an industrial column 

would typically be subjected (Luyben, 2006). 

To see the effect of controller output switching between controller output of MPC and 

controller output of PI to the control performances, this switching must be applied in the single 

MPC (called as SMPCPIS) using MPC.02 (MPC at yB = 0.02). After that, applying that strategy 

in the MMPC (called as MMPCPIS). The control performance used in the study was the 

integral of square errors (ISE). 
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4. RESULTS AND DISCUSSION 

4.1. Disturbance Change: Feed Flow Rate (F) 

The results shown in Figures 2 to 5 indicate that the switching of controller outputs from 

MMPC to PI functioned efficiently. The process responses and controller outputs before 

disturbances corresponded well with the MMPC, while those after disturbances matched the PI 

controller, although different level of overshoot appeared moments after the emergence of the 

disturbance. MMPCPIS is considered generally better than other models in dealing with 

disturbances involving F. The results show that significant improvements were established in 

disturbance rejection, although the responses were not as good as that of the PI controller. As 

shown by Table 1, for F disturbance of +0.1 kg-mole/min (+20%), the improvement (in ISE) 

of SMPCPIS against SMPC was as much as 42% at yD and 28% at yB. For F disturbance of 

+0.25 kg-mole/min, larger value was obtained i.e. 50% at yD and 63% at yB.  

 

Table 1 Controller performances based on switching MPC-PI at disturbance change (F) 

No Controller 

ISE ×10
4
 

F = +1% F = +20% F = +50% 

      
1 SMPC 1.285 6.272 5.419 14 28 54 

2 SMPCPIS 1.495 7.313 3.157 10 14 20 

3 MMPCPIS 0.958 1.620 2.765 2.563 14 8.74 

4 PI 1.393 2.364 3.683 3.601 16 10 

 

The MMPCPIS exceeded the performance of the SMPCPIS except on the very large F 

disturbance of +0.25 kg-mole/min at yD.  As indicated by Figures 2 and 4, MMPCPIS also 

improved the performance of MMPC, resulting in outputs that were better that that of the PI 

controller with an average improvement of 24%. Substitution of LMPC used in MMPCPIS was 

equal to the change in F = + 20% and + 50%, as indicated by Figures 3 and 5. 

4.2. Disturbance Change: Feed Composition (zF) 

As in the presence of F disturbance, in general the switching between MPC or MMPC and PI 

worked well with the zF disturbance. However, the results show that the use of SMPCPIS was 

not able to improve the control performance, so that the control performance was still worse 

than the control performance of the PI controller. Neverthaless, the use of the switching can 

improve SMPC, significantly, especially at very large disturbance rejection. As shown by Table 

2, for zF disturbance of +20%, larger value was obtained i.e. 35% at yD and 18% at yB. Also, 

for zF disturbance of +50%, larger value was obtained i.e. 84% at yD and 64% at yB. 
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Figure 2 Controller performance of MMPCPIS and PI (F = +20%) 

 

 

Figure 3 Switching of MMPCPIS (F = +20%) 
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Figure 4 Controller performance of MMPCPIS and PI (F = +50%) 

 

 

Figure 5 Switching of MMPCPIS (F = +50%) 
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Table 2 Controller performances based on MPC-PI switching at disturbance change (zF) 

No Controllers 

ISE ×10
4
 

zF = +1% zF = +20% zF = +50% 

      
1 SMPC 1.292 6.287 2.167 9.007 8.548 22 

2 SMPCPIS 1.507 7.224 1.404 7.386 1.374 7.898 

3 MMPCPIS 0.966 1.629 0.859 1.692 0.857 2.070 

4 PI 1.379 2.361 1.290 2.444 1.275 2.836 

 

The MMPCPIS exceeded the performance of the SMPCPIS for all the amount of zF 

disturbance.  As indicated by Figures 6 and 8, MMPCPIS also improved the performance of 

MMPC, resulting in outputs that were better that that of the PI controller with an average 

improvement of 31%. MMPCPIS also improved the control performance of HC (Wahid & 

Ahmad, 2015) at zF disturbance of 50%, due to better performance of MMPCPIS against PI (see 

Table 2). Substitution of LMPC used in MMPCPIS was equal to the change in zF = + 20% and 

+ 50%, as indicated by Figures 7 and 9. 

Tables 3 and 4 summarize the application of proposed algorithms in the control of a nonlinear 

distillation column. Both tables show that the percentage of ISE is decreasing due to MMPCPIS 

compared to other algorithms. Values listed in the tables is the value of performance compared 

to other controllers which is calculated using Equation 2. For example, SMPCPIS vs. HC 

means. 

 

%100Reduction ISE x
ISE

ISEISE

HC

HCSMPCPIS   (2) 

 

Table 3 ISE reduction (%) face to face HC and SWITCH algorithms based on F change 

No Controllers 
F = +1% F = +20% F = +50% 

      

1 MMPCPIS vs HC 17 -7 -11 -24 -6 -19 

2 HC vs PI -33 -9 -3 -4 0 0 

3 MMPCPIS vs PI -22 -16 -13 -27 -6 -19 

 

Table 4 ISE reduction (%) face to face HC and SWITCH algorithms based on zF change 

No Controllers 
zF = +1% zF = +20% zF = +50% 

      
1 MMPCPIS vs HC 23% -7% 27% -8% -54% -22% 

2 HC vs PI -37% -8% -42% -7% 51% 11% 

3 MMPCPIS vs PI -22% -15% -26% -15% -31% -13% 

 

MMPCPIS provided improvements by 27% and 31% of the ISE for feed flow rate disturbance 

change and feed composition, respectively, compared with the PI controller, and 24% and 54% 

of the ISE for feed flow rate disturbance change and feed composition, respectively, compared 

with HC. 
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Figure 6 Controller performance of MMPCPIS and PI (zF = +20%) 

 

 

Figure 7 Switching of MMPCPIS (zF = +20%) 
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Figure 8 Controller performance of MMPCPIS and PI (zF = +50%) 

 

 

Figure 9 Switching of MMPCPIS (zF = +50%) 
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5. CONCLUSION 

MMPCPIS can improve the control performance of the previous strategy to improve MMPC 

when dealing with very large disturbance changes, which is a hybrid controller (HC), and also 

can improve the control performance of the PI controller, significantly. MMPCPIS provided 

improvements by 27% and 31% of the ISE for feed flow rate disturbance change and feed 

composition, respectively, compared with the PI controller, and 24% and 54% of the ISE for 

feed composition disturbance change and feed composition, respectively, compared with HC. 
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